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Critical properties of random magnetic systems
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Abstract, A review of the recent applications of renormalisation group techniques
to the calculations of the critical properties of random magnetic systems is presented,

1. Introduction

The theory of phase transitions and the critical phenomena in magnetic systems
has now reached quite a mature stage. However, a large part of the work has been
confined to certain idealistic models. For comparison with certain experiments,
additional realistic features must be considered. For example, any real magnet
invariably contains impurities and defects, How do such imperfections influence
the ideal critical behaviour 2 Such questions have only recently been tackled with
the help of the powerful tool of renormalisation group. The purpose of this paper
is to briefly deszribe some of the new developments in this area..

This paper is organised as follows. First, we describe the effects of a
weak random perturbation on the critical properties of, say, a ferromagnet. The
perturbation may be random local variation of exchange interaction. Next, we
consider a case of strong randomness, namely, the spin-glass behaviour which occurs
in systems having competing ferromagnetic and antiferromagnetic interactions.,

9. Effects of the weak random perturbatidn

Much of the theoretical stimulus in this problem was provided by a heuristic argu-
ment d te to Harris (1974), according to which a random perturbation like modu-
jation of the exchange interactions (of short range) can alter the critical behaviour
of the system only if the specific heat of the pure system is divergent at the critical
point. For a system whose specific heat exponent a is negative, the random per-
turbation has no effect on the critical properties. This argument was later justified
by explicit renormalisation group calculations. The argument itself is of interest
and is therefore presented below. '

Consider an alloy having a concentration x of defective bonds. Let us assume
that this system has a sharp transition temperature T, (x). Now we try to see the
consistency of this assumption. Consider a temperature I near T, (x), the carre-

ation length & =[T — T, (x)]”. The fluctuations cause a local variation in T (x).
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The width of this variation can be estimated as follows. Divide the system into
volumes  having £° spins. Within this volume, the mean square fluctuation in
the number of the defective bonds ((6n)*) = x(1 — x) £%. Thus the width Ax
of fluctuation in the concentration is

Ax =[x (1 — x) &41/2/¢e, )
Now  AT/T,~ Ax =[x (L — x)]/2 &9/, 2

In view of this fluctuation the correlation length cannot be larger than ( /\ T/T)*
or

£ < [x(l — x)]/2 grere, )

this requires that vd/2 > 1. Since a =2 — vd, it follows that when a < 0, the
above assumption of a sharp phase transition is a self-consistent one.

The renormalisation group calculations (Harris and Lubensky 1974; Lubensky
1975; Grinstein and Luther 1976; Aharony 1975; Krey 1975) have gone much
farther than this intuitive argument. These calculations also obtain the new critical
behaviour which results when a > 0. One notable feature of the altered critical
behaviour is that a becomes negative. So the specific heat of the impure system
always has a cusped singularity.

For the renormalisation group calculations one usuvally starts with a Hamil-
tonian of the form

> > > ->
H= 35 K(ry,r)S(ry) - Sy +
r
> > 3 > -> —> -> >
2z Ko (ry, g, 13, 14) S(r1) - S(re) S(rg) . S(ry) + -+ @)

> > > >
Ty I3y T3y T4

(where & stands for — BH and H denotes the usual hamlltoman)

The coupling coefficients K;, Ky, - - -, etc. are random quantities with known proba~
bility distributions. The calculations have been performed by two methods both
of which lead to the same results. The methods are : (i) recursions of the proba-
bility distribution, (ii) replica method.

