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Interaction of second sound with acoustic waves in solids

K S VISWANATHAN

Department of Physics, Kerala University, Kariavattom, Trivandrum 695 581, India

Abstract. An expression has been derived for the collision operator for phonons in a solid,
which is valid at very low temperatures. The set of coupled equations for the elastic
deformation and the phonon density or second sound has been reduced to a simple tractable
form and the dispersion equation for the coupled waves consisting of the acoustic modes and
second sound has been derived. It is shown that only the longitudinal mode interacts with the
second sound. 1t is also shown that as a result of the interaction with the second sound, the
longitudinal velocity along the principal axis acquires a correction term that is proportional to
both y* and T*,
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1. Introduction

Second sound is a wave-like propagation of heat in solids or liquids. It can alternatively
be described as the oscillation in the fluctuation of density of the thermal phonons. The
first speculation of the existence of second sound was in fact made by Nerst as early as in
1917 when he wrote: “Since in all probability heat has inertia, it is possible that at very
low temperatures, an oscillatory discharge of thermal differences of potential might
occur under certain circumstances”. On the basis of the two-fluid theory, Tisza (1938)
and Landau (1941) predicted the existence of temperature waves that propagate in
superfluid helium. Peshkov (1944) predicted the existence of second sound in solids
also. A detailed study of the drift velocity in a phonon gas and of second sound were
made by Krumhausl and others. The first experimental observation of second sound in
solids was made by Ackerman et al (1966) in solid “He. A detailed review of second
sound in solids has been given by Ackerman and Guyer (1968). The theory of second
sound in solids and related thermal conduction phenomena have been reviewed by
Beck (1975).

Animportant progress in the development of a theory of second sound in solids was
made by Goetze and Michael (1967a,b). Using Green’s function formalism and
phenomenological arguments, these authors derived a system of two fluid equations to
describe a phonon gas and the elastic deformation in a solid. These equations at first
sight appear to be mathematically complicated and probably for this reason or
otherwise, no attempts have been made to solve them either analytically or numerically,
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and apply them to solids in which second sound has been observed. It is the object of
this paper to evaluate the physically important terms of these equations and to reduce
the coupled set of equations in the phonon density and elastic deformation to a form
that is easily amenable to either analytic or numerical solution. In §2, we have evaluated
the collision operator for the phonon gas involving the anharmonicity co-efficients and
-given an analytic expression for this operator, that is valid at very low temperatures. In
§4, we present the set of coupled equations in the elastic deformation and phonon
density in a form as simple as the dispersion equation for acoustic waves in solids. It is
shown that only the longitudinal mode interacts with second sound. Further, it is
shown that the longitudinal velocity has a correction term proportional to T*—a result
that was experimentally observed by Franck and Hewko (1974). Our expression further
shows that the correction term, apart from its proportionality to T#, is also
proportional to the square of the Gruneisen constant. Further sécond sound in solids
should be highly anisotropic and should be dependent on the direction of propagation
of the temperature wave.

2. The two-fluid equations

The two-fluid equations describing the coupled system of elastic vibrations and the
phonon gas have been derived by Goetze and Michael (1967a, b) and also reviewed by
Beck (1975). They are

o 0 02,

E+v.5;+hij——-6rjat = L[], (la)
2 a¢
P=7 =Fi+[Sijm— Z m(k)h;; hmn] — 2 hym m(k) =~ (1b)
ot? or 6 X
If one substitutes ¢, s ~ exp[ —i(€2t —q-r)] these equations become
(—lQ+lq'vk—L)¢= “‘quh,ij, ’ : (23.)
pQ?s; = ~ Fi+4qn SijmnSm + iy (1| @ ). . (2b)

Here ¢ denotes the deviation of the density N (k, r, 1) of the phonon gas from the
equilibrium phonon distribution Ny (E) and is given by

N(k,r,t) = No(E)+ m(k)p (k, 1, 1), 3)
where
dN
mk) = —p= = = BNo(No +1), h @
B=(1/kT) and E, = haw,, ’ %)
and the equilibrium distribution number N, for the phonons is given by
No(k) = 1/[exp (Bhay)—1]. | (6)

We use generally the notation of Beck (1975), but denote the energy of the phonon with
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momentum k and frequency w, by Aw, rather than w, as in Beck’s article. Further, s is
the elastic displacement vