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Abstract

Collocated measurements of spectral aerosol optical depths (AODs), total and BC
mass concentrations, and number size distributions of near surface aerosols, along
with sea surface winds, made onboard a scientific cruise over southeastern Arabian
Sea, are used to delineate the effects of changes in the wind speed on aerosol prop-
erties and its implication on the shortwave and longwave radiative forcing. The results
indicated that an increase in the sea-surface wind speed from calm to moderate (<1 to
8m s‘1) values results in a selective increase of the particle concentrations in the size
range 0.5 to 5 um, leading to significant changes in the size distribution, increase in the
mass concentration, decrease in the BC mass fraction, a remarkable increase in AODs
in the near infrared and a flattening of the AOD spectrum. The consequent increase in
the longwave direct radiative forcing almost entirely offsets the corresponding increase
in the short wave direct radiative forcing (or even overcompensates) at the top of the
atmosphere; while the surface forcing is offset by about 50%.

1 Introduction

Marine aerosols (both primary and secondary) play significant role in altering the ra-
diation balance of the earth-atmosphere system at regional and global scales through
the interaction with solar and terrestrial radiations, as well as in modifying the cloud
microphysics. Sea salt aerosols formed by the action of winds on ocean surface, con-
tribute nearly 19% to the global mean aerosol optical depth (AOD; Chin et al., 2002). It
has been suggested that the increased sea salt generation due to the increase in wind
speed resulting from the global warming would offset further warming (Latham and
Smith, 1990). Effect of wind speed on the properties such as number concentration,
mass concentration, scattering and extinction coefficients, and spectral optical depths
of marine aerosols have been investigated in the past (e.g. Exton et al., 1985; Moor-
thy et al., 1997; Smirnov et al., 2003). A comprehensive summary of such attempts
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and the reported results are available in an excellent review by Smirnov et al. (2002).
However, size resolved measurements of wind-generated particles and the impacts on
spectrally resolved AOD over marine environments are quite limited (Smirnov et al.,
2002).

Marine aerosol system has mainly two components; produced in-situ and advected
from the continents. Advection of continental aerosols (both anthropogenic as well
as mineral dust) over to the oceanic environments have been extensively investigated
earlier (e.g. Johansen and Hoffmann, 2003; Bates et al., 2004; Moorthy et al., 2005a;
Zhu et al., 2007), and their role in causing spatial and temporal heterogeneity even over
small oceanic regions have been highlighted with consequence on shortwave direct
radiative forcing (Bates et al., 2006). These studies have shown that, in general, such
advections lead to an increase in the atmospheric forcing efficiency of marine aerosols
(Moorthy et al., 2005a). On the other hand wind borne sea salt aerosols are capable
of offsetting these effects at least partially (Satheesh and Lubin, 2003).

The Arabian Sea, (oceanic region bound between 50°E to 77° E and 5° N to 22° N)
plays a significant role in the weather and climate system of Asia and Africa through
seasonally changing wind fields, which result in contrasting precipitation. The mean
winds, that are weak easterlies or north-easterlies during winter and pre monsoon
season (December to April) change to stronger south westerlies during the summer
monsoon season (mid-May to September). During the former period, a weak anti-
cyclone, located at ~15° N, favors an airmass that would bring-in continental aerosols
from the mainlands of Asia (south and west) and north-eastern Africa over to the ocean
and its confinement over the ocean, while during the latter period, the strong, moist ma-
rine airmass inducts coarse marine aerosols over to the adjoining continents thereby
changing the aerosol properties over the mainland. This contrasting airmass types
and associated changes in the aerosol environments cause heterogeneity (both spa-
tial and temporal) in the aerosol characteristics and their radiative impacts (Moorthy et
al., 2005a; Corrigan et al., 2006; Babu et al., 2007).

In this paper we present the details and results of an investigation on the effect of
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changes in wind speed over the ocean on aerosols characteristics using collocated
measurements of aerosol number size distribution, mass concentration, and spectral
aerosol optical depth (AOD) onboard a research vessel over southeastern Arabian Sea.
The results are used to identify the particle size regime, the concentrations at which
are most affected and the wavelengths, the AODs at which are most influenced by the
change in the average wind speed from calm to moderate conditions (<1 to 8 ms‘1).
The measured aerosol properties are used to estimate the change in the longwave
(IR, 8 to 12 um) and shortwave (0.25 to 4 um) direct radiative forcing, and examine the
effect of increased winds on these.