In the method (i) for given values of K3, K, - - -, K, one derives the renormalised
quantities K3, ---, K, in the standard way. . ‘
=fi (K1, Ky, <+, K3 ' ’ (5)

Since K;s are random quantities, the renormalised K;s are also random. One
therefore finds the probability distribution of the renormalised cocﬁicmnts This
may be done through the equatlon -

P' {Ki}) = J"E 5(Ki f&)P({KI}) de V ) (6)

Thus for the random system oné studies the transformations of the probability
distribution of the coupling coefficients. The notion of the fixed point is genera-
lised to the notion of the fixed point probability distribution. In practice, however,
one parametrises the probability distribution by its first few moments and studies
relations between the renormalised moments and the original moments.
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Harris and Lubensky (1974) applied this method to the two-dimensional Ising
model. They found that the pure system fixed point is stable to random pertur-
bations, implying no change in the critical behaviour. The same methed was also
applied to the Landau~Ginzburg functional and an e (4-d) expansion was obtained
for the Gaussian disorder (Lubensky 1975). Here one finds that besides the pure
system fixed points, there is an additional fixed point characterised as the random
fixed point. When a > 0, the pure Heisenberg fixed point becomes unstable and
there is a cross-over to the random fixed point. In this case the critical behaviour
is governed by the exponents associated with the random fixed point. These are
listed in table 1. On the other hand, when a <0 the pure Heisenberg fixed
point remains stable. '

The replica method was introdvced by Edwards and Anderson (1975) to treat
the spin-glass problem. Here one derives an effective non-random Hamiltonian
which gives the correct averaged free energy for the random system (Grinstein
and Luther 1976; Aharony 1975). The method consists in writing

’ . z" — 1 ,
(In z)y = 1"1—1:}) [: - —:LV (7)

n n ) .—-}_ )
@ =01 Ty lew B oS, (il

dwy  {Sg (n} '

( ->
= Ty exp[Hyu (S, (D] @
{Sa('))}

As an example consider the Hamiltonian

‘ [ = =>=> = ‘ ‘
H= X J(r, ry) S(ry) - S(ra). €)
> >
Using the above procedure, one finds
" -> B
xnzgisaﬁz‘&mySNMK (10)
r1, f2 A==y :
where  J; ={J (1 rdhy Jo = (I (11, 12)?) — ()P an

Table 1. Exponents for the Heisenberg and random fixed points,

Heisenberg Random
1 n+2 (n - 2) (n* 4+ 23n + 60) e 1 + 3n o4 n (1270 —~ 572n — 32)
v o2tg n+o- 8(n + 8)F 2 R2n-1) 4096 (n — 1)*
(n+2) &2 (5n—8)n &
2(n+ 98 © o 256(n—1)?
4 —n _(n+2)(n”+30n+56) . n—4 G__11(31112—380»1“128)452
YO PYPRY ) §n—1) 1024 (v — 1°

Note that n refers to the dimensionality of the spin,
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and J7 s refer to the pth cumulants of J (;:, -r)z). One now performs the renormali-
sation group transformations on this effective Hamiltonian in the usual manner,
To obtain the description of the random system, one takes the limit » — 0 in the
recursion relations. The procedure leads to results identical to those obtained by

Harris and Lubensky (1974).

3. (Critical behaviour of spin-glasses

Spin-glasses are systems in which competing ferromagnetic and antiferromagnetic
interactions occur randomly with equal probabilities. So even though

> >
(7 (Ry, R)Yer =0, a transition is supposed to occur at a temperature T,, which in
mean field theory is given by kT, = zJ;, where z is the coordination number of the
lattice and J; is defined in (11). The order parameter of the transition is essentially

(| (_S)‘)T {2 ),, and is denoted by g. The mean field theory (Edwards and Anderson,
1975) gives the following exponents: a = —1, f=1 and y =1/2. Thus the
mean field exponents satisfy the scaling relation dv=2—a when d=6.
The deviations from the mean field values occur when d< 6. An e-expansion
(e =6 — d) was developed by Harris et al (1976) to obtain the deviations in
the exponent values from their mean field values. From the Hamiltonian of (10)
they derived a free energy functional for the spin-glass order parameter g.
For m-component spins, the functional has the form

h=%mrg® —wn —2)q®+n(n—1)ugt, (12)

where n denotes the number of the replicas and r, w, « are the usual parameters
of the Landau-Ginzburg functional. Since g is a nonnegative quantity, this equa~
tion gives a second order transition. The exponents obtained by Harris et al (1976)
are given in table 2. An interesting point to be noted is that a < — 1, which
implies that specific heat varies rather smoothly across the transition point. This
indeed is observed in the experiments (Wenger and Keesom 1976) and in the Monte-
Carlo studies of Binder and Schroder (1976).

