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The theory of the cyclical vibrations of a bowed string 

C V RAMAN 

Introduction 

Ordinarily, the motion of every part of a stringed instrument excited by bowing is 
a periodic vibration capable of being represented by a simple Fourier series. The 
motion of the string and that of the.bridge, belly and air, are all strictly periodic. 
Recently, in investigating a phenomenon the 'cello known as the "wolf-note", 
which is observed when the G-string or D-string is bowed at a pitch equal or 
nearly equal to that of the strongest resonance of the instrument, G W White* 
found that the motion of the belly was of large amplitude and, instead of being 
periodic, was cyclical in character. White considered the phenomenon to be due 
to the beats which arise when the pitch impressed on the system approaches the 
natural pitch of the resonator. This view, though it seems a plausible one at first 
sight, is open to objection, and on careful examination is found to be inconsistent 
with the observed facts. Perhaps the most effective criticism of the suggestion put 
forward by White is to be found in the fact first noticed by me that cyclical 
changes in the vibration of the belly can be obtained by bowing the G-string or 
D-string of a 'cello, rather near thebridge and with a suitable pressure, at any pitch 
lying between, say, 210 and 370 vibrations per second. (The pitch of the wolf-note 
is about 176 vibrations per second, and there is another fairly strong point of 
resonance at 360 vibrations per second). This fact alone is sufficient to dispose of 
any suggestion that the cyclical changes require for their production any close 
approximation between the natural frequency of the resonator and the impressed 
frequency of vibration. ' . 

From fundamental dynamical principles, it is evident that, if in any particular 
case the motion of the string is strictly periodic, the maintained vibration of every 
other part of the instrument must also be strictly periodib It may be inferred, 
therefore, that when the motion of the belly is not simply periodic but is of a 
cyclical character, the vibrations of the string must also be of a cyclical character, 
and that the changes in the latter must precede (ngt follow) the corresponding 
changes in the former. This Indication of theory can easily be verified 
experimentally, as shown in the communication by me pubjished in Nature 

*G W White, Proc. Combridge Philos. Soc., June 1915. . 
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(London).* As mentioned above, such cyclical changes occur not only at the wolf- 
note pitch, but also, under suitable conditions, at other frequencies of vibration, 
and any theory of the phenomenon must be capable of explaining this fact. 

Modus operandi of the bow 

It is in the mode of action of the bow that we must look for an explanation of the 
cyclical changes in the character of vibration of the string that occur under certain 
conditions. The system on which the bow acts consists of a stretched cord, one 
end of which is practically fixed, and the other end of which passes over the 
bridge, and is therefore capable of yielding under the periodic transverse and 
longitudinal components of the tension. Since the free periods of the string are 
modified by the yielding of the bridge, the problem of finding the motion 
maintained by the bow is by no means a simple one. As a preliminary to the 

\ discussion of the cyclical cases, we shall first briefly consider the general theory of 
the much more simple cases in which the vibration is of a periodic character. 

The dissipation of energy through the communication of vibrations to the 
atmosphere as sound-waves is evidently the central feature of the problem. The 
maintenande of a steady, stable form of vibration of the string is only possible if 
there is an exact balance between these energy losses and the energy drawn from 
the bow, and if this balance isalso not liable to be upset by any slight alteration in 
the pressure of the bow. If we assume that the pressure with which the bow is 
applied is sufficiently large, such energy-balance is only possible when the bowed 
point is carried forward by the bow with its own velocity for a considerable 
fraction of the period, and during the other part or parts of the period of 

+vibration, slides down with a velocity which is not neceqsarily uniform or 
constant. For, if the relative velocity at the bowed point did not thus become zero 
during a considerable part of the period, the maintaining forces (due to the 
differencein the friction acting on the bowed point in the forward and backward 
motions) would be far in excess of those required to maintain the motion; 
whereas, by the relative velocity actually becoming zero, the frictional force in 
such stages falls below the maximum statical value and can thus automatically 
adjust itself so as to secure the requisite balance of energy supply and loss. 
Mathematically expressed, the relation may be written as 

sin (2nrrt 
nP co + en + e: 

F(P, 0 - 0,) = Po + knBn 
n = l  nnx0 sin - 

1 

*"On the wolf-note of the violin and 'cello," Nature (London) 29th June 1916, p a p  362-363. A fuller 
discussion of the phenomena observed at the wolf-note pitch will shortly appear in the Philos. Mag. 



where Pis the pressure of the bow, v, its velocity, o the velocity of the bowed point, 
and F(P,v - v,) is the frictional force which is a function of the pressure and 
relative velocity. On the right-hand side, Po is a constant, B, sin(2nlctlT + en) 
represents the nth harmonic component in the vibration of the string, xo is the 
distance of the bowed point from the fixed end, and k,, ek are also\constants. One 
sidd of the equation thus represents the force exerted by the bow, and the other 
side, the resultant of the forces required to maintain the vibration in the presence 
of dissipative forces. 