2 Measurements, data, and analysis

Measurements of aerosol properties were made onboard Oceanographic Research
Vessel Sagar Kanya (SK) during its cruise SK219, over the southeastern Arabian Sea
centered around a small oceanic region (at 72°39' E; 8°17’ N) from 18 April to 7 May,
2005. The ship sailed off from the port of Kochi (Fig. 1) on 18 April and reached
the study region on 19 April. This small region, identified by a point in a rectangle in
Fig. 1, is bound between 72°30' E and 72°48’ E in longitude and 8°10" N and 8°24' N in
latitude. Over this region the ship made several zigzag tracks as shown in the blowup.
After measurements, the ship reached Kochi on 7 May. Because of its very small
spatial extent, the observations made over the study region can be considered as
a time series observation. Same time, the measurements from 18 to 19 April (ship
moving off Kochi to the study region) and from 6 to 7 May (returning to Kochi) provide
information on the spatial variation. Collocated measurements of aerosol parameters,
made onboard the ORV, comprised of columnar spectral aerosol optical depth (AOD),
columnar water vapor (W), mass concentrations (M) of composite (total) and (M) of
black carbon aerosols, and number concentration (N(r)) of the composite aerosols in
the size (diameter) range 0.3 to 20 um in 15 size bins.

Spectral AODs, columnar ozone and water vapor (W) were measured using a Micro-
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tops sunphotometer and ozone monitor (Solar Light Co, USA). While the sunphotome-
ter yielded AODs at five wavelengths (340, 380, 500, 675, and 870 nm), the ozone
monitor provided column-integrated ozone, W and AOD at 1020 nm. The details of
Microtops, principle of AOD estimation, precautions while using onboard ship and er-
ror budget are given in detail in several papers (e.g. Porter et al., 2001; Moorthy et
al., 2005a) and hence are not repeated. Latitude, longitude and time information are
fed to the Microtops using GPS receivers attached to each instrument. During each
measurement, a set of three observations was made in quick succession and the least
among these AODs is taken as the representative value. Measurements were done
when the solar disc and its neighborhood was free from visible clouds. The instrument
was calibrated at the factory in the beginning of 2005, prior to the campaign.

An aethalometer (AE-21 Magee Scientific, USA) was used to measure the black
carbon mass concentration (Mg) continuously and at near-real-time using optical at-
tenuation technique at 880 nm. The change in optical attenuation due to the aerosol
loading on its quartz filter tape is calibrated in terms of Mg using an effective specific
mass absorption cross section of 16.6 m? g‘1, which incorporates a factor of 1.9 for
the amplification due to multiple scattering in the filter tape (C factor, e.g. Weingart-
ner et al., 2003). Intrinsic problems associated with aethalometer measurements are
shadowing effect, multiple scattering in the filter tape, and uncertainties in the spe-
cific absorption cross section (Weingartner et al., 2003; Arnott et al., 2005; Corrigan
et al., 2006), which lead to an uncertainty of ~20%. Nevertheless, it is a rugged in-
strument, extremely convenient for field measurements. Inter-comparison of Mgz mea-
sured using the aethalometer with several other techniques have shown reasonably
good agreement with the average values agreeing within the experimental errors (e.g.
Hitzenberger et al., 2006). In the present setup the instrument was operated contin-
uously, round the clock, at a flow rate of 3| per minute (LPM), and timebase of 5min.
The ambient air was drawn from a height ~3 m above the top deck of the ship.

Mass concentration (M;) of total suspended particulates was measured using a High
Volume Sampler (Handi vol, USA). Desiccated, pre-weighed, quartz fiber filter was
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exposed to an ambient airflow (567 LPM) for three to four hours. The substrate was
then removed, kept in a marked, self-locking cover and desiccated. Aerosol mass
concentration (M;) was calculated from the difference (Am) between the masses of
the tare and loaded filter determined using a microbalance.

Am

T=VAL (1)
where V is the flow rate and At is the duration of sampling. The flow rate was calibrated
prior to the cruise and its consistency was ensured after the cruise.

Number size distribution of total aerosols was measured using the Optical Par-
ticle Counter (OPC Model 1.108 Grimm, Germany). The instrument (http://www.
grimm-aerosol.com) provides size resolved number concentration of particles in the
size range 0.3 to 20 um diameter in 15 size channels, based on light scattering prin-
ciple. The instrument was operated in its outdoor weather proof housing, which con-
trolled the relative humidity (RH) of the sampling air to 60%. Ambient temperature and
RH were measured using sensors attached to the instrument housing.

3 Meteorological parameters during the cruise

Supplementary meteorological data provides important information on prevailing syn-
optic and local conditions. While the NCEP (National Centers for Environmental Pre-
diction) reanalysis data were used for the synoptic winds, the local meteorological pa-
rameters were monitored using shipboard sensors.

3.1 Synoptic winds

Synoptic winds, at 850 hPa over the study region, are shown in Fig. 2 based on the

NCEP reanalysis data. The region of measurements is shown as a rectangle in the

figure. The low level anti-cyclonic circulation is located at ~15° N, 62° E in the central

Arabian Sea, with the study area towards its rim to the southeast. The resulting flow
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pattern yields weak, northerly/northwesterly winds around the region, and northeast-
erly winds further to its west; while to the north of ~17° N the flow is generally stronger
and westerly over the ocean, changing to northwesterly at the coast. Consequently the
low level winds reaching the ship have quite long history over the ocean.

