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Hamilton in the course of his studies on quaternions came up with an elegant geometric
picture for the group SU (2). In this picture the group elements are represented by
“turns,” which are equivalence classes of directed great circle arcs on the unit sphere
S2, in such a manner that the rule for composition of group elements takes the form of
the familiar parallelogram law for the Euclidean translation group. It is only recently that
this construction has been generalized to the simplest noncompact group SU (1, 1) =
Sp(2, R) = SL(2, R), the double cover of SO(2, 1). The present work develops a
theory of turns for SL(2, C), the double and universal cover of SO(3, 1) and SO(3, C),
rendering a geometric representation in the spirit of Hamilton available for all low
dimensional semisimple Lie groups of interest in physics. The geometric construction
is illustrated through application to polar decomposition, and to the composition of
Lorentz boosts and the resulting Wigner or Thomas rotation.
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1. INTRODUCTION

The group SU (2) plays an important role in various branches of physics. One
is generally familiar with two ways of parametrizing the elements of SU (2)–the
Euler angle parametrization and the Cayley-Klein parametrization. In neither of
these parametrizations is the expression for the group composition law partic-
ularly illuminating: there is no simple way of remembering or visualizing the
composition law. Hamilton (1853), in the course of his studies on quaternions,
developed an interesting geometric picture for representing the elements of SU (2)
wherein the group composition law acquires the structure of the familiar head to
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tail parallelogram rule of vector addition. This work has come to be known as
Hamilton’s theory of turns, and an excellent review can be found in the monograph
of Biedenharn and Louck (1981). Interestingly, this elegant geometric picture does
not seem to be as well known as it deserves, and it is only recently that Hamilton’s
construction was generalized to the simplest noncompact semisimple Lie group
SU (1, 1) (Simon et al., 1989a, 1989b).

The ideas underlying Hamilton’s construction can be best and most easily
understood through analogy with the much simpler case of the Abelian group of
translations in a three dimensional Euclidean space. Each element of this group
can be thought of as a unique point in a three dimensional space or, equivalently, as
a vector emanating from the origin – the point representing the identity element.
The composition law for this group then corresponds to simply adding vectors
representing the group elements using the parallelogram law.

Examined in detail, the parallelogram law for the translation group involves
giving up the picture in the last paragraph wherein each element of the group was
represented by a vector with tail pegged to the origin, and going over to a picture
based on free vectors – vectors with their tails unpegged. Let (x, y) represent
the free vector with head at y and tail at x. The group element corresponding
to translation by amount a is represented not by a single free vector, but by the
equivalence class of all free vectors (x, y) obeying the only condition y − x = a.
The parallelogram law for composing two group elements (x, y) and (u, v) in
this picture simply amounts to choosing representative free vectors, one from
either equivalence class, in such a manner that the head of the first free vector
coincides with the tail of the second. We may use, for instance, the equivalence
(u, v) = ( y, y + v − u). Then the product of the two group elements is the free
vector from the tail of the first to the head of the second vector:

(u, v)(x, y) = ( y, y + v − u)(x, y) = (x, y + v − u). (1.1)

Note that the equivalence class of free vectors corresponding to a group
element is obtained from the unique vector pegged to the origin by the left action
of the translation group. Thus, the above construction can be carried over to any
group G through left action of the group on the group manifold itself. More
precisely, to each group element g one can associate an equivalence class of
pairs (g0, gg0), with the tail g0 running over the entire group manifold. It can
easily be verified that whatever was said about the translation group goes through
here as well. In particular, composing two group elements g, g′ represented by
the equivalence classes corresponding respectively to (g0, gg0) and (g′

0, g
′g′

0)
requires us to choose the representative pair from each equivalence class in such
a manner that the head gg0 of the first one coincides with the tail of the second
pair, (g′

0, g
′g′

0) ∼ (gg0, g
′gg0), so that the resulting equivalence class (g0, g

′gg0)
corresponds to the group element g′g, thus endowing the composition law of the
arbitrary group G with the structure of the parallelogram rule.
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This naive generalization of the parallelogram law applies uniformly to all
groups, and does not take advantage of the specific features of a given group. It
requires us to ascribe to each element of the group an equivalence class of pairs of
points on the group manifold, and this equivalence class is exactly as large as the
group manifold itself. Thus, in the case of SU (2) for which the group manifold
is S3 one would be associating with each group element an equivalence class of
pairs of points on S3 (the tail point of a pair can be considered to be arbitrary, and
the head point is then fixed by the tail and the group element under consideration).
The importance of Hamilton’s work lies in his recognizing that formulation of the
SU (2) composition law as a parallelogram rule can be accomplished, with greater
economy, using equivalence classes of pairs of points on S2 rather than on S3.

The relationship between SU (2) and S2 is that the latter is an adjoint orbit of
the former. That the parallelogram law for composition of SU (2) group elements
can be constructed on the (smaller) adjoint orbit without having to resort to the full
group manifold rests ultimately on the fact that SU (2) is strongly nonabelian (its
centre is discrete). In comparison, since the translation group of the n-dimensional
Euclidean space is abelian, parallelogram law for it cannot be constructed in any
space smaller than the group manifold Rn.

Just as SU (2), the pseudo-unitary semisimple group SU (1, 1), which is iso-
morphic to the real symplectic group Sp(2, R) of linear canonical transformations,
plays an important role in several areas of physics like squeezed light, Bogoliubov
transformations, Gaussian or first order optics, transmission lines, and reflection
and transmission of classical and Schrödinger waves at lossless boundaries and
through barriers. Further, SU (1, 1) is the double cover of the (pseudo-orthogonal)
Lorentz group SO(2, 1) of the (2 + 1)-dimensional space-time, a relationship
similar to the one between SU (2) and SO(3).

