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1. INTRODUCTION

ROCKSALT is typical of the so-called ionic crystals and is a much-discussed
substance. The evaluation of its characteristic vibration frequencies on the
basis of the theory set out in Part I, and the consideration of its spectroscopic
behaviour in the light of that theory will form the subject of the present paper.
From an experimental point of view, the case of rocksalt is a less
favourable one than that of diamond, the frequencies being very low and hence
crowded together into a region of the spectrum where observation is difficult
and the available resolving powers are small. Nevertheless, as we shall
see, the main facts have been quite clearly established and are in striking
accord with the theoretical deductions.

2. NATURE OF THE INTERATOMIC FORCES

Discussions of the energy of formation of the alkali halides and of their
physical properties usually proceed on the basis that the main interaction
between the constituent particles in these crystals is the ordinary electro-
static or the Coulomb force between the ions, and that these forces which
tend to contract the dimensions of the crystal are balanced by repulsive
forces which vary much more rapidly with interatomic distance than do
Coulomb forces between charges. Various additional interactions, e.g.,
Van der Waals forces, have also been considered by way of refinement of
the theory. That the electrostatic or the Madelung term is the largest in
the expression for the cohesive energy of the alkali halides thus derived
might lead one to believe that the electrostatic forces would also principally
determine the frequencies of vibration of the ions about their positions of
equilibrium. Actually, however, this is not the case, as may readily be shown
by considering the consequencies of the cubic symmetry of the ordering of
the ions in the crystal.
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Since the electrostatic forces acting on the ions vanish when they are
located at the points of the lattice, it follows that at these points (3V/ox) =
(3V/dy) = (3V/dy) =0, where V represents the electrostatic potential in
the vicinity of a lattice point due to all the ions except the one which is
situated at that point. The cubic symmetry of the ordering also demands
that (*V/dx%) = (3*V/dy?) = (3°V/2z?%). Combining these relations with
Laplace’s theorem which states that the sum of these three quantities is zero,
it follows that each of them would be individually zero. In other words,
not only does the electrostatic field at a lattice point due to the surrounding
jons vanish, but it also vanishes in its immediate vicinity. If, therefore,
one of the ions is displaced a little from its position of equilibrium, the sur-
rounding ions being undisturbed, there would be no force tending to restore
the displaced ion to its position of equilibrium. The same situation would
arise if we imagine all the Nat ions to be displaced a little in one direction
and all the Cl- ions to be displaced a little in the opposite direction, so that
each set of ions retains its cubic symmetry of arrangement. The resultant
electrostatic force on each Na* ion and on each CI~ ion in their displaced
positions would vanish, and the frequency of the resulting oscillation would
be zero, if forces of other descriptions were non-existent. We are accordingly
compelled to recognize that the frequency of the vibration would be deter-
mined entirely by interatomic forces which are not primarily of electrostatic
origin. It follows that these are essentially short-range forces which have
a considerable magnitude as between neighbouring atoms but diminish very
quickly as between more distant ones.

3. THE EIGENVIBRATIONS

As in the case of diamond discussed in the preceding paper, the rock-
salt structure has nine eigenvibrations, eight of which may be described as
normal or tangential oscillations of the octahedral or cubic layers of ions
alternately in opposite phases, and the ninth as an oscillation with respect
to each other of the two interpenetrating lattices of Nat and Cl- ions res-
pectively. These modes may be readily visualised with the aid of diagram
of the structure of rocksalt (Fig. 1). As in the case of diamond again, the
first step we shall take is to arrange these nine eigenvibrations in a descending
sequence of frequency, thereby facilitating a comparison of the theoretically
derived spectrum with the experimental data. Such arrangement is readily
possible in view of the conclusion stated earlier, viz., that the atomic inter-
actions which determine the vibration frequencies are short-range forces.

We may, in the first instance, consider the interactions between each

Nat ion and the 6 surrounding CI~ ions and similarly also the interaction
Aa
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Fig. 1. The Structure of Rocksalt

between each Cl~ ion and the six surrounding Na* ions, neglecting the forces
due to the more distant ions in each case. So long as the octahedral grouping
of the surrounding ions is undisturbed, the restoring force per unit displace-
ment acting on the central ion when it is displaced would be independent
of direction, and it is also evident that it would be the same whether it is
Na* or CI~. We shall denote this force by P and assumc that it arises from
an approach or recession of the Nat and Cl- ions relatively to each other.
The frequency of an oscillation would accordingly be determined by the
magnitude of such displacements and by the masses of the moving particles.
On this basis, the nine eigenvibrations fall into four groups, consisting of
3, 2, 2 and 2 respectively, each group having the same frequency. The first
group of 3 eigenvibrations consists of :

(I) The normal oscillation of the cubic planes with Na* and Cl- ions
in these planes moving in the same phase;

(I) the tangential oscillation of the cubic planes, with the Nat and CI-
ions in these planes moving in opposite phases; and

(II) the oscillation of the Na* and CI- lattices against each other ir
any arbitrary direction.