3.2 Local meteorology

The temporal variations of air temperature, relative humidity, wind speed, and direction,
from the onboard measurements, are shown in Fig. 3 (panels respectively from the
top to bottom). These data, obtained as 20 min averages, are smoothed using a 6-h
running mean to suppress the short-term variations. From the figure it can be seen that
the low-level winds (middle panel) were weak (<3m s_1) until 25 April. Thereafter, the
speed increased gradually, reaching up to ~6.5ms™ (the 20 min averages going as
highas 8.2m 3‘1) by 30 April and decreased after 2 May. Wind direction was generally
varying and was from north/northwest from 24 April onwards. The RH was ~73%
during the initial part of the cruise until 29 April and decreased thereafter to lower
values (68 to 70%). Air temperature remained between 28 and 30°C.

4 Results
4.1 Aerosol optical depth and Angstrom parameters

Temporal variations of the daily mean AODs, at the 6 wavelengths (340, 380, 500, 675,
870 and 1020 nm), during the campaign period are shown in Fig. 4. The horizontal
arrow in the figure shows the period when the ship was at the study region, where the
measurements could be approximated to a time series (and beyond this the spatial
variation too could be important). High AODs (~0.42 at 500 nm) are observed at the
port of Kochi. As the ship moved off, the AOD (at 500 nm) increased initially to ~0.55
and then decreased sharply to reach the lowest value of ~0.22 (at 500 nm) by 21 April.
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Subsequently the AODs increased steadily to reach a peak value (0.4 at 500 nm) by
30 April to 2 May period and then dropped off. The rapid decrease off Kochi is mainly
due to the decreasing source impact. Kochi is one of the busiest ports on the west
coast (after Mumbai) and is also a rapidly growing urban centre. The city also has
several small and medium scale industries, beside a large oil refinery and a fertilizer
factory. Thus, there is significant amount of anthropogenic activity. The vast inland
water bodies (lakes) and ocean to the west keep the environment highly humid and
warm. All these could be contributing to the high AODs near to the coast and rapid
fall as we move off. The average AODs (at 500 nm) were 0.48+0.04 near to the coast.
Compared to this the AOD was lower in the time series region, with a mean value of
0.29+0.01 for the period 21 April-6 May.

Spectral dependence of AOD could be related to the columnar particle size distribu-
tion through the Angstrom equation
7p(1)=BA" (2)
where a is a measure of the ratio of abundance of accumulation mode (sub micron)
to the coarse mode (super micron) particles and G is the turbidity coefficient indicative
of the total loading. Both, a and (8 are estimated for each AOD spectrum from the
regression slope and intercept of the graph connecting 7,(1) (AOD) and A in log-log
scale. The temporal variations (daily mean) of a and B are shown in Fig. 5. At the
port and close to it, @ remained high (1.2 to 1.5) primarily due to the fine (accumulation
mode) particle dominance. As the ship reached the study region, a increases sharply
to reach the highest value of ~1.7 by 24 April and then dropped off gradually to reach
~0.5 by 1 May, before increasing later. This change is more temporal than spatial.
The final increase on 6 May occurred as the ship started approaching Kochi. During
the same period, @ decreased continuously as we moved away from the port, and then
remained around the low value of ~0.1 until 28 April. Subsequently, it increased sharply
to reach the highest value of ~ 0.3 by 2 May. During this period a became the lowest
(unlike close to the port) implying a drastic change in the aerosol size spectrum and
abundance. These changes are episodic, as the ship was confined only to the study
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region and it is interesting to note that the extreme values of @ and 3 were observed
far from the main land.

4.2 Number concentration

With a view to examining any signature of the changes in the columnar AODs and o
on the ambient (near surface) aerosol concentration and size distribution, we analyzed
the OPC data. In Fig. 6, the temporal variations of the daily mean aerosol number
concentration are shown for 3 different size ranges. These are obtained by averaging
the size resolved number density measurements, made using the OPC, in daily en-
sembles. The ordinate scale on the left represents the number concentration of all the
stages; i.e., particles with size >0.3 um (N, 3), while the right hand side ordinate rep-
resents those for particles larger than 0.65 um (N, ¢5) and 0.8 um (N, g). The rationale
behind this was to examine the behavior of the coarser mode particles vis-a-vis with
the changes of a and @ in Fig. 5.

In-line with the earlier observations, number densities in all sizes decreased rapidly
as the ship moved off Kochi and tend to recover after 5 May, when the ship started
approaching the mainland. In the oceanic region, represented by the graph for the
period 21 April to 5 May, the total number density (N, 3) does not show any perceptible
change. However, the N, g5 and N, g reached a minimum by 24 April and increased
steadily to reach a peak around 30 April to 1 May (similar to the AODs) and then grad-
ually fell off. The higher channels of the OPC representing still coarser particles also
showed similar behavior. At the peak, the concentrations are ~3 to 4 times higher than
the values seen on 24 April or 4 May. The variations of the coarse mode concentra-
tions are very much similar in nature, but differing in phase, to those seen in a and £.
When a reached the peak (1.7) and g the trough (0.07) on 24 April, Ny g5 and Ny g
also were at their lowest values. Thereafter Ny g5 and N g increased steadily, so too
B; but a decreased. The minimum in a (0.5) and peak in B (0.33) occur on 1 May,
while Ny g5 and N, g peaked during 30 April-1 May. Thereafter the number density of
the coarse mode particles decreased, so too B. This clearly shows that the changes in

15863

ACPD
8, 15855-15899, 2008

Longwave aerosol
radiative forcing over
the Arabian Sea

Vijayakumar S. Nair et al.

