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Optimal labeling schemes lead to efficient experimental protocols for quantum-information processing by
nuclear magnetic resonance(NMR). A systematic approach to finding optimal labeling schemes for a given
computation is described here. The scheme is described for both quadrupolar systems and spin-1

2 systems.
Using the technique of transition selective pulses, one of the optimal labeling schemes has been applied to
experimentally implement a quantum full adder in a four-qubit system by NMR.
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I. INTRODUCTION

Quantum computers can solve certain problems that are
intractable with the classical computers[1,2]. Several quan-
tum algorithms have been devised which use the quantum-
mechanical properties of the physical systems to solve prob-
lems with more speed and fewer resources[3–5].
Implementation of the quantum algorithm requires a coher-
ent control over the physical systems that are used for com-
putation. Therefore, a great deal of emphasis is laid on sim-
plification of experimental schemes, so as to retain coherent
control and avoid errors[6–8]. Among the various tech-
niques, nuclear magnetic resonance(NMR) has emerged as a
suitable technique for the demonstration of quantum infor-
mation processing with a small number of qubits[9–19]. In
liquid-state NMR, information processing is carried out by
the use of spin- or qubit-selective pulses seperated by evolu-
tions under the system Hamiltonian[2,10], or by the use of
transition-selective pulses along with qubit-selective pulses
[14,20–23]. Transition-selective pulses are radiofrequency
pulses tuned to the resonance frequency of a selected single-
quantum transition, causing irradiation at a specific line of
the spectrum without perturbing others. A transition-selective
p pulse tuned at a specific transition exchanges the ampli-
tudes between the two eigenstates. Such pulses can be used
to simplify the implementation of several logical operations.
For example, in anN-qubit system, a controlledN−1-NOT
gate requires a complex pulse sequence with a series of
qubit-selective pulses seperated by Hamiltonian evolutions
[11], whereas it requires only one transition-selectivep pulse
between the statesu111¯10l and u111¯11l [24].

Recently, it has been shown that relabeling of states sim-
plifies the experimental protocol of certain operations
[21,22]. While implementing half-adder and subtractor op-
erations in a quadrupolar system, relabeling led to an effi-

cient experimental scheme that requires fewer pulses than the
conventional labeling[21]. The idea behind relabeling is as
follows: For spin-12 systems, conventional labeling(CL) uses
the following logic. The state in which all the spins are in an
identical state, such asuaaa¯al, is labeled asu000¯0l
and each spin flip is labeled as a bit flip, namely
uaba¯al= u010¯0l. This scheme labels each state with a
well-identified label and leads to the identification of a spin
as a qubit. Spin-selective pulses then act as qubit-selective
pulses and many pulse schemes have been developed which
use spin-(or qubit-) selective pulses along with Hamiltonian
(or exchange coupling,J) evolution periods[2,9,10]. On the
other hand, quantum information processing(QIP) has also
been demonstrated using nuclei with spins.

1
2, retaining

their quadrupolar couplings by partially orienting molecules
in liquid crystalline media[25]. In such systems, a spin is no
longer a qubit. However, it has been demonstrated that the 2N

nondegenerate energy levels of such a system can be utilized
as anN-qubit system. So far, only spins32 and 7

2 have been
used, respectively, yielding two and three qubits
[20–22,25–28]. Furthermore, in such systems, a bit flip is not
a spin flip while it can be treated as a qubit flip. One can
follow a CL scheme in which the lowest(or highest) energy
level can be given the labelu000̄ l and each subsequent
level can be labeled in increasing order of binary numbers
(CL) or single bit flips(Gray code), as shown in Table I. It
was conjectured earlier that all such schemes are acceptable
as long as a single label is attached to each level and the
scheme is retained throughout a given set of computations
[21,22]. Indeed, it was demonstrated that it is acceptable to
search for “optimum labeling schemes”(OLS) such that a
minimum number of unitary transforms is needed for a given
set of computations[21].

The utility of OLS is explained in the following: A
transition-selective pulse has low power and small band-
width and it excites a selected single-quantum transition.
That is, it can cause an operation between two states which
differ by Dm= ±1, wherem is the magnetic quantum num-
ber. Suppose an operation requires a transformation between
two states(A andB) which differ byDmÞ ±1. Then a single
transition-selectivep pulse will not suffice. One then looks
for some intermediate eigenstate or eigenstates which differ
by Dm= ±1 and connectA andB. A sequence of transition-
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selectivep pulses transforms these two states via the inter-
mediate states. However, one can always relabel the energy
levels such thatA and B are two levels connected byDm
= ±1. A single transition-selectivep pulse would then suf-
fice. With this logic, one can find an optimal labeling scheme
which reduces the computation to a minimum number of
such transition-selective pulses.