It can be seen from Fig. 1 that the displacements of the Na* and Cl-
ions relatively to each other are the same in all these three cases. Accord-
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ingly, the operative force-constant is equal to P and the frequency v of
vibration in wave-numbers is given by the formula
1 1
42202 = (___ __)
m2¥c?= P ’”1+’712 1))
m, and m, being the masses of the Nat and Cl- ions respectively. The second
group of eigenvibrations consists of

(IV) the normal oscillations of the Nat ions in the octahedral planes,
the CI ions remaining at rest; and

(V) the tangential oscillations of the Na* ions in the octahedral planes,
the CI~ ions remaining at rest. These two oscillations have the frequency

1
2.3.2_ P . L~
daivici= P - (2
The third group of eigenvibrations consists of
(VD) the normal oscillations of the CI~ ions in the octahedral planes,

the Nat ions remaining at rest: and

(VII) the tangential oscillations of the Cl~ ions in the octahedral planes,
the Nat ions remaining at rest. These two oscillations have the frequency

1
2.2.2__ P . *
4niyici= P ™~ (3)
The fourth group of eigenvibrations consists of
(VIL) the normal oscillations of the cubic planes of atoms, the Nat

and Cl- ions in these planes moving in opposite phases and

(IX) the tangential oscillations of the cubic planes of atoms, the Nat
and Cl- ions in these planes moving in the same phases. These two oscilla-
tions have the frequency

4n?vici= (). 4

For a final ordering of the nine eigenvibrations in a descending sequence
of frequency, we have to consider also the forces of interaction between each
Nat ions and the 12 surrounding Na* ions, and similarly also the forces
between each CI~ ion and the 12 surrounding Cl- ions. It is readily seen
that mode I would then have the highest frequency in the first group, since
8 out of the 12 like ions move in the opposite direction to the ion under con-
sideration and thereby increase the restoring force. In mode II, 4 of the
like ions move in the same direction and 4 in the opposite direction,
cancelling out each other’s effects. In mode III, all the 8 like ions which
exert appreciable forces move in the same direction, thus diminishing the
restoring force and therefore also the vibration frequency. The 3
modes thus arrange themselves in the order indicated. In the second and
third groups it is readily seen from considerations similar to those stated
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above, that the normal modes would have higher frequencies than the
tangential ones. This is also the case in the fourth group, the frequencies
of which no longer vanish when the forces between like ions are taken into
consideration. These have naturally the lowest frequencies of all the nine
eigenvibrations. Table I summarises the foregoing results.

TABLE 1
Eigenvibrations of the Roclksalt Structure
Descendin : .
sequence o% Degeneracy | Cscillating units Ef”;i%?i%i Detailed description
frequency
1 . 3 Cubic Planes Normal Na and Cl ions moving in
the same phase
1L .o 6 Cubic Planes . Tangential | Na and Cl ious moving in
opposite phases
111 o] 3 Two lattices Arlitrary Na and Cl ions moving in
; opposite phases
18 4 Octahedral Flanes| Normal Na ions moving and
Cl ions at rest
v 8 Octahedral Planes| Tangential | Na ions moving and
Cl ions at rest
VI 4 Octahedial Planes| Normal Cl ions moving and
Na ions at rest
VII 8 Octahedral Planes| Tangential | Cl ions movings and
Na ions at rest
VIl .. 3 Cubic Planes Normal | Na and Cl ions in opposite
. phases
IX 6 Cubic Planes Tangential | Na and Cl ions in same phases

4. EVALUATION OF THE EIGENFREQUENCIES

 To carry the matter a step further and evaluate the frequencies of each

of the nine cigenvibrations, we shall make use of the exact theoretical

formule derived by K. G. Ramanathan (1947) in a paper appearing in these
Proceedings which take into account the intcraction between the ions of

‘each kind and their 26 nearest neighbours. They contain 11 independent
constants which express the forces arising from such interactions and are

connected by two additional relations. Ramanathan’s formule may

be simplified by ignoring the effect of the 8 most remote ions expressed by

“his constant V appearing in them, and also by putting his constants R, S
and S’ all equal to zero. The former step is justified on the view that we

are here concerned with short-range forces, and the latter by the considera-

tion that the constants R, S and S’ refer to forces which arise from displace-

ments which do not alter the distance between the interacting ions. On

“any reasonable view of the origin of the interactions in an ionic crystal with
“cubic symmetry, such forces should be vanishingly small in comparison with
the forces arising from displacements which alter the distances between the
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interacting ions. It may be remarked also that T and U in Ramanathan’s
formule represent forces between two ions of the same kind arising from a
unit displacement of one of them, the force T being parallel to the displace-
ment and the force U transverse to it, both being inclined at the same angle
of 45° to the line joining the two interacting ions. In these circumstances
and considering the ionic nature of the structure, it is a justifiable simplifica-
tion of the formula to put T = U and similarly also T'= U’. With these
simplifications, the final formule contain only four unknown constants.
P, P', T, T’ which are connected by the relation

(P 4 8T) = (P'+ 8T") (5)
Further,

P>Tand P'>T (6)
from which it follows

P=P (7

The formule for the frequency of the nine eigenvibrations as thus simpli-

fied are listed in Table IL.
TaBLE II

Frequency Expressions
P and P’ are positive ; T and T’ are negative.

Descending
sequence of 4n?yic? Description of mode
frequency
i P-8T + P'~8T'  16(T+T’) | Normal oscillation of cubic planes with Na
Ylomy Mo my+my | and Cl in same phase
1 P + P 8(T+T") Tangential oscillation of cubic planes with
lm T oms t Tyt Na and C! in opposite phages
i P+8T + P'+8T’ Oscillation of the two lattices in opposite
| my o phases
v P-8T Normal oscillation of Na jons in octahedral
Ylomy planes
v P+4T Tangential oscillation of Na ions in octa-
my hedral planes
I P'-8T1’ Normal oscillation of Cl ions in octahedral
v My planes
P’+471’ Tangential oscillation of Cl ions in octa-
vl My, hedral planes
_18(T+T) Normal oscillation of cubic planes with Na
VILL my+ma and Cl in opposite phases
8(T+T’) Tangential oscillation of cubic planes with
N mytarg Na and Cl in same phase