' “““ “““


http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/15855/2008/acpd-8-15855-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/15855/2008/acpd-8-15855-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

the spectral characteristics of the columnar AODs over the oceanic area were well as-
sociated with those occurring in the number size distribution of aerosols in the marine
atmospheric boundary layer (MABL).

4.3 Mass concentrations of BC and total aerosols

Temporal variations of the mass concentrations (M;y) of total suspended particle, esti-
mated using the high volume sampler and shown in Fig. 7, revealed very high values
(~40 ugm™) at the mainland (Kochi), and decreasing rapidly towards open ocean. BC
also behaved almost similarly, with a high value (>2 ug m‘3) at the coast and decreas-
ing steeply to far oceanic region. In order to focus only on the variations over the far
ocean, we have restricted the figure only to the period when the ship was at the time se-
ries location. From the high values at the coast, My and Mz decrease steeply to reach
their lowest values during the cruise (~12 ug m~ and ~0.3 ug m'3, respectively) by
22/23 April. Subsequently there is a weak increase in Mg, which reaches ~0.6 ugm™
(which is still less than the coastal values by a factor of >3) and fluctuated around that
value during 26 April to 6 May. On the other hand, My increased, initially gradually by
a factor of 2, and then steeply to reach the peak value of ~40 ug m's(which is compa-
rable to that measured at and near the coast) on 1 May, before dropping off to very low
values subsequently. This sharp peak from 26 April to 1 May is similar to the behavior
of B in Fig. 5 and that of N g5 and N g in Fig. 6.

This indicates that whatever has caused the increase in My and N, during 24 April
to 1 May and resulted in a corresponding increase in AOD and @ and decrease in @,
did not contribute significantly to BC and the fine mode concentration. As a result the
percentage of share (Fg¢) of BC to total aerosol mass showed the lowest value (~1.5%)
during this period. It is also important to note that Fg; was quite high (4.5%) on 24 April
when AOD, B and M; were the lowest and a the highest. This large variation (by a
factor of ~3) of Fg¢ over the small study area with in the short period implies significant
changes in the aerosol properties and thus forcing efficiencies (e.g. Babu et al., 2004).
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5 Discussion

Aerosols over the Arabian Sea, like over any oceanic region impacted by adjoining
continents, would mainly consist of

i) sea salt aerosols (in coarse and accumulation regimes) produced in situ by the
sea surface winds (e.g. Gong, 2003),

ii) continental aerosols (mainly in accumulation mode regime) advected from the
(Indian) sub continent by favorable winds (e.g. Ramanathan et al., 2001), and

iii) transported mineral dust from the adjoining arid regions of West Asia (e.g. Jo-
hansen and Hoffmann, 2003; Moorthy et al., 2005a).

In addition there will be certain contribution due to non-sea-salt sulphate aerosols in
the fine particle regime associated with DMS emissions (Shenoy et al., 2002). The
relative abundance of each of these species at a given time will strongly depend on
the regional meteorological conditions; mainly the prevailing wind fields (Moorthy et
al.,, 1997). Examining our results (Figs. 3 to 7), change in the winds appears to be
the potential candidate leading to the temporal changes in aerosol properties over the
study regions. This could be due to the in situ production of sea-salt or advection of
mineral dust or both.

5.1 Advection pathways

Airmass back trajectory analyses show potential pathways for aerosol transport and
are widely used to qualitatively assess the change in aerosol properties associated
with different airmasses coming from distinct source regions (Bates et al., 2004). HY-
brid Single Particle Legrangian Integrated Trajectory (HYSPLIT) model (Draxler and
Rolph, 2003) of NOAA is used to estimate the five-day back trajectories reaching the
observation site at two different altitudes representative of regions within the MABL
(500 m); and free troposphere (3600 m), following Moorthy et al. (2005a). The mass
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plots of these trajectories are shown in Fig. 8 for the entire campaign period. At 500 m
level, the trajectories arrived mainly along the west coast of peninsular India except on
21 to 24 April. Free tropospheric trajectories showed the influence of Indian peninsula
and Bay of Bengal during the first few days (17 April to 20 April), then shifted towards
the East (21 April to 29 April) and finally to the west (30 April to 06 May). Interestingly,
airmass back trajectories during 21 to 25 April at both the levels showed advection
from the east/northeast (south BoB/Northern Indian Ocean). These are shown by the
dotted lines in Fig. 8. During these days, the trajectories go well back (~100° E) over
the BoB at higher levels. There after the trajectories shifted to the western Arabian Sea
and remained confined to the oceanic regions, thereby indicating that advection of min-
eral aerosols was rather insignificant during this period when the aerosol parameters
showed a consistent increase. This leaves the in situ production of sea salt aerosols
by the strong winds as the potential candidate for the observed changes.