The optimum labeling scheme for the half-adder and sub-
tracter using an oriented spin-7

2 (three-qubit) system given in
columnC of Table I was found by trial and error[21]. How-
ever, by no means is this scheme unique; there must be many
more labeling schemes with equal efficiency. Furthermore,
for higher-qubit systems the trial and error method will be-
come laborious and inefficient. Therefore, there is a need for
a systematic approach to this problem of finding an optimum
labeling scheme for a given computation or a set of compu-
tations. This paper deals with one such approach. Section II
outlines a protocol to search for optimum labeling schemes,
Sec. III introduces full-adder operation, Sec. IV gives the
protocol to search for optimum labeling schemes in the case
of multiple operations with an example of a full adder
+swap2, 4, and Sec. V contains an experimental implemen-
tation of a full adder by a four-qubit weakly coupled spin-1

2
system.

The relabeling scheme described here is applicable to
arithmetic operations and logic gates, which have a one-to-
one mapping between initial and final states. This does not

include operations which create superposition, such as the
Hadamard gate. Relabeling schemes for such operations and
quantum algorithms may require a different strategy.

II. OPTIMUM LABELING SCHEME

To search for optimum labeling schemes(OLS) in logic
gates and arithmetic operations, we start with the truth table
of a computation. Table II contains a particular truth table for
a four-qubit system. At this moment it is not important to
know the logical operation this truth table represents. The
table is needed to illustrate the procedure. We search for OLS
with the help of set theory. We consider that all the states of
the system constitute a universal sethSj. Then from the truth
table, we construct maximal setshSij which are mutually
exclusive subsets ofhSj. To construct maximal sets, the first
input state is taken up and put in the first sethS1j. The cor-
responding output is noted and is added tohS1j if it is not
already included in it(Table III). This process is continued
until we reach a state whose output is the first element of
hS1j. Then the sethS1j is completed. In the present case, the
hS1j set contains only one elementu0000l since it transform

TABLE II. Truth table for a certain logical operation.

Input Output
X1 X2 X3 X4 Y1 Y2 Y3 Y4

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0
0 0 1 1 0 0 1 1
0 1 0 0 0 1 1 0
0 1 0 1 0 1 1 1
0 1 1 0 0 1 0 1
0 1 1 1 0 1 0 0
1 0 0 0 1 0 1 0
1 0 0 1 1 0 1 1
1 0 1 0 1 0 0 1
1 0 1 1 1 0 0 0
1 1 0 0 1 10 1
1 1 0 1 1 1 0 0
1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 0

TABLE III. Construction of maximal sets for the operation of Table II.

Chains Maximal sets

u0000l S1=hu0000lj
u0001l S2=hu0001lj
u0010l S3=hu0010lj
u0011l S4=hu0011lj

u0100l→ u0110l→ u0101l→ u0111l→ u0100l S5=hu0100l , u0110l , u0101l , u0111lj
u1000l→ u1010l→ u1001l→ u1011l→ u1000l S6=hu1000l , u1010l , u1001l , u1011lj

u1100l→ u1101l→ u1100l S7=hu1100l , u1101lj
u1110l→ u1111l→ u1110l S8=hu1110l , u1111lj

TABLE I. Conventional labeling(CL), gray code, and optimum
labeling (for half-adder and subtracter operation) in a spin-7/2
system.

Energy level A B C

m CL Gray Optimum

7
2 000 000 000
5
2 001 001 010
3
2 010 011 011
1
2 011 010 001

−1
2 100 110 101

−3
2 101 100 110

−5
2 110 101 111

−7
2 111 111 100
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into itself. Similarly, setshS2j, hS3j, and hS4j each contain
one element. The sethS5j is formed by noting thatu0100l
→ u0110l→ u0101l→ u0111l→ u0100l. This process is carried
out for all hSij by selecting an input state not forming a part
of previoushSij’s, and it is continued until all the states are
included in exactly one of the maximal setshSij (Table III). It
is evident that the maximal setshSij are mutually exclusive.