From this result indicating the general nature of the motion at the bowed point, 
the next step is to deduce kinematical analysis,'the characteristick of the various 
possible modes of vibration, and then, by summation of the series for the 
maintaining force, to find which of the types indicated by the kinematical analysis 
is dynamically possible for any given pressure or velocity of bowing. In two notes 
already published in this Bulletin,* I have already indicated the most convenient 
method of kinematical analysis. For our present purpose, it will be sufficient to 
remark that when the bow is applied at any pdint considerably removed from an 
end of the string, a considerable variety of possible modes of vibration is 
indicated. When however, the bow is applied near an end of the string, the range 
of possibilities becomes greatly restricted. In this case, if the motion at the bowed 
point be approximately representable by a two-step zig-zag vibkation curve, the 
motion 6f every other point on the string is also approximately of a similar kind, 
as found by Helmholtz,+ and the motion is uniquely determined, the only 
alternatives being types in which the vibration-curve at the bowed point is a four- 
step or a six-step zig-zag etc. 

Conditions under which the motion is cyclical 

The mechanical theory of the periodic types of vibration thus indicates that when 
the bow id applied close to an end of the string, and its pressure is insufficient to 
maintain the well known simple type of vibration described by Helmholtz, the ' 

motion at the bowed point must alter to a type in which it is a four-step zig-zag or 
a six-step zig-zag, etc. the fundamental becoming feeble and even falling out 
altogether, The case is quite different if the bow be applied at a point sufficiently 
removed from the end; the motion at the bowed point May then alter to a very 
considerable extent so as to adjust itself tio a change in tbe pressure of the bow, 
and yet remain approximately a two-step zig-zag. In view of this, it is a significant 
experimental fact that cyclical changes of vibration-form occur only when the 

8 

*IV pages 1-4 and V pages 5-8. 
%ee also the paper by myself and another on 'Discontinuous wave motion' Philos. Mag. January 
1916. 
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bow is applied with suitable pressure and velocity near an end of the string, and 
not when it is applied at a point sufficiently removed therefrom. We may 
reasonably infer that cyclical changes occur only when the pressure of bowing 
and other conditions are such that no one steady, stable form of vibration can be 
maintained. 

In order to fix our ideas, we may consider a specific case in which the quantity 
k1 is very large, in comparison with k,, k,, etc. Since k1 relates to the fundainental 
component, it is evident from the expression given above, that the pressure of the 
bow must be very considerable in order that the ordinary type of vibration in 
which the fundamental is dominant might be maintained. The critical value of the 
pressure necessary is evidently klBl(l - sine;)/sin(xx,/l)(,u - p,), where p and 
pA are the coefficients of statical and dynamical friction, respectively. When the 
pressure is smaller than this critical value, the mode of vibration in which the 
fundamental is dominant becomes impossible. The various alternatives which 
then arise are, (a) the fundamental may fall out altogether, in which case the string 
would vibrate in two segments in the usual Helmholtzian mode: or (b), 
intermediate forms may arise. The contingency in (a) may arise, and generally 
does arise, if the pressure of the bow be reduced to a value not much in excess of 
the critical pressure for the type of vibration in two segments. The string would 
then settle down to a steady state of vibration: The intermediate forms of 
vibration referred to in (b), would only be possible when the pressure of the bow is 
less than the minimum necessary to ensure a steady vibration with dominant 

. fundamental, but still much in excess of that required for the contingency in (a). It 
now remains to be seen why, in the conditions which exist when cyclical forms of 
vibration are set up, no steady state of vibration is possible. 

The kinematical theory of the intermediate forms referred to in the preceding 
para is readily worked out, at any rate to a close approximation. They may be 
represented sufficiently closely by a mode of vibration in which two disconti- 
nuous changes of velocity travel along a string whose velocity-diagram consists 
of parallel straight lines. The discontinuous changes are, in general, unequal. The 
vibration-curve at the bowed point would, in general, be a four-step zig-zag in 
which the two ascending lines are straight and parallel, and the two descending 
lines are straight but not necessarily parallel to one another. In order that a steady 
vibration in such a mode might be possible, it is necessary that the force necessary 
to maintain it should be less than tHe statical friction in the two stages of ascent, 
and exactly equal to the values of the dynamical friction in the two stages of 
descent. As we assumed that k1 is much larger than k,, k,, etc,, the force required 
to maintain the fundamental is far in excess of those required to maintain the 
second, third harmonics, etc. Since a large value of k, is generally the result of the 
fundamental being strongly reinforced by the resonance of the instrument, the 
phase constant e', would also be considerably different from the phase constants 
e',, e; etc. It is readily shown that the resultant obtained by superposing these 
forces would not, in general, even approximately satisfy tht condition for steady 