5.2 Wind speed dependence

In the light of the above, we examined the measured aerosol properties vis-a-vis with
the average wind speeds measured onboard the ORV.

5.2.1 Aerosol optical depth

A scatter plot of the daily average wind speed and daily mean AOD at the two extreme
wavelengths, 340 nm and 1020 nm, used in the measurements is shown in Fig. 9. In
both the cases a general increase in AOD is observed with increase in the wind speed,
the association appears to be stronger at 1020 nm. To quantify this, we parameterized
the wind speed dependence of AOD, following Moorthy et al. (1997) using the analytical
equation of the form

T/{(U)=Tolleb1(/1)u (3)
where 7, (U) the daily mean AOD at the wavelength A for the mean wind speed U, 1,

the AOD for zero wind speed (or wind speed independent AOD) at the same wave-
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length and b,(4) is the index of wind speed dependence or simply the wind index and
is considered to be wavelength dependent (Moorthy et al., 1997; Satheesh, 2002).
Equation (1) suggests a linear increase in In7 with U and the regression line drawn
through the points are also shown in Fig. 9, which shows a higher slope (b,) and bet-
ter correlation at 1020 nm. The results of similar parameterization, performed for all
the wavelengths, are given in Table 1, which shows a consistent increase in b, with
A. The wind index b,and the correlation coefficient R, are significantly higher at the
longest wavelength 1020 nm, compared to 340 nm, where as 1, is lower. The scatter
(deviation from the regression line) also decreases towards longer wavelengths (as ev-
idenced by R) implying that the effect of increase in wind speed on AOD is spectrally
selective with the near IR wavelengths being more sensitive. This suggests a change
in the shape of the AOD spectrum with wind speed; the spectra tending to be flatter at
higher wind speeds, leading to lower values of a. The values of a and (3, estimated
from the daily mean AODs and using Eq. (2), were grouped into ensembles of mean
wind in an ascending order. The variations of the ensemble averaged a and § with
ensemble mean wind speed are shown in Fig. 10. While a decreases with increase
in U indicating the flattening of the AOD spectrum (due to the selective enhancement
of coarse mode particles), B increases suggesting increase in columnar abundance of
aerosols.

5.2.2 Number concentration and size distribution

The size resolved number concentrations measured by the OPC facilitated closer ex-
amination of the wind speed effect on aerosols and to delineate the size ranges that
are most sensitive to wind speed changes. During the cruise, the (OPC measured)
number size distributions were available at 5min intervals and these showed signifi-
cant day-to-day variations, sometimes even within a day also. As such, we considered
the 6 h average of number concentrations and wind speed. In Fig. 11, we show the
scatter plot for 3 cases, each one progressively focusing to coarser size regime as we
move through the panels from the top to bottom. The top most panel examines the to-
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tal concentrations (of all particles with sizes >0.3 um, N, 3), the middle one considers
only particles with diameter >0.65 um (N ¢5) and the bottom one for concentration of
particles with diameter >2.0 um. In all the panels ordinate is the number concentration
in log scale and the abscissa is the wind speed (both averaged for 6 h). In each panel,
the solid line is the regression fit to the Eq. (4).

N,(U)=N, vV (4)

Due to the size selective nature of sea-spray production (Gong, 2003), the increase
in wind speed results in the change in the size distribution of aerosols, as particles in
certain size spectrum are produced in larger abundance. This is incorporated in Eq. (4)
by treating by, as a function of r. It is seen from Fig. 11 that the slope of the regression
line and correlation coefficient increases with increase in particle size. Performing
the regression analysis (as discussed earlier) for each of the 15 size channels of the
OPC, we estimated wind index (by) and correlation coefficient (R) for different size
ranges covered by the OPC and its variation with particle diameter is examined in
Fig. 12. The corresponding regression coefficients are also plotted in the same figure,
which very clearly demonstrates size dependence of wind index by. Both by(r) and
R are very low for particle diameter less than 0.5 um and greater than 5 um. Particle
concentration in the size range (diameter) 0.7 to 3 um are most susceptible to the wind
speed changes. Decrease in both R and b below 0.5 um is due to the decrease in the
production rate and also due to the presence of non sea salt particles, while at larger
sizes the residence time becomes very important.

Investigations (in the past) on the response of aerosol concentration in the MABL
to wind speed over the oceans have shown that increased sea-spray production con-
tributes to particle concentration at radii r>0.2 um (Gras and Ayers, 1983) and maxi-
mum contribution occurs at r~1 to 2 um (Fitzgerald, 1991). Even though the efficiency
of sea-spray production reduces largely in the sub micron regime compared to non sea
salt sources (Gong, 2003), O’Dowd et al. (1997) have reported sea-spray contribution
to fine particle regime with a broad mode at ~0.2 um having a o of 2. Due to the higher
residence time, these fine particles continue to contribute longer even after the high
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winds have subsidized. The dependence of b, on particle size has been discussed
earlier by Smith et al. (1989), O’'Dowd and Smith (1993) and Nilsson et al. (2001), but
most of them were limited to the coarse mode regime.