Another low dimensional group whose importance for physics cannot be
over-emphasised is the semisimple group SL(2, C). This group is the double (and
universal) cover of the Lorentz group SO(3, 1). Moreover, the complex orthogonal
group SO(3, C) is isomorphic to SO(3, 1): under a Lorentz transformation the
space-time coordinates transform as an SO(3, 1) vector, but the three components
of E ± i H , where E and H are the electric and magnetic field vectors, transform
as mutually conjugate SO(3, C) vectors.

As noted above, Hamilton’s theory of turns has already been generalized
to SU (1, 1). The purpose of the present paper is to develop a theory of turns
for SL(2, C) so that a geometric representation in the spirit of Hamilton will be
available for all the low dimensional semisimple Lie groups of interest in physics.

The contents of this paper are organized as follows. In Section 2 we re-
count briefly Hamilton’s theory of turns for SU (2), and also its generalization to
SU (1, 1). This summary should prove useful in view of the fact that the theory of
turns that we develop for SL(2, C) runs almost parallel to that in the above cases.
The adjoint orbits in the Lie algebra of SL(2, C) are considered in Section 3,



2078 Simon, Chaturvedi, Srinivasan, and Mukunda

and the relationships between the groups SO(3, 1), SO(3, C) and SL(2, C) are
indicated. In Section 4 we construct turns for SL(2, C) in the adjoint orbit of com-
plex “unit” vectors � = {̂z = (z1, z2, z3), z2

1 + z2
2 + z2

3 = 1}, and demonstrate the
parallelogram law for composition of turns. As an exercise in the use of turns, in
Section 5 we describe the polar decomposition in the language of turns. Compo-
sition of Lorentz boosts and the resulting Wigner (Thomas) rotation are studied in
Section 6 using turns. We conclude in Section 7 with some final remarks.

2. TURNS FOR SU(2) AND SU(1, 1)

In the defining 2 × 2 representation, elements of the group SU (2) are de-
scribed in terms of the Pauli matrices σ = (σ1, σ2, σ3) as

g(a0, a) = a0 − ia · σ , (2.1)

where a0 is a real scalar and a is a real three vector satisfying the constraint

a2
0 + a · a = 1. (2.2)

Thus the group manifold of SU (2) is the unit sphere S3. The centre of SU (2) is
Z2, the subgroup consisting of the two elements ±1.

The Lie algebra considered as a linear space coincides withR3, and it consists
of all traceless hermitian matrices x · σ , x ∈ R3. The group SU (2), modulo its
center Z2, can be realized by its adjoint action on its Lie algebra:

g : x · σ → g x · σ g−1 = x′ · σ ,

x′ = R(g)x, R(g) ∈ SO(3) = SU (2)/Z2. (2.3)

Thus x · x = − det x · σ is invariant, and hence the adjoint orbits of SU (2) are
spheres centred at the origin. Hamilton’s turns can be constructed on any of these
orbits, and we choose the unit sphere S2.

The construction goes as follows. Given g(a0, a) ∈ SU (2), choose a pair of
unit vectors x̂, ŷ ∈ S2 such that a0 = x̂ .̂ y, a = x̂ ∧ ŷ. This is always possible
and, indeed, there exists not just one choice but an equivalence class of choices.
When a �= 0, the unit vectors x̂, ŷ are necessarily orthogonal to a, and there exists
a one parameter worth of freedom in the choice of x̂, ŷ: for instance, x̂ can be
chosen to be an arbitrary point on the great circle of S2 perpendicular to a, and
then ŷ is uniquely determined by x̂ ∧ ŷ = a and x̂ · ŷ = a0. On the other hand,
when a = 0, i.e. when g(a0, a) = ±1, the vectors x̂, ŷ are necessarily parallel or
antiparallel, and there is a two parameter worth of freedom in choosing the pair
(̂x may be chosen to be an arbitrary point, and then ŷ is fixed: (̂x, ŷ) = (̂x,± x̂)).

We may use x̂, ŷ to label the elements of SU (2) and write

g(̂x, ŷ) = x̂ · ŷ − i x̂ ∧ ŷ · σ . (2.4)
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This equation describes a one-to-one correspondence between elements of SU (2)
and equivalence classes of pairs of points in S2.

Now, a pair of points in S2 is the same thing as a directed great circle arc
with tail at the first member of the pair and head at the second. Thus emerges the
one-to-one correspondence between elements of SU (2) and equivalence classes
of directed great circle (geodesic) arcs. These equivalence classes are the turns of
Hamilton. Arcs of an equivalence class belong to the same great circle, have the
same sense and same arc length ≤ π , so that the members of an equivalence class
are obtained by rigidly sliding one arc of the class along its own geodesic. The
element −1 ∈ SU (2) corresponds to the equivalence class of great semicircles or
antipodal points, and the identity element to the equivalence class of null arcs or
singleton points.

Since g(a0, a)−1 = g(a0, −a), we have g(̂x, ŷ)−1 = g(̂ y, x̂). That is, the
SU (2) inverse of a turn corresponds simply to reversal of the sense of the turn.
The group composition law rests on the identity

g(̂ y, ẑ)g(̂x, ŷ) = g(̂x, ẑ), (2.5)

which follows from the definition (2.4). This is the parallelogram law for the
product of two SU (2) elements when the tail of the left factor coincides with “and
cancels” the head of the right factor at ŷ. The product then corresponds to the
directed great circle arc from the free tail x̂ to the free head ẑ, as shown in Fig. 1.