Several authors have applied position space renormalisation group methods to
this problem (Jayaprakash et al 1977; Young and Stinchcombe 1976; Plischke
and Zobin 1977; Kinzel and Fischer 1978).. However, the results of these
methods are very much approximation-dependent and mno definite conclusions
have been derived. An interesting controversy exists regarding the spin-glass

Table 2, Exponents for the spin-glass transitionin d =6 — e,

1 5me Im+1
V=gt = =1 = =
2 2m— 1 o=l em =
—me f=1+ m+1 Lo

TT3em =1 Tom=1° |
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transition in two dimensions. The calculations of Jayaprakash et al (1977),
Plischke and Zobin (1977) and the computer simulations of Binder and Schroder
(1976) show that a two-dimensional spin-glass undergoes a tramsition. On the
other hand the calculations of Young and Stinchcombe (1976), Kinzel and
Fischer (1977) and the Monte-Carlo simulations of Bray and Moore (1978) lead
to the conclusion that there is no transition in two dimension.

Recently Anderson and Pound (1978) have put forward an argument to suggest
that the lower critical dimensionality for the spin-glass transition is ¢ = 3. This
argument is based on the application of the Migdal-Kadanoff approximation to the
classical spins. One can easily perform decimations on a chain of classical spins.
At low temperatures, small oscillation approximation can be made to yield a parti-
cularly simple result.

> > e > >
Jexp [BJ10S1 . Sy + BJagSa, S5l dSy = exp [BJ1, Sy - S,] (14)

1 . [ 1 ‘
where 'j,]—-;- = S1gn (JIEJZB) <]*T];—2“' ~+ m) . (15)

The ‘Migdal-Kadanoff approximation involves decimation along the chains and
bond-shifting from other d — 1 directions. Let us first apply this approximation
to the pure ferromagnet, taking the scale factor to be L. This gives :

1J' = LJL%1J,
or I =L+ (16)

Thus if d<2, J'—> 0 as L — co. This implies that no ferromagnetic transition
can occur for d<<2. A similar argument may now be applied to the spin-glass
problem. In the bond shifting procedure, we are adding Z¢* bonds of random
signs. The mean root square value of the sum is L4-1/2 J. Using this value in
(16) leads to the equation _

J = L(d—a)lz J’ (17)

which implies a lower critical dimensionality of 3 for the spin-glass transition,

Another very interesting piece of information regarding the spin-glass transition
has been obtained by Fisch and Harris (1977). These authors have studied the
high temperature expansion for the spin-glass order parameter susceptibility for
d-dimensional hypercubic lattices. They have obtained the values of the suscepti-
bility exponent p, in continuous dimensionality starting from d = 6. Since there
is no simple field coupling to spin-glass parameter, the susceptibility is defined in
the following way.

—— l' 1 N N 2
o =L 2 2 il &
qy = Z (SESFP, (19)

. 1 N N
od % =[lim 58 F -0 . (20)
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Table 3, Order parameter susceptibility exponent for SG transition.

d Ye d Ve

60 1:00 4:75 2:70
575 125 4-50 3:70
5-50 53 425 7-10
525 1-84 4-00 (o)
5:00 2:23 .. ..

The results of the calculation are exhibited in table 3. Atd =6, y, =1 as expected
from the mean field calculation. But as d decreases, y, starts increasing, diverging
at d =4. The implications of this result are not quite clear. Either the order
parameter ¢ becomes irrelevant for the phase transition at d = 4 or perhaps there
is no transition at all below d =4. From experience of high temperature expan-
sions for random ferromagnets (Rushbrook et al 1972), it may also be argued that
the conclusions of this method regarding critical exponents of random systems are

not very reliable.
We close the review at this point. The reader can now judge for himself, in

what an uncertain and exciting state this field is at the moment.
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