The selective enhancement in the production of sea salt aerosols by winds would
influence the surface and volume size distributions as well. This is examined by esti-
mating the effective radius, defined as the ratio of the third moment over the second
moment of the size distribution

_[rsn(r)dr

An examination of Ry versus wind speed, revealed a linear increase in R4 with U with
a regression slope of 0.07 at a correlation coefficient of 0.58 (Fig. 13).

(5)

5.2.3 Total mass concentration

A scatter plot of the total mass concentration (My) from the HVS measurements against
the daily mean wind speed U shown in Fig. 14, also reveals an exponential increase in
Mz with U conforming to the relation,

My (U)=M; e"mY (6)

where My, is the wind speed independent component and by, is the index of wind
speed dependence. Despite that Mrmeasurements were limited to 3 to 4h a day, it
followed Eq. (6) with a correlation coefficient of 0.73, while the regression coefficients
yielded Mr¢=11.2+1 ug m~2 and bM=O.24:|:O.063m‘1. The increase in aerosol mass
concentration associated with increase in wind speed over ocean has been extensively
investigated in the past (e.g. Lovett, 1978; Exton, 1985; Moorthy et al., 2005b; Ganguly
et al., 2005). A compilation of the values of b,, observed in the earlier investigations is
given in Table 2, along with the current estimates. From the table it is clear that the wind
index vary significantly over the oceanic regions depending on the ocean-atmosphere
condition and advection of aerosols (dust as well as anthropogenic). The very low
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value (0.05) reported by Satheesh et al. (1999) is mainly attributed to the advection of
anthropogenic aerosols to the Indian Ocean, while the high b values were associated
with the dust transport.

5.3 Vertical homogeneity

The properties of ambient aerosols are always amenable to perturbations caused by
the dynamics of the MABL,; though it would be weaker over the ocean compared to the
landmass. However, when the perturbations are strong and of greater spatial extent
associated with regional scale weather, it is possible that the changes occur over most
of the vertical column, so that both the column and MABL behave similarly and there
exists a vertical homogeneity. To examine this, we have plotted in Fig. 15, the temporal
variations of the coarse mode AOD (7,,.s¢) and the fine mode fraction (FMF) derived
from the Moderate Resolution Imaging Spectroradiometer (MODIS) data (as the mean
of Aqua and Terra) along with the number concentration N, g5 deduced from the OPC
measurements. A three-fold increase in coarse mode AOD is observed during the tran-
sition from the fine dominated period (calm wind conditions) to coarse mode dominated
period (moderate wind conditions), with a simultaneous decrease in the FMF from 0.85
to 0.6. Thus the increase in wind speed has resulted in not only the increase in particle
abundance, but also change in size distribution leading larger increase in the AOD at
near infra red and a decrease in the Angstrom exponent. In the following we estimate
the implications of these on aerosol direct radiative forcing in the short wave and long
wave regime.

5.4 Implications to direct radiative forcing

Aerosol direct radiative forcing (DRF) is the first order estimation of the climate impact
due to the atmospheric aerosols. It represents the change (AF) in the solar radiative
flux either at the top of the atmosphere (TOA), the surface, or within the atmosphere
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due to the interaction with aerosols. So that

(AF)ton s=(Fna)toas—(Fa)toa.s (7)

where F, and Fy 4 are the net fluxes with and without aerosols. Difference between the
TOA and surface forcing yields the atmospheric forcing. DRF is strongly dependent on
the aerosol spectral AOD (7,), spectral single scattering albedo (®@,), and the scattering
phase function (P(8)), as well as on the surface albedo and meteorological conditions.
For the estimation of both shortwave (SW, 0.25 to 4.0 um) and longwave (LW, 4.0
to 50.0 um) DRF, we followed the widely used empirical cum modeling approach (e.g.
Satheesh and Srinivasan, 2002; Satheesh and Lubin, 2003; Markowicz et al., 2003;
Babu et al., 2004; Moorthy et al., 2005a). This essentially consists of adopting a zero-
order aerosol model from Hess et al. (1998) and varying the relative abundance of its
constituents, keeping the observational data as the constraints, such that the modified
model reproduces the measured AOD spectrally, within measurement errors. The re-
sulting model, though cannot be considered unique, gives an equivalent aerosol model
reproducing the observed columnar optical properties. Based on the AOD and Fgg,
we selected the “marine polluted” model; the constituents of which are water soluble,
soot, sea salt (accumulation and coarse modes), and transported mineral dust. Keep-
ing Fgc, My, and a as constraints, the concentrations of the species were adjusted to
reproduce the spectral AODs within the measurement errors. The modeled values of
®, and P(0) along with the measured 7(1) and a were used as inputs to the radia-
tive transfer model SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer
model; Ricchiazzi et al., 1998) and the diurnally averaged, clear sky, radiative fluxes at
the TOA and surface were estimated. Similarly fluxes reaching the TOA and surface
for aerosol free conditions were also simulated and using the Eq. (7) both shortwave
radiative forcing (SWRF) and longwave radiative forcing (LWRF) were estimated.
Unlike SWRF, LWRF strongly depends on the vertical profiles of temperature and
relative humidity (Lubin et al., 2002; Huang et al., 2007), columnar water vapor and
ozone content (Hollweg et al., 2006) and surface temperature. Realistic vertical profiles
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of temperature and water vapor were taken from the radiosonde observations from the
island Minicoy (8.3°N, 73.04°E) (location shown in Fig. 1) close to the study area.
During the cruise, standard tropical atmospheric profiles used in the SBDART showed
an excellent agreement with measured profiles within the measurement uncertainties.
As such, we used the measured profiles upto 30km (the maximum altitude of the
sondes) and above that standard tropical profiles from SBDART were used. Column
integrated water vapor and ozone content, measured onboard using the Microtops
and hourly measured sea surface temperature (SST) were also fed to the model for
the more realistic LW flux estimations. We estimated the AOD at 10 um using the
aerosol model described above and it was found to be ~20% of the AOD measured at
500 nm, which is consistent with the observations of Markowicz et al. (2003). Extensive
sensitivity analyses have shown that nearly 87% of the LWRF is in the middle infrared
atmospheric window region (8—-12 um) (Vogelmann et al., 2003; Hollweg et al., 2006)
and as such, we focused only on this region.