That it is always possible, given two arbitrary elements of SU (2), to choose
directed arcs from the respective turns so that the tail of the left element coincides
with the head of the right element is guaranteed by the fact that great circles on
S2 intersect (or coincide). Thus, the parallelogram law (2.5) faithfully reproduces
SU (2) multiplication (including its noncommutativity!).

Given a0 − ia · σ ∈ SU (2), the condition a0
2 + a · a = 1 implies that we

can find a unit vector n̂ and an angle −2π < θ ≤ 2π such that a0 = cos θ/2 and
a = n̂ sin θ/2 . Thus, we may also parametrize the elements of SU (2) as

S(θ, n̂) = cos θ/2 − i n̂ · σ sin θ/2,

rendering the fact that S3, the group manifold of SU (2), is a U (1) bundle over
S2. In the adjoint representation S(θ, n̂) acts as rotation through angle θ about the
direction n̂. While the unit vectors (̂x, ŷ) in (2.4) live in the “equator” orthogonal
to n̂, the angle between them is θ/2 and not θ (see Fig. 1).

This concludes our account of Hamilton’s theory of turns for SU (2). We have
gone over it in some detail, for the theory of turns that we shall develop for the
Lorentz group will follow the SU (2) case quite closely.

The theory of turns has turned out to be a powerful tool in connexion with
several synthesis problems in polarization optics (Simon et al., 1989c). A partic-
ularly striking result in this context is the following: every intensity preserving
[i.e., SU (2)] transformation in polarization optics can be synthesised with just
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Fig. 1. Showing the parallelogram law of group
composition for SU (2). The turns representing
S(θ1, n̂1) and S(θ2, n̂2) live in the equators or-
thogonal to n̂1 and n̂2 respectively. The head
of S(θ1, n̂1) and the tail of S(θ2, n̂2) meet at
C. The directed geodesic arc AB from the free
tail of S(θ1, n̂1) to the free head of S(θ2, n̂2)
represents the turn corresponding to the product
S(θ, n̂) = S(θ2, n̂2)S(θ1, n̂1), with n̂ orthogonal
to the geodesic AB and θ = twice the arclength of
AB.

two quarter wave plates and one half wave plate (Simon et al., 1989c; Simon and
Mukunda, 1989, 1990a; Bagini et al., 1996). Moreover, an intimate connection
between SU (2) turns and the Berry–Pancharatnam (Berry, 1984; Pancharatnam,
1956) geometric phase has been established (Simon and Mukunda, 1992).

Hamilton’s theory of turns has been generalized to the noncompact group
SU (1, 1) only recently (Simon et al., 1989a, 1989b). This group consists of two
dimensional complex pseudounitary matrices of unit determinant:

g =
(

α β

β∗ α∗

)

, | α |2 − | β |2 = 1. (2.6)
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It order to maintain a close similarity with the group SU (2), it proves conve-
nient to define

ρ = (ρ1, ρ2, ρ3),

ρ1 = σ3, ρ2 = iσ1, ρ3 = iσ2, (2.7)

and to introduce the (2 + 1)-Minkowskian analogues (with indices running over
1,2,3 rather than over 0,1,2) of the scalar and the cross products of vectors as
follows

x · y ≡ ηabx
ayb, x ∧ y ≡ εa

bcx
byc, (2.8)

where ηab = diag(−1,+1,+1) is the metric, and εabc is the Levi-Civita symbol
with ε123 = 1. With the help of this notation SU (1, 1) matrices, in analogy with
the SU (2) case, can be expressed as

g(b0, b) = b0 − ib · ρ, (2.9)

where the scalar b0 and the vector b are real and are constrained by

b0
2 − b · b = b2

0 + b2
1 − b2

2 − b2
3 = 1. (2.10)

The group manifold of SU (1, 1) is the hyperboloid described by (2.10). Topolog-
ically it has the same structure as R2 × S1, as can be seen by solving for b0 and
b1 in (2.10) in terms of (b2, b3) ∈ R2 and an angle variable θ :

b0 =
√

1 + b2
2 + b2

3 cos θ,

b1 =
√

1 + b2
2 + b2

3 sin θ. (2.11)

Thus, the group manifold of SU (1, 1) is noncompact. It is multiply connected,
while that of the compact group SU (2) is simply connected. However, the centre
of SU (1, 1) is Z2, the subgroup consisting of the two elements ±1, just as with
SU (2).

The Lie algebra of SU (1, 1) consists of the matrices x · ρ, x ∈ R3. Adjoint
action of SU (1, 1) on its Lie algebra gives a realization of SU (1, 1) modulo its
center Z2:

g : x · ρ → g x · ρ g−1 = x′ · ρ,

x′ ≡ 
(g)x, (2.12)


(g) ∈ SO(2, 1) = SU (1, 1)/Z2.

We made use of the fact that det x · ρ = x · x = x2
2 + x2

3 − x2
1 is invariant under

conjugation
Whereas all the adjoint orbits of SU (2) were of the same type, namely

concentric spheres, in the SU (1, 1) case there are different types of orbits since,
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owing to the indefinite nature of the Minkowskian scalar product, the invariant
x · x = det x · ρ can be positive, negative, or zero (adjoint orbits of the orthogonal
and pseudo-orthogonal groups SO(m, n), m + n ≤ 5, have been analysed and
classified in Mukunda et al. (1988)). The single sheeted unit hyperboloid consisting
of spacelike unit vectors x with x2

2 + x2
3 − x2

1 = 1 proves convenient (Simon et al.,
1989a, b) in generalizing Hamilton’s theory of turns to SU (1, 1). Indeed, the
construction proceeds in close analogy with the SU (2) case, and the details can
be found in Simon et al. (1989a, 1989b).