An optimum labeling scheme for executing the logical
operation of Table II by single-quantum transition-selective
pulses is obtained by arranging the labels of levels in the
same order as in column 1 of Table III. The number of pulses
for any sethSij will be uSiu−1, whereuSiu is the cardinality
(number of elements) of the set. Thus the minimum number
of pulses required for the execution of the logical operation
of Table II is

Np = o
i=1

M

suSiu − 1d, s1d

whereM is the number of maximal sets. In the present ex-
ample, the number of transition-selective pulses needed is
3+3+1+1=8. It may bepointed out that implementation of
this operation in a quadrupolar system using conventional

FIG. 1. The Zeeman energy levels of a spin-15
2 nucleus along

with one of the optimum labeling schemes for the logical operation
given in Table II. The magnetic quantum numbersmd corresponding
to each eigenstate is given on the left-hand side, and the qubit
labeling is given on the right-hand side. The maximal sets of Table
III are shown in the energy-level diagram along with the transition
selectivep pulses required to implement the truth table of Table II
using this labeling scheme.

FIG. 2. (a) Conventional labeling scheme and the pulses re-
quired for implementing the truth table of Table II in a four-qubit
spin-12 system.(b) Relabeled energy levels to implement the truth
table of Table II with optimum pulses.(c) The conventional scheme
of (a) by rearranging the sequence of pulses to implement the logic
of Table II with the minimum number of pulses.
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labeling or the gray code would require 12 or 10 transition-
selective pulses, respectively.

After creating the maximal sets, one has to consider only
those sets that have more than one element, as they are the
ones that would require “pulses.” We have seen that in a
maximal set, transformations between the states take place in
a chain. This chain of states should be mapped to a chain of
energy levels where each level in the chain should be con-
nected to its previous and next level by single-quantum tran-
sitions. Mapping the sets to the subspace of energy levels
should start with the mapping of a set having the largest
number of elements(i.e., max. cardinality) and then move in
a decreasing order. This mapping follows different strategies
for quadrupolar systems and coupled spin-1

2 systems. These
are outlined in the following.

A. Optimum labeling for quadrupolar systems

The Hamiltonian of a quadrupolar nucleus partially ori-
ented in a liquid-crystalline matrix, in the presence of a large
magnetic fieldB0 and having a first-order quadrupolar cou-
pling, is given by[33]

H = HZ + HQ = − v0Iz +
e2qQ

4Is2I − 1d
s3Iz

2 − I2dS

= − v0Iz + Ls3Iz
2 − I2d, s2d

where v0=gB0 is the resonance frequency,g being the
gyromagnetic ratio,S is the order parameter at the site of the
nucleus, e2qQ is the quadrupolar coupling, andL
=e2qQS/ f4Is2I −1dg is the effective quadrupolar coupling.
Thoughe2qQ is of the order of several MHz, a small value
for the order parametersSd converts the effective quadrupo-
lar coupling “L” into several kHz. In such circumstances, a
spin-I nucleus has 2I +1 nonequispaced eigenstates and 2I
well-resolved single-quantum transitions separated by effec-
tive quadrupolar coupling “L.” Recently, it has been demon-
strated that such a system can be treated as anN-qubit sys-
tem, provideds2I +1d=2N [25]. For example a single spin-3

2
acts as a two-qubit system and a spin-7

2 acts as a three-qubit
system[20,21,25–28].

In quadrupolar systems, the energy levels are in increas-
ing order of Zeeman energy. Each level is connected to ad-
jacent levels by single-quantum transitions, yielding 2N−1
single-quantum transitions. This puts certain constraints in

identification of maximal sets with the energy levels. An ex-
ample of a labeling scheme for the operation in Table II is
given in Fig. 1. The maximal sets are shown in the energy-
level diagram along with the transition-selectivep pulses
which are required to implement the truth table of Table II in
this labeling scheme. Let us take the case ofS5, which has
four states. They are being mapped in a subspace of the
energy-level diagram to four energy levels that are in a chain.
Then the required transformations can be achieved by three
p pulses applied in the reverse order of the chain. Hence the
pulses are to be applied in the ordersp1p2p3d, as shown in
Fig. 1,