In view of distinct aerosol properties observed during this campaign, we consid-
ered 2 extreme cases, Case 1 (21 April to 29 April) corresponding to high @ and low
aerosol concentrations and Case 2 (30 April to 05 May) characterized by low values
of a and high aerosol loading. Corresponding aerosol properties measured/retrieved
and modeled are given in Table 3. From the discussions forgone, it is clear that Case
1 corresponds to calm wind condition and Case 2 represents moderate wind condi-
tion. The SWRF estimated for these two cases are shown in the top panel of Fig. 16.
Transition from Case 1 to Case 2 resulted in an increase in the absolute magnitude
of the TOA forcing by ~1 Wm™2 and surface forcing by 7.8Wm™2 in the SW regime.
During Case 2 period of moderate winds, we have observed large increase in the con-
centration of coarse mode aerosols at the surface as well as in column. Comparison of
LWRF estimated for this period and fine mode aerosols dominated calm period (Case
1) is shown in the bottom panel of Fig. 16. Change from the calm to moderate wind
condition increases the LWRF from +0.23 to +1.9 at TOA while at the surface the
forcing increased from +0.35 to +3.5Wm™2. The significance of this observation is
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not a mere 8 to 10 fold increase in the LWRF, but more importantly the increase in
LWRF is more than the corresponding increase in the magnitude of SWRF. SWRF and
LWRF have contrasting impacts on the radiation balance; generally the former cools
the surface and warms the atmosphere while latter warms the surface and cools the
atmosphere. Under normal conditions, the magnitude of the LWREF is far less in com-
parison to the SWRF and is even negligible over the fine mode aerosols dominated
regions. However, when the dominance of coarse mode aerosols becomes significant,
such as over oceans or deserts, LWRF can significantly offset the SWRF (Ackerman
and Chung, 1992). During Case 2 of our study, LWRF offsets ~23% of the SWRF at
the TOA and ~15% at the surface. Compilations of LWRF and SWRF over oceanic
regions are given in Table 4, in which the offsetting effect of LWRF on SWRF is also
given in percentage. Almost all studies suggest nearly 10 to 25% offsetting of SWRF
at the surface and TOA. During ACE Asia, LWRF of 1 to 10W m~2 was observed at the
surface (Vogelmann et al., 2003) and it is comparable to the values reported from the
Indian Ocean during INDOEX (Lubin et al., 2002). Uncertainties do exist due to the
lack of information on the microphysical properties of aerosols in the IR region. Nev-
ertheless, the large balancing of the SWRF by LWRF (which is primarily due to natural
aerosols) is very important in the radiative equilibrium of earth atmosphere system
Sensitivity analyses have shown that the accuracy of the estimated SWRF de-
pends mainly on the accuracy of the measured aerosol properties and land surface
reflectance (Podgorny et al., 2000). However such detailed examination of the sensi-
tivity of LWREF to the aerosol properties as well as meteorological conditions are limited
(Lubin et al., 2002, Marckowicz et al., 2003; Hollweg et al., 2006). LWRF (at TOA and
surface) decreases with the increase in water vapor content and the rate of decrease
is much higher for surface forcing. An increase from 1 to :3gcm‘2 (in columnar water
vapor content) will reduce the surface DRF from 11.5 to 6 Wm™ and TOA DRF from
4.27 to 4.03Wm™2 (Marckowicz et al., 2003). A change of £10K throughout the tem-
perature profile leads to a change of 1.8Wm™2 in the surface LWRF over an urban
location over India (Panicker et al., 2008). However, change in vertical profiles of wa-
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ter accounts nearly 25% variations in the effective longwave emissivity (Dupont et al.,
2008).