3. SL(2, C) AND ITS CONNECTION WITH SO(3, C) AND SO(3, 1)

The group SL(2, C) in its defining representation consists of complex valued
2 × 2 matrices of unit determinant:

S =
(

a b

c d

)

, ad − bc = 1. (3.1)

It is a noncompact six parameter real Lie group. The centre of SL(2, C) is Z2 =
{±1}, and the group manifold is simply connected.

The Lie algebra consists of all traceless complex matrices z · σ , z ∈ C3. In
other words the one parameter subgroups are of the form

gz(t) = exp(−it z · σ ) = exp[−it(x · σ + i y · σ )],

x, y ∈ R3, z = x + i y ∈ C3. (3.2)

The connection between SL(2, C) and SO(3, C) is exposed by the adjoint
action of the former on its Lie algebra:

S : z · σ → S z · σ S−1 = z′ · σ ,

z′ = Rc(S)z, Rc(S) ∈ SO(3, C) = SL(2, C)/Z2. (3.3)

Here we made use of the fact that the trace and the determinant of a matrix are
invariant under conjugation, and the fact that det z · σ = −z · z. The superscript
over R is to remind us that we are dealing with the complex, rather than the real,
orthogonal group, and z is to be viewed as a column vector.

For any Lie group G with centre �, the adjoint representation is a faithful
representation of the quotient group G/�. In the cases of SU (2) and SU (1, 1)
we have seen that the adjoint representations coincide respectively with the
defining representations of SO(3) and SO(2, 1), consistent with the fact that
SU (2)/Z2 = SO(3), SU (1, 1)/Z2 = SO(2, 1). In the case of SL(2, C) we find
that the adjoint representation coincides with the defining representation of the
complex orthogonal group SO(3, C), with the complex 3 × 3 matrices of the latter
rewritten as real 6 × 6 matrices in a natural manner.
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The group SL(2, C) is related also to the Lorentz group SO(3, 1) in a well
known two-to-one manner. To see this, consider a generic hermitian matrix

H = ξ0 + ξ · σ , (3.4)

where ξ0 is a real scalar and ξ ∈ R3. We have trH = 2ξ0 and det H = ξ0
2 −

ξ · ξ . Clearly, for any S ∈ SL(2, C), the map S : H → SHS† preserves det H ,
hermiticity of H , and the signature of trH (the numerical value of trH is not
preserved since the map is a congruence and not conjugation):

S : ξ0 + ξ · σ → S(ξ0 + ξ · σ )S† = ξ ′
0 + ξ ′ · σ ,

ξ ′2
0 − ξ ′ · ξ ′ = ξ 2

0 − ξ · ξ ,

sign ξ ′
0 = sign ξ0. (3.5)

This implies that (ξ ′
0, ξ

′) and (ξ0, ξ ) are related by a real 4 × 4 Lorentz transfor-
mation matrix L(S):

(

ξ ′
0

ξ ′

)

= L(S)

(

ξ0

ξ

)

, L(S) ∈ SO(3, 1). (3.6)

Since Z2 = {±1} is the kernel of the map (3.5), one concludes that the proper
orthochronous Lorentz group is isomorphic to SL(2, C)/Z2:

SO(3, 1) ∼ SL(2, C)/Z2 ∼ SO(3, C). (3.7)

We may illustrate the connections between these three groups by considering
some one parameter subgroups (OPS’s). The compact OPS exp(−i θ

2 σ1) generated
by (the hermitian) σ1 takes the following forms

g(θ ) =
(

cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)

)

, 0 ≤ θ < 4π

Rc(θ ) =

⎛

⎜

⎝

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎞

⎟

⎠ , 0 ≤ θ < 2π


(θ ) =

⎛

⎜

⎜

⎜

⎝

1 0 0 0

0 1 0 0

0 0 cos θ − sin θ

0 0 sin θ cos θ

⎞

⎟

⎟

⎟

⎠

, 0 ≤ θ < 2π (3.8)

respectively in SL(2, C), SO(3, C) and SO(3, 1). On the other hand, the non-
compact OPS exp( β

2 σ1) generated by (the antihermitian) iσ1 takes the following
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forms:

g(β) =
(

cosh(β/2) sinh(β/2)

sinh(β/2) cosh(β/2)

)

, β ∈ R

Rc(β) =

⎛

⎜

⎝

1 0 0

0 cosh β −i sinh β

0 i sinh β cosh β

⎞

⎟

⎠
, β ∈ R


(β) =

⎛

⎜

⎜

⎜

⎝

cosh β sinh β 0 0

sinh β cosh β 0 0

0 0 1 0

0 0 0 1

⎞

⎟

⎟

⎟

⎠

, β ∈ R. (3.9)

It is the identification of θ and θ + 2π for compact OPS’s in going over from
SL(2, C) to SO(3, C) or SO(3, 1) that is ultimately responsible for the fact that
the latter groups are topologically different from the former.

The adjoint orbits (See, for example, Gelfand et al., 1963, Further refer-
ences can be found in Mukunda and Simon (1995), Mukunda et al. (1988))
of the Lie algebra of SL(2, C) can be easily figured out from the fact that
z · z is the only (complex) invariant associated with a generic Lie algebra
element z · σ under the adjoint action. Since z · z can assume any numerical
value, it is clear that there exists precisely one orbit for each point in the
complex plane. Closer examination shows that these orbits fall into two differ-
ent types (Gelfand et al., 1963; Mukunda and Simon, 1995; Mukunda et al., 1988).

type-I orbits: z · z = r2e2iφ , 0 ≤ φ < π , 0 < r < ∞.

In this case the Lie algebra element z · σ with z · z �= 0 can be brought,
using the adjoint action, into the canonical form

z = (z1, z2, z3) → z0 = (reiφ, 0, 0),

z · σ → z0 · σ = reiφ σ1. (3.10)

Clearly, the stability group of this canonical form is

GI = SO(2) × SO(1, 1) = SO(2, C)

=
{

exp

(

− i

2
(α + iβ)σ1

)

, 0 ≤ α < 4π, β ∈ R
}

, (3.11)

which has the topology of the cylinder R × S1. Thus the type-I orbits
have the structure of the four dimensional manifold SO(3, C)/GI , and
there exists precisely one such orbit for every nonzero complex number.
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type-II orbit: z · z = 0.

A Lie algebra element z · σ with z · z = 0 can be brought, using the adjoint
action, into the canonical form

z = (z1, z2, z3) → z0 = (1, i, 0),

z · σ → z0 · σ = σ1 + iσ2. (3.12)

The stability group of this canonical form is

GII =
{

exp

(

− i

2
(α + iβ)(σ1 + iσ2)

)

, α, β ∈ R
}

, (3.13)

which has the topology ofR2. Thus the type-II orbit has the structure of the
four dimensional manifold SO(3, C)/GII . Both GI and GII are abelian.
At the risk of repetition we wish to note that there exists only one type-II
orbit.

To construct turns for SL(2, C) we shall make use of the orbit z · z = 1. We
shall denote this orbit by �, and refer to it as the orbit of complex unit vectors.
For convenience, elements of � will be decorated with a hat, like x̂, ŷ, . . .

To conclude this Section, we note that the vector algebra in R3 carries over
to C3 with virtually no change. In particular, the following familiar identities are
true for complex-valued vectors as well:

a ∧ (b ∧ c) = b(a · c) − c(a · b),

(a ∧ b) · (c ∧ d) = (a · c)(b · d) − (a · d)(b · c),

(z · y)(x · z) − (z ∧ y) · (x ∧ z) = (z · z)(x · y), (3.14)

(z · z)(x ∧ y) = (z · y)(x ∧ z) + (z · x)(z ∧ y)

+ (z ∧ y) ∧ (x ∧ z).

These relations will be found useful in the next Section.

4. CONSTRUCTION OF TURNS FOR SL(2, C)

We now have all the ingredients to construct a theory of turns for SL(2, C).
Elements of SL(2, C) can be described through

S(a0, a) = a0 − ia · σ , (4.1)

where a0 is a complex scalar and a a complex three vector subject to the condition
a2

0 + a · a = 1. This is one complex condition on four complex numbers. Given
S(a0, a) ∈ SL(2, C), to construct the turn corresponding to S(a0, a) we look for
pairs of complex unit vectors x̂, ŷ such that a0 = x̂ · ŷ and a = x̂ ∧ ŷ.
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Let x̂ be a unit vector perpendicular to a, i.e. x̂ · a = 0. This corresponds to
two real constraints in the four-parameter manifold of unit vectors. Thus, there is
a two parameter worth of freedom in the choice of x̂ perpendicular to a. Define

y ≡ a0 x̂ + a ∧ x̂. (4.2)

Then a2
0 + a · a = 1 guarantees that y · y = 1, and we may indeed write ŷ in place

of y. Further, it can be verified that the conditions a0 = x̂ · ŷ and a = x̂ ∧ ŷ are
satisfied. Since there is a two-parameter worth of freedom in the choice of x̂, we
have not just one pair but an equivalence class of pairs x̂, ŷ representing a given
S ∈ SL(2, C). We may use any one of these pairs and write

S(a0, a) = a0 − ia.σ

= x̂ · ŷ − i x̂ ∧ ŷ · σ ≡ S (̂x, ŷ), (4.3)

and call the equivalence class S (̂x, ŷ) as the turn from the tail x̂ to the head ŷ.
(The improper use of a common symbol S(·, ·) at the start and the end of this
equation should cause no confusion.) Conversely, for any choice of two complex
unit vectors x̂ and ŷ, S (̂x, ŷ) is indeed an SL(2, C) element, and two pairs x̂, ŷ
and x̂′, ŷ′ are in the same equivalence class if and only if x̂ · ŷ = x̂′ · ŷ′ and
x̂ ∧ ŷ = x̂′ ∧ ŷ′. For the special elements ±1 ∈ SL(2, C), we have a = 0 and
hence ŷ = ±x̂.

Since S(a0, a)−1 = S(a0,−a), it follows that

S (̂x, ŷ)−1 = S (̂ y, x̂). (4.4)

Thus the inverse corresponds to reversing the sense of the turn, as one
would have wished. Only the parallelogram law of composition remains to be
established.

With the aid of the identities (3.14), it is readily seen that the definition (4.3)
possesses the following property:

S (̂z, ŷ) S (̂x, ẑ) = S (̂x, ŷ). (4.5)

This is the parallelogram law when the head of the right factor coincides with the
tail of the left one. The theory of turns for SL(2, C) will be deemed complete if
one can show that there always exists a common unit vector ẑ where two turns
meet.

Suppose a0 − ia.σ and b0 − ib.σ are two SL(2, C) elements, then the com-
mon unit vector ẑ where the corresponding turns meet should necessarily satisfy
a.̂z = 0 and b.̂z = 0. Thus ẑ must be a multiple of a ∧ b. It follows that a unit
vector ẑ common to two turns exists if and only if (a ∧ b) · (a ∧ b) �= 0.

Thus, if the two SL(2, C) elements to be composed are such that (a ∧ b) · (a ∧
b) �= 0, then their turns meet in the space of unit vectors �, and (4.5) constitutes the
parallelogram law of composition for such pairs. But if (a ∧ b) · (a ∧ b) = 0, the
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corresponding turns do not meet in �, and hence further work is needed before (4.5)
can be used as the parallelogram law of composition for such pairs. Fortunately,
the latter situation occurs only in a measure zero set of cases: (a ∧ b) · (a ∧ b) can
take any complex value, but the turns fail to meet in � only when this value is
zero.

In such special cases one may infinitesimally modify one of the two
SL(2, C) elements to be composed, say change S(b0, b) to S(b′

0, b′) so that
b′

0 − b0 and b′ − b are infinitesimals and (a ∧ b′) · (a ∧ b′) �= 0, use (4.5) to
compose the turns, and take the limit of the composed turn as the infinitesi-
mals go to zero. Alternatively, we may suitably factorize S(b0, b) into a product
of two SL(2, C) elements, S(b0, b) = S(b′′

0, b′′)S(b′
0, b′), and use the parallel-

ogram law twice: compose the turn corresponding to S(a0, a) with that corre-
sponding to S(b′

0, b′), and then compose the resulting turn with that correspond-
ing to S(b′′

0, b′′) (this latter approach is the one used in the theory of turns for
SU (1, 1) presented in Simon et al. (1989a, 1989b) for handling turns which do not
meet).

With these provisions for handling the measure zero case of nonintersect-
ing turns, (4.5) constitutes the parallelogram law of composition for SL(2, C)
turns.

5. TURNS AND THE POLAR DECOMPOSITION

In this Section we describe in the language of turns we have just developed the
process of polar decomposition. Such an exercise not only helps us in developing
a feel for SL(2, C) turns, but also helps in the study of composition of Lorentz
boosts to be taken up in the next Section.

Any element S ∈ SL(2, C) can be decomposed as S = HU , where H is
hermitian positive definite, U is unitary, and therefore H,U ∈ SL(2, C). This
polar decomposition is unique for a given S, and corresponds to the decomposition
of an element 
 ∈ SO(3, 1) into a spatial rotation followed by a boost. That is,

 = PR where P is real symmetric positive definite and R is orthogonal. Again,
P and R are uniquely determined in terms of 
, and both factors are elements
of SO(3, 1). In SO(3, C), this decomposition corresponds to a rotation through
a purely real angle followed by a rotation through a purely imaginary angle. It is
important to appreciate that polar decomposition is not covariant under conjugation
by SL(2, C) [equivalently, by SO(3, 1) or SO(3, C)]. It is covariant only under
SU (2) [equivalently, under SO(3)].

Now an element a0 − ia.σ ∈ SL(2, C) is unitary (real rotation) if and only
if a0 and a are real. In the language of turns this translates into the following
statement: S = x̂ · ŷ − i (̂x ∧ ŷ) · σ is unitary if and only if x̂ and ŷ are real.
Similarly S = a0 − ia.σ is hermitian positive definite (pure boost) if and only if
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a0 is real and >0 and a is imaginary. In terms of turns this happens if one member
of the pair (̂x ,̂ y), say x̂, is purely real to which the real part of the other, say ŷ,
is parallel (not antiparallel). The imaginary part of ŷ is then perpendicular to x̂
by virtue of the fact that the real and imaginary parts of a complex unit vector are
necessarily orthogonal.

Writing a = aR + iaI , polar decomposition of S(a0, a) = a0 − ia.σ is trivial
when aR and aI , the real and imaginary parts of a, are multiples of one another.
So we assume that aR and aI are linearly independent. Our aim is to decompose
S (̂x, ŷ) ∈ SL(2, C) in the polar form

S = a0 − ia.σ

= S (̂x, ŷ) = S (̂z, ŷ)S (̂x, ẑ), (5.1)

with x̂, ẑ real so that S (̂x, ẑ) will be an element of SU (2) (i.e., rotation) and the
real part of ŷ parallel to ẑ so that S (̂z, ŷ) will be hermitian positive definite (i.e.,
pure boost).

We noted in Section 4 that there exists a two parameter worth of freedom in
choosing the tail point x̂ of a turn S (̂x, ŷ). To facilitate polar decomposition we
need to choose x̂ to be real, and the above two parameter freedom permits such
a choice. Indeed, reality of x̂ and the requirement a · x̂ = 0, which follows from
a = x̂ ∧ ŷ, together imply that x̂ is necessarily orthogonal to both the real and
imaginary parts of a = aR + iaI :

x̂ = ± aR ∧ aI√
(aR ∧ aI ) · (aR ∧ aI )

. (5.2)

Then, from (4.2),

ŷ = a0 x̂ + a ∧ x̂

= a0R x̂ + aR ∧ x̂ + ia0I x̂ + iaI ∧ x̂, (5.3)

where a0R and a0I are respectively the real and imaginary parts of the scalar a0.
Since ẑ has to be real and parallel (not antiparallel) to the real part of ŷ, we have

ẑ = a0R x̂ + aR ∧ x̂
√

a2
0R + aR · aR

, (5.4)

and the polar decomposition is completed.
Reality of x̂ required by polar decomposition removed the two parameter

worth of arbitrariness or freedom in the choice of x̂, and hence in that of ẑ and
ŷ, except for a signature in (5.2). Since ŷ and ẑ in (5.3), (5.4) are linear in x̂,
and since the quantities entering the polar decomposition are quadratic in x̂, ŷ
and ẑ, either choice for the signature in (5.2) leads to the same set of expressions,
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confirming the uniqueness of the polar decomposition:

S(a0, a) = a0 − ia · σ

= S (̂z, ŷ)S (̂x, ẑ)

= (̂z · ŷ − î z ∧ ŷ · σ )(̂x · ẑ − i x̂ ∧ ẑ · σ )

x̂ · ẑ = a0R
√

(a0R)2 + aR · aR

,

x̂ ∧ ẑ = aR
√

(a0R)2 + aR · aR

(5.5)

ẑ · ŷ =
√

(a0R)2 + aR · aR > 1,

ẑ ∧ ŷ = i(aRaI − a0I aR + aR ∧ aI )
√

(a0R)2 + aR · aR

.