maintenance stated above; even if it did approximately satisfy the condition for 
some particular value of the bowing pressure, it would not do so for other values 
of the pressure, and the motion would not therefore be stable. It is thus found that 
for the values of the bowing pressure contemplated, none of the intermediate 
forms of vibration is capable of being steadily maintained. Since a finite interval 
of time is required for any change in the amplitude or form of vibration, either of 
the string or of the rest of the instrument, we see that the conditions of the case 
discussed are favourable for the production of cyclical forms of vibration. 

Similarly when both k, and k, are very large cqmpared with k,, k,, etc. or when 
k, by itself is large compared with the constants k,, k,, etc. and the bow is applied 
near an end of the string, cyclical forms of vibration are possible. 

The cases in which k, or k,, etc, are large compared with k,, k,, etc. are not of 
special interest. For, the amplitudes of the third and higher harmonics are small 
compared with that of the fundamental in the motion ordinarily maintained by 
bowing near an end of the string, and their influence is therefore too small to affect 
the possibility of a steady state of vibration. 

Nature of the cyclical process 

The main interest of the problem is in finding the character of the motion of the 
string at successive stages of the cycle, its relation to the corresponding changes 
in the vibration of the bridge and belly, the factors that determine these changes, 
and the number of periods of vibration comprised in each cycle. A rigorous 
mathematical formulation of all the conditions, though not impossible, would 
evidently be too complicated to be practically useful. The main results may 
however, be arrived at from broad theoretical considerations. 

In the initial stage, when the bow acts upon the string with a moderate pressure, 
it would evidently be capable of setting up a form of vibration which, later on, 
would fail to be maintained on account of the insuficient pressure of the bow 
when the belly attains its maximum vibration. The change in the form of 
vibration of the string thus caused would, in its turn, result in a falling off of the 
vibration of the belly, but on account of the inertia of the belly, this change would 
naturally lag behind that of the string to a considerable extent. By the time the 
belly vibration reaches its minimum, the string would have already attained a 
form of vibration which, with the reduced amplitude of the bridge-vibrations, 
takes up considerably less energy than the bow is capable of yielding. As a result, 
the string commences to regain its original form of vibration, and this is 
subsequently followed by a revival of the vibrations of thq belly. The cycle then 
repeats itself indefinitely. 

While the description of the cyclical process given above holds good generally, 
individual cases differ very considerably in detail. If k, is large, the largest changes 
in amplitude occur in the fundamental component of the vibration of the string, 
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and the vibration-curve of a point near an end of it passes by successive stages 
from the simple two-step to a four-step zig-zag (in which the fundamental is more 
or less feeble), and then back again to a two-step zig-zag. When k, is large, the 
principal changes are in the amplitude of the second harmonic, and the case is 
therefore somewhat more complicated than the first. When both k, and k, are 
large, we may have more than one kind of cyclical change possible. 

As remarked above, the changes in the vibration of the belly lag behind those of 
the string by a considerable interval. Experiment shows this interval in a good 
many cases to be approximately quarter of a cycle. The total number of periods 
comprised in each cycle is evidently determined by the pressure of the bow, the 
frictional constants and the quantities k,, k,, etc. When k, or k, is large, the period 
of the cycle is practically a function of k, or k, as the case may be. It is then 
apprdximately twice the interval of time in which the vibrations of the belly 
would decrease from the largest to the smallest amplitude actually observed in 
the cycle, if the belly were first excited by steadily bowing the string atld the bow 
were then suddenly removed. 

Some experimental results 

That the dissipation of energy is the controlling factor in determining the 
phenomena discussed in this paper, may be very prettily illustrated by loading the 
bridge of a 'cello with a brass clamp weighing about 44 grammes. Instead of 
getting two resonance-frequencies at 176 and 360 vibrations per sec. as is the case - when there is no load on the bridge, we then get four resonance-points, whose 
frequencies are 100, 137, 184 and 233. 

At the first and third of these frequencies, a very considerable vibration of the 
bridge and belly may be set up by bowing the string, but on removing the bow the 
vibration dies away quite slowly, showing that the rate of dissipation of energy is 
quite small at these frequencies. Cyclical effects are hardly noticeable at these 
frequencies, even with carefully-adjusted bowing pressure. At the two frequencies 
136 and 237, however, the damping is much more marked, (though it is still 
considerably less than at the two corresponding frequencies 176 and 360 when 
there is no load on the bridge), and cyclical effects are obtained fairly easily. 
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