sp1dy
u0111l↔u0101lsp2dy

u0101l↔u0110lsp3dy
u0110l↔u0100l

=1
1 0 0 0

0 0 0 1

0 0 1 0

0 − 1 0 0
21

1 0 0 0

0 0 1 0

0 − 1 0 0

0 0 0 1
21

0 0 1 0

0 1 0 0

− 1 0 0 0

0 0 0 1
2

=1
0 0 1 0

0 0 0 1

0 − 1 0 0

1 0 0 0
2 . s3d

The above operator is for a subsystem of the last two qubits
in the four-qubit system, where the first two qubits are in the
u01l state.S6 also has a similar chain which is then mapped
to a chain of levels as shown in Fig. 1.S7 has a chain of two
states and it can be mapped onto any two adjacent energy
levels of the system.S8 follows the same logic. The energy
levels corresponding to states ofS7 and S8 in our labeling
scheme are given in Fig. 1. However, the relabeling scheme
of Fig. 1 is not unique; many optimum labeling schemes are
possible.

The basic idea of relabeling is that the 2N energy levels of
an N-qubit system can be given desired labels. If the only
necessary condition is that one label is attached to each en-
ergy level, then there are 2N! possibilities. However, only a
few of these are optimal. In the case of a quadrupolar system,
all the energy levels differ in their energy by at least one
Larmor frequency. Thus, the number of different OLS pos-
sible in quadrupolar system is a permutation of the different
maximal sets, multiplied by the allowed permutations of el-
ements in each set. However, for sets with more than one

TABLE IV. Truth table of a classical full adder.

C0 A B S C1

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

FIG. 3. Circuit of a quantum full adder. The two bitsA andB are
added with a carry “C0” from the previous operation. An ancillary
bit L is included in the input to make the operation reversible. After
the full-adder operation, the sum gets stored inS sS=C0 % A% Bd,
and the carry is stored inC1 fC1=L % sAB% AC0 % BC0dg.
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element, optimal labeling demands that the order of states
must be the same as that of the transformations. Thus, only
two permutations of states are allowed in each set, either in
ascending or descending order of energy. Hence the total
number of optimal labeling schemes is

P = M ! 2k, s4d

wherek is the number of maximal sets with more than one
cardinal number. We note that for the example of Table I, the
number of OLS is 8!324=645 120 out of a total of 16!
>231013 possible labeling schemes.

B. Optimum labeling for spin- 1
2 systems

When placed in a magnetic fieldsBod, the energy levels of
a spin-12 nucleus are split into two. These energy levels can
be labeled asu0l andu1l and hence a spin-1

2 nucleus acts as a
qubit. N such nuclei, having different Larmor frequencies
and coupled to each other by indirect spin-spin interaction,
constitute anN-qubit system. The Hamiltonian for such a
system is given by[11]

H = HZ + HJ = o
i

viI iz + o
i, jsi, jd

2pJij IWi · IWj , s5d

where HZ is the Zeeman Hamiltonian,HJ is the coupling
Hamiltonian, vi =giB0 is the Larmor frequency of theith
spin, andJij is the coupling between theith and j th spin.
When 2pJij ! uvi −v ju, the system is said to be weakly
coupled, and the Hamiltonian can be approximated to[11]

H = o
i

viI iz + o
i,j si, jd

2pJij I izI jz. s6d

Under the approximation of Eq.(6), products of eigenstates
of individual spins are the eigenstates of the system, and a
spin can be treated as a qubit[9,10]. In this paper, we restrict
to such systems. In such cases, for anN-qubit spin-12 system
there areN single-quantum transitions from each energy
level, amounting to a total ofN2N−1 single-quantum transi-
tions. Hence the number of possible optimal labeling
schemes is much larger than the quadrupolar system de-
scribed above. It turns out that in such cases, the conven-
tional labeling scheme may be an optimum scheme with
some minor modifications. For example, Fig. 2(a) contains a
conventional labeling scheme and the pulses needed for
implementing the operation of Table II. Note that in the
maximal setS5, the transformations require three pulses—
p1, p2, followed by p3—whose operator is