6 Conclusions

Collocated measurements of several aerosol parameters were carried out onboard
a research vessel in a small region of the southeastern Arabian Sea, off the west
coast of India for about a month during the inter monsoon season of 2005. The data
are used to examine the changes in aerosol properties associated with wind fields
and the consequence on infrared radiative forcing vis-a-vis the shortwave forcing. Our
investigation showed that

1. All the aerosol parameters, mass and number concentration in the marine atmo-
spheric boundary layer (MABL) as well as columnar spectral AODs, increased
exponentially with increase in the mean wind speed, though through different ex-
tents.

2. For increase in wind speed from calm (< 1 ms‘1) to moderate (~8ms‘1) condi-

tions, number concentration of particles (in the MABL) in the size range 0.5 um to
3 um was found to be most influenced, while the increase in AODs was higher in
the near infrared wavelengths.

3. This selective enhancement of the coarse mode particles due to sea salt led to
an increase in the coarse mode AODs,flattening of the AOD spectrum and a de-
crease in the fine-mode fraction.

4. The consequent increase in the infrared (10 to 12 um) direct radiative forcing was
found to offset the corresponding increase in the short wave direct forcing by more
than 100% at the top of the atmosphere and 50% at the surface.
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Table 1. The wind index (b,) estimated at different wavelengths. R is the correlation coefficient

and 7, is the AOD for zero wind speed.
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A(nm) b, (sm™) R T,
340 0.10+0.05 0.55+0.2 0.30
380 0.12+0.05 0.61+0.2 0.26
500 0.13+0.05 0.59+0.2 0.18
675  0.19+0.07 0.63+0.2 0.096
870 0.22+0.08 0.631+0.3 0.071
1020 0.23+0.07 0.73+0.2 0.047
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Table 2. A compilation of the values of wind index (b,,) observed in the earlier investigations
along with the current estimates.
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No Region by(s m™’ ) Reference

1 Atlantic Ocean 0.16 Lovett (1978)

2  Pacific Ocean 0.62 Tsunogai et al. (1972)

3  Atlantic Ocean 0.17 Exton et al. (1985)

4  Kaashidhoo Indian Ocean 0.05 Satheesh et al. (1999)

5  Southern Ocean 0.18 Moorthy et al. (2005b)

6 Bay of Bengal 0.17 Ganguly et al. (2005)

7  Arabian Sea and tropical Indian Ocean 0.35 Ramachandran and Jayaraman (2002)
8 Arabian Sea 0.24 Present study
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Table 3. Aerosol parameters measured or retrieved for two cases considered in the study.
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SW DRF LW DRF
T500 a SSAsq0 Fac
TOA Surface Atmos TOA Surface Atmos
Case1 0.24+0.05 1.38+0.3 0.918 3.03x09 -6.9 -15.6 +8.7 +0.23 +0.35 -0.12
Case2 0.32+0.06 0.86+0.2 0.889 2.07+0.4 -8.1 -23.4 +15.3 +1.9 +3.5 -1.6

15882



http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/15855/2008/acpd-8-15855-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/15855/2008/acpd-8-15855-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

Table 4. Compilation of short wave radiative forcing and long wave radiative forcing over

oceanic regions.
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Region and period SWTOA SWSUR LWTOA LWSUR TOA (%) SUR (%) Reference

Southern AS (SMS) -9.1 -13.1 1.3 5.2 14.28 39.69 Satheesh et al. (2006)

Southern AS (WMS) -6 -12 0.8 4.2 13.33 35 Satheesh et al. (2006)

Southern AS, April-May 2005 -8.1 -23.4 1.9 3.5 23.45 14.95 Present study

Indian Ocean, March 2001 -6.8 -10.1 1.2 4.3 17.64 42.57 Vinoj et al. (2004)

Arabian Sea, March 2001 -5.9 -18.9 1.7 6.4 28.81 33.86 Vinoj et al. (2004)

BoB, February 2003 -11.58 -29.5 0.97 2.94 8.37 9.94 Ganguly et al. (2005)

Indian Ocean, INDOEX -10 -30 1.3 7.7 13 25.66 Lubin et al. (2002), Satheesh
and Ramanathan (2000)

Sea of Japan, 2001 -12.7 -26.1 15 4.6 11.81 17.62 Markowicz et al. (2003)

Indian Ocean -125 -35.6 10 16 28.08 Satheesh and Lubin (2003)
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Fig. 1. ARMEX IIA measurement site is drawn in a rectangle on the right panel. The major
port (Kochi) near to the site is also shown. Closer view of the ship transit made during the
observation period is given in the left panel.
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Arabian Sea (dashed lines) influence are identified distinctly from others in the figure.
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Fig. 15. Temporal variation of coarse mode AOD and number concentration of particle di-
ameter greater than 0.65 um are shown in the upper panel along the left and right ordinates,

respectively.
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Fig. 16. Aerosol radiative forcing estimated for longwave and short wave regime of solar spec-
trum for the surface, top of the atmosphere and with the atmosphere.
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