We have ẑ · ŷ > 1 by virtue of the fact that for a complex unit vector the square
of the norm of the real part exceeds unity by an amount equal to the square of the
norm of the imaginary part.

Let us define a real angle ε and real unit vector ̂kr through

x̂ · ẑ = cos(ε/2),

x̂ ∧ ẑ = sin(ε/2) ̂kr . (5.6)

These expressions remain invariant under the transformation ε/2 → −ε/2,̂kr →
−̂kr , and hence we restrict the range of ε to 0 ≤ ε/2 ≤ π . Similarly, let us define
a real positive rapidity parameter β and a real unit vector ̂kb through

ẑ · ŷ = cosh(β/2),

ẑ ∧ ŷ = i sinh(β/2) ̂kb. (5.7)

With these definitions the polar decomposition (3.5) can be written as

S(a0, a) = a0 − ia · σ

= (cosh(β/2) + sinh(β/2) ̂kb · σ )(cos(ε/2) − i sin(ε/2) ̂kr · σ ). (5.8)

The hyperbolic factor is manifestly hermitian positive definite with eigenvalues
exp(±β/2), and corresponds to a boost along the spatial direction̂kb with rapidity
parameter β. The trigonometric factor is manifestly unitary and corresponds to
spatial rotation by angle ε about the direction ̂kr . The suffix b/r attached to ̂k
signifies boost/rotation. Comparing (5.6), (5.7) with (5.5) we deduce that

cosh(β/2) =
√

(a0R)2 + aR · aR,

tan(ε/2) =
√

aR · aR

a0R

, (5.9)
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and that the spatial rotation is about the direction of (sign a0R)aR , while the boost
is along the spatial direction (aRaI − a0I aR + aR ∧ aI ).

In concluding this Section we wish to make the following remark. Since the
set of all 2 × 2 hermitian positive definite SL(2, C) matrices exp(x.σ ), x ∈ R3

has the structure of R3 as a manifold, and since SU (2) has the structure of S3, it
follows from the uniqueness of the polar decomposition that the SL(2, C) group
manifold has the structure of R3 × S3. In the case of SO(3, 1) [SO(3, C)], the
role of S3 will be played by the real projective space RP 3 = S3/Z2, consistent
with the relation SO(3, 1) ∼ SO(3, C) = SL(2, C)/Z2.

6. COMPOSITION OF BOOSTS: WIGNER OR THOMAS ROTATION

As our second and final illustration of the theory of turns we have developed
for the Lorentz group, we apply it to the well known problem of composition of
Lorentz boosts. Let the first boost be in the spatial direction of the real unit vecor
m̂, with rapidity parameter βm, and let the second be in the direction of n̂, with
rapidity parameter βn. The problem of composition of boosts is trivial when m̂
and n̂ are parallel or antiparallel to one another, and so we assume m̂ and n̂ to be
linearly independent. Let (̂xm, ŷm) and (̂xn, ŷn) be the turns corresponding to the
two boosts. Then

x̂m · ŷm = cosh(βm/2),

x̂m ∧ ŷm = i sinh(βm/2) m̂

x̂n · ŷn = cosh(βn/2), (6.1)

x̂n ∧ ŷn = i sinh(βn/2) n̂.

Let ẑ be the point where the head of the first turn and the tail of the second turn
meet (it turns out that ẑ is necessarily real). Since the pair (̂xm, ŷm) is orthogonal
to m̂ while the pair (̂xn, ŷn) is orthogonal to n̂, the common meeting point ẑ has
to be necessarily orthogonal to both m̂ and n̂:

ẑ = ± m̂ ∧ n̂√
(m̂ ∧ n̂) · (m̂ ∧ n̂)

. (6.2)

Let x̂ be the tail of the first turn and ŷ be the head of the second turn when they
so meet at ẑ, so that the first boost can be represented by (̂x, ẑ) and the second by
(̂z, ŷ). That is, S (̂xm, ŷm) = S (̂x, ẑ) and S (̂xn, ŷn) = S (̂z, ŷ). Solving for x̂, ŷ we
have,

x̂ = cosh(βm/2) ẑ + i sinh(βm/2) ẑ ∧ m̂,

ŷ = cosh(βn/2) ẑ + i sinh(βn/2) n̂ ∧ ẑ. (6.3)
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We conclude from the parallelogram law (4.5) that the product of the m̂ boost
followed by the n̂ boost is

S (̂xn, ŷn)S (̂xm, ŷm) = S (̂z, ŷ)S (̂x, ẑ) = S (̂x, ŷ). (6.4)

To gain insight into the product S (̂x, ŷ) ∈ SL(2, C), let us write it in the form
S (̂x, ŷ) = a0 − ia.σ , where

a0 = x̂ · ŷ ≡ a0R + ia0I ,

a = x̂ ∧ ŷ ≡ aR + iaI . (6.5)

Use of (6.3) yields the following expressions for the real and imaginary parts of
a0, a:

a0R = cosh(βm/2) cosh(βn/2) + sinh(βm/2) sinh(βn/2) m̂ · n̂,

a0I = 0; (6.6)

aR = sinh(βm/2) sinh(βn/2)m̂ ∧ n̂,

aI = sinh(βm/2) cosh(βn/2) m̂ + sinh(βn/2) cosh(βm/2) n̂.