sp1dy
u0101l↔u0111lsp2dy

u0101l↔u0110lsp3dy
u0110l↔u0100l

=1
1 0 0 0

0 0 0 1

0 0 1 0

0 − 1 0 0
21

1 0 0 0

0 0 1 0

0 − 1 0 0

0 0 0 1
21

0 0 1 0

0 1 0 0

− 1 0 0 0

0 0 0 1
2

=1
0 0 1 0

0 0 0 1

0 − 1 0 0

1 0 0 0
2 . s7d

FIG. 4. The four-qubit system of 2–3 diflouro
6-nitrophenol. The two protons(I1 andI3) and the
two fluorine nuclei(I2 andI4) constitute the four-
qubit system. The equilibrium spectrum of each
nucleus is individually shown. The assignment of
the transitions is given above each line, which
has been determined by transition tickling and
HET-Z-COSY experiments[29,30]. Each assign-
ment identifies a transition of the spin corre-
sponding to the states of other spins. In a
500 MHz spectrometer, the chemical shift differ-
ence between the two fluorine spins is 16 kHz
while that between the two protons is 250 Hz.
The couplings range from 19.1 Hz to −2.3 Hz.
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The above operator is for a subsystem of the last two qubits
in the four-qubit system, where the first two qubits are in the
u01l state. However, the transformation ofp2 is between two
statesu0101l and u0110l which differ by Dm=0, and cannot
be accomplished by one single-quantum transition-selective
pulse. Hence it would seem that the experimental protocol
would require more pulses. Relabeling can reduce the num-
ber of pulses. Figure 2(b) shows a relabeled scheme where
the labels of the states(abba andabaa) as well as(baaa
and baba) are interchanged so thatu0101l↔ u0110l and
u1001l↔ u1010l are connected by single-quantum transitions.

However, in this case we observe that, by changing the
sequence of pulses, one can achieve the same transforma-
tions of S5 andS6 in a conventional labeling scheme with a
minimum number of pulses. For example, in the maximal set
S5, we can change the sequence of pulses asp1, p3, followed
by p2, wherep2 is applied between the statesu0100l and
u0101l [as shown in Fig. 2(c)]. Then the operator is the same
as that of Eq.(7),

sp1dy
u0101l↔u0111lsp3dy

u0110l↔u0100lsp2dy
u0100l↔u0101l

=1
1 0 0 0

0 0 0 1

0 0 1 0

0 − 1 0 0
21

0 0 1 0

0 1 0 0

− 1 0 0 0

0 0 0 1
21

0 1 0 0

− 1 0 0 0

0 0 1 0

0 0 0 1
2

=1
0 0 1 0

0 0 0 1

0 − 1 0 0

1 0 0 0
2 . s8d

This sequence will require only three single-quantum pulses
since all the pulses are between eigenstates withDm= ±1.
Similarly in setS6, p4, p6, followed byp5 will suffice [Fig.
2(c)]. In this protocol, the conventional labeling scheme re-
quires a total of eight pulses for implementing the truth table
of Table II, which is identical to OLS. Thus, the conventional
scheme is also optimum. It turns out that for experimental
convenience, relabeling may still be useful, as will be shown
in Sec. V.

It may be noted from Eqs.(3), (7), and (8), that the col-
lective operator of the three transition-selective pulses differs
from the ideal operator of the transformations inS5 by a
controlled phase factor[10]. If one starts from an equilib-
rium state, the results are identical to that of the operation of
Table II. When applied to a pure state, the phase factor must
either be taken into consideration or be corrected by adding a
controlled phase gate, using transition-selectivez pulses[23].

III. FULL ADDER

Table II is the truth table of a quantum full adder. The full
adder is a basic component of conventional computers. The
quantum full adder is also an important part of many quan-
tum algorithms. In particular, it is a key step in Shor’s prime
factorization algorithm, where it is necessary to perform
modular exponentiationfsxd=axmod M [3]. A classical full
adder(Table IV) adds bits “A” and “B” and carry “C0” to

give a sum “S” and a carry “C.” This operation is not revers-
ible. Quantum full adder, however, needs to be reversible. An
extra ancillary bit is added in the input “L” to make the
operation reversible. The truth table then becomes exactly
the one given in Table II, whereX1=C0, X2=A, X3=B and
X4=L, Y1=C0, Y2=A, Y3 is the sums=C0 % A% B=Sd, andY4

is the carryf=L % sAB% AC0 % BC0d=C1g. Figure 3 contains
the circuit for the quantum full adder and Fig. 1 has one of
the many possible optimum labeling schemes for the quan-
tum full adder in a four-qubit(spin-15

2 ) quadrupolar system.

IV. MULTIPLE OPERATIONS

The optimal labeling for a sequence of logical operations
can be constructed in a manner similar to the one outlined in
Sec. II. For example, if one wishes to implement a swap
operation between the second and fourth qubit after imple-
menting full adder, then the maximal sets have to be con-
structed from the truth table of combined operation of full
adder+swap 2,4. For full adder+swap−2,4, themaximal
sets are S1=hu0000lj, S2=hu0001l , u0100l , u0011l , u0110l ,
u0101l , u0111lj, S3=hu0010lj, and S4=hu1000l , u1010l ,
u1100l , u1101l , u1001l , u1110l , u1111l , u1011lj. For imple-
menting full adder+swap 2,4 in a four-qubit quadrupolar
system, this labeling scheme would require 12 transition-
selective pulses. Often various logical operations do not
commute. For example, full adder and swap 2,4 do not com-
mute. Hence, if one wants to implement the operations in the
reverse order, namely swap2,4+full adder, the truth table of
the combined operation is different and so is the order of
elements in the maximal sets:S1=hu0000lj, S2=hu0001l ,
u0110l , u0011l , u0101l , u0111l , u0100lj, S3=hu0010lj,
and S4=hu1000l , u1010l , u1001l , u1101l , u1100l , u1011l ,
u1111l , u1110lj. However, it is evident that swap2,4+full
adder also requires 12 transition-selective pulses. It may be
mentioned that the implementation of full adder+swap 2,4
by CLS would require 24, and the gray code would require
26 transition-selective pulses in a four-qubit quadrupolar sys-
tem.

V. EXPERIMENT

The molecule 2–3 diflouro 6-nitrophenol(dissolved in
CDCl3+1 drop D2O) has four weakly coupled spin-1

2 nuclei,
acts as a four-qubit system, and was chosen to implement the
quantum full adder(Fig. 4). The proton of the phenol group
is exchanged with the D2O. The two remaining protons and
the two fluorine nuclei constitute the four-qubit system. The
equilibrium spectrum of each nucleus is given in Fig. 4. In a
500 MHz NMR spectrometer, the chemical shift difference
between the two fluorine spins is 16 kHz while that between
the two protons is 250 Hz. The couplings range from
19.1 Hz to −2.3 Hz. The assignment of transitions given in
Fig. 4 using the energy-level diagram(Fig. 5) was obtained
with two independent methods. In method(i) a transition-
selective tickling experiment was performed individually for
all the 32 transitions to yield the assignment of transitions
[29]. In method(ii ) a two-dimensional(2D) heteronuclear
Z-filtered correlation spectroscopy(Z-COSY) experiment
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was performed[30]. The sign of the peaks in the 2D spec-
trum yielded the connectivity matrix, which confirmed the
assignments obtained by method(i).

To implement the quantum full adder using transition-
selective pulses, we start with the system in equilibrium.
While applying the selective pulses, we took some factors
into consideration. First, the transition-selective pulses have
to be tuned at a specific frequency with a narrow bandwidth
so as to prevent the other lines from being perturbed. How-
ever, narrow bandwidth implies long pulses, which increase
the experimental time and lead to relaxation-related errors.
One has to optimize the experiment time so as to avoid errors
due to relaxation. The schemes in Fig. 2(b) or Fig. 2 show
that two of the four qubits have to be pulsed to implement
full adder. The specific transitions to be pulsed are, however,
far apart from each other with intermediate transitions be-
tween them. Hence, such a labeling would require pulsing
individual transitions. Long duration pulses with high selec-
tivity have to be used, the experiment would be lengthy, and
relaxation will cause significant errors in the computation.

On the other hand, by relabeling the energy levels suitably,
the experimental protocol can be simplified. Figure 5 shows
a relabeling which allows pulsing six transitions of one spin
(I4 of our system) followed by two transitions of the other
spin(I3 of our system). Moreover, these transitions were cho-
sen such that they are adjacent to each other in the frequency
spectrum and can be pulsed simultaneously, as given below.

First, we applied a spin-selectivep pulse which inverted
all the eight transitions ofI4. Second, we applied another
selectivep pulse on two transitions(first two from the left in
Fig. 4) of I4. The frequency of this selective pulse was tuned
at the center of the two transitions and pulse power was
adjusted to cause ap rotation of the two transitions. Thus,
these two transitions get an effective rotation of 2p, whereas
the other six transitions are rotated byp. The states con-
nected by these two transitions have their equilibrium popu-
lations restored, while the states connected by the other six
transitions will have their populations interchanged. Experi-
mentally this scheme is preferred because it allows short du-
ration pulses and faster implementation.