The vector parameter a in (6.6) determining the product of the m̂ and n̂
boosts is complex, as was to be expected, since the product of two Lorentz boosts
in neither a (pure) boost nor a spatial rotation.

We may now apply the polar decomposition developed in the last Section to
the product of the two boosts:

S (̂xn, ŷn)S (̂xm, ŷm) = a0 − ia · σ

= S (̂z′, ŷ′) S (̂x′, ẑ′), (6.7)

where we require S (̂z′, ŷ′) to correspond to a boost and S (̂x′, ẑ′) to a spa-
tial rotation, and a0, a are given by (6.6). The spatial rotation so obtained
is known as the Wigner or Thomas Rotation (Thomas, 1926, 1927; Wigner,
1939, An illuminating discussion can be found in the text book of Goldstein,
1980).

It follows from (5.5) and (6.6) that the Wigner rotation S (̂x′, ẑ′) is about
the direction aR ∼ m̂ ∧ n̂. That is, the Wigner rotation is in the plane spanned
by m̂ and n̂. Let ε be the magnitude of the Wigner rotation. Then from (5.9) we
have

tan(ε/2) =
√

(a0R)2 + aR · aR

= sin θ

κ + cos θ
, (6.8)
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where κ = coth(βn/2) coth(βm/2), and θ is the angle between m̂
and n̂.

Having computed the Wigner rotation part, we now examine the boost part
S (̂z′, ŷ′). Let βres denote the rapidity parameter for this boost. Then one finds from
(5.9)

cosh βres = 2((a0R)2 + aR · aR) − 1

= cosh βm cosh βn + sinh βm sinh βn cos θ. (6.9)

Further, it follows from (5.5) and (6.6) that this resultant boost is in the
direction of

−î z′ ∧ ŷ′ = (aRaI − a0I aR + aR ∧ aI )
√

(a0R)2 + aR · aR

= 1

2
cosh βm sinh βn n̂ + 1

2
sinh βm m̂ + sinh2(βn/2) sinh βm cos θ n̂.

(6.10)

Thus the resultant boost is about a direction in the plane spanned by m̂ and n̂. If
φ is the angle between the resultant boost and n̂, one finds that

tan φ = sin θ sinh βm

cosh βm sinh βn + cos θ cosh βn sinh βm

. (6.11)

Thus the product of two Lorentz boosts of rapidity parameters βm, βn and spatial
directions m̂, n̂ is a Wigner rotation of amount ε in the plane spanned by m̂, n̂
followed by a Lorentz boost of rapidity parameter βres along the direction that lies
in the plane spanned by m̂, n̂ and makes an angle φ with n̂. The expressions for
ε, βres and φ derived using turns are consistent with known results (Ungar, 1988,
where further references can be found Simon and Mukunda, 1990; Simon and
Mukunda, 1990b; Salingaros, 1986; Kim and Son, 1986; Baylis and Jones, 1988;
Aravind, 1997), but our aim of this exercise was simply to illustrate the theory of
turns we have developed for the Lorentz group.

7. CONCLUDING REMARKS

We have examined in detail the ideas underlying Hamilton’s theory of turns
for SU (2), in a manner that paves the way to developing a similar geometrical
construction for other groups. After a brief review of the theories of turns for SU (2)
and SU (1, 1), we worked out a theory of turns for the group SL(2, C). Formulae
for the polar decomposition of an SL(2, C) element were derived within the
framework of the theory of turns developed here, and were put to use to compose
Lorentz boosts and to calculate the resulting Wigner rotation. These exercises,
carried out for illustration of the geometric construction, led to acceptable results.
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Decomposition of an arbitrary element of the Lorentz group in the form spatial
rotation–followed by boost in a fixed direction–followed by spatial rotation can
be analysed in a similar manner using turns.

It is gratifying to note that, with our earlier generalization (Simon et al.,
1989a, 1989b) of the theory of turns to SU (1, 1) ∼ SL(2, R) = Sp(2, R), the
present generalization renders a geometric representation in the spirit of Hamilton
available to all low dimensional simple Lie groups of interest in physics.

The geometry of turns for SU (2) is applicable to any problem that involves the
group SU (2). Two-level systems constitute an important class of such problems,
but not the only ones. As remarked earlier, the theory of turns has led to the
formulation and solution of important sythesis problems in these contexts (Simon
et al., 1989c; Simon and Mukunda, 1989, 1990a). For instance, we have the result
that all linear intensity preserving transformations of polarization optics can be
synthesised using just two quarterwave plates and one halfwave plate (Simon and
Mukunda, 1990a; Bagini et al., 1996). Notwithstanding its wording, this result
is applicable not only to polarization optics, but also to other systems involving
SU (2). For instance, in the case of nuclear magnetic resonance π/2 and π -pulses
will correspond respectively to the same SU (2) transformations as quarter and
halfwave plates in polarization optics. (These are respectively the eighth and
fourth roots of the unit matrix.) And hence the above result in this context will
read: any unitary evolution ( SU (2) transformation ) of a spin half system can be
achieved using two π/2 pulses and one π pulse. Further, the theory of SU (2) turns
has helped to clarify the deep relationship between the structure of this group and
geometric phase in two-level systems (Simon and Mukunda, 1992). It should be
of interest to carry out similar geometric studies for the Lorentz group using the
theory developed here.

In this work we have restricted ourselves to simply demonstrating that a
consistent theory of turns is possible for the Lorentz group. The applications
considered served the limited purpose of showing the effectiveness of the theory.
More elaboration will, of course, be needed to handle the questions raised in the
last paragraph, and we plan to return to these and other issues elsewhere.
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