Subsequently, two pulsesp3p6 were applied on two tran-
sitions of spinI3 (fifth and sixth from the left in Fig. 4) as
directed by our labeling scheme. After each selective pulse, a
gradient was applied to kill any coherence created due to
imperfection of radio frequency(rf) pulses. If one starts with
the equilibrium state, the result is encoded in the final popu-
lations of different states. A nonselective small flip-angles5+d

FIG. 5. Relabeled energy-level diagram for implementing a
quantum full adder in the four-qubit system of 2–3 diflouro
6-nitrophenol. The maximal sets were created using the scheme
outlines in Sec. II. The chains of elements in the maximal sets were
mapped on to chains of states in this four-qubit system. To simplify
the experimental protocol, it was noted that all the pulses that com-
mute (which also means that they are not connected to a common
energy level) can be applied simultaneously. The maximal sets are
mutually exclusive and so the pulses of different sets commute with
each other. This means thatp7 and p8 of setsS7 and S8 can be
applied simultaneously with the pulses ofS5 andS6. In the setS5,
the labels of statesuabbal and uabbbl were interchanged so that
the pulsesp1 and p2 can be applied simultaneously. Similarly, in
S6, by interchanging the statesubbbal and ubbbbl, p4 andp5 can
be applied simultaneously. Hence, by this labeling,p1p2p4p5p7p8

followed by p3p6 would implement the quantum full adder. The
initial (equilibrium) populations and final(after implementation of
the full adder) populations are given beside each energy level as
initial population(final population). The intensity of various transi-
tions changes after the full adder. For example, we note that the
intensity of theabb transition of I4 changes from +1 to −2, after
implementation of the full adder.

FIG. 6. Implementation of the quantum full adder in the four-
qubit system of 2–3 diflouro 6-nitrophenol. Starting from equilib-
rium, three selective Gaussian-shaped pulses of lengths 50ms,
350 ms, and 450 ms were applied on selected transitions(as ex-
plained in text). Gradients were applied after each pulse to destroy
any unwanted coherence created by the imperfection of pulses. A
nonselective small flip-angles5°d pulse was used to map the final
populations. The experimental spectra are shown above with the
expected spectra shown(as a stick diagram) below each spin. The
intensities in the stick diagram are 0, ±1, and ±2 corresponding to
the final populations of Fig. 5. All the spectra are Fourier-
transformed after multiplication of the signal with a Gaussian win-
dow function. The longitudinal relaxation rates for the four spins
areT1

1=7 s,T1
2=3.5 s,T1

3=10 s, andT1
4=4 s. The observed experi-

mental intensities are within 18% of the expected intensities.
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pulse was used to monitor the final populations. This pulse
maps the population differences into the intensities of vari-
ous transitions within a linear approximation. The obtained
spectra are shown in Fig. 6, with expected results shown as a
stick diagram underneath for each spin. The results have
been reproduced within 18% of their expected intensities.
The deviations from the expected intensities are due to re-
laxation and inhomogeneity of rf pulses. These spectra con-
firm the implementation of the quantum full adder operation.

VI. CONCLUSION

In this paper, we have outlined a protocol to find optimum
labeling schemes for specific computations. While in quadru-
polar systems OLS provides experimental schemes requiring
fewer pulses, in spin-1

2 systems it helps to keep a better con-
trol over coherence and reduce experimental errors. This re-
labeling has been utilized for implementation of the quantum
full adder in a four-qubit spin-12 system by transition-
selective pulses. The quantum full adder has also been real-
ized using Hamiltonian evolution by Chuanget al. as a sub-
routine of Shor’s algorithm[17].

The search for higher qubits has inspired researchers to
use homonuclear spin systems oriented in liquid crystalline
matrices[22,31]. In such systems, the homonuclear spins can
become strongly coupled and no longer be treated as qubits

[32]. Since the spins lose their identity as qubits, a conven-
tional labeling scheme is not defined and the Hamiltonian
evolution method is not applicable. It has been demonstrated
that the 2N eigenstates ofN spin-12 strongly coupled nuclei
can still be treated as anN-qubit system and quantum infor-
mation processing can be performed using single-quantum
transition-selective pulses[31]. In such systems, while the
number of allowed single quantum transitions is more than
that in weakly coupled systems, the number of transitions
having significant(observable) intensities, in some cases,
may be lower[33]. In such cases, OLS can be used to opti-
mally label the eigenstates and perform computations utiliz-
ing observable single quantum transitions[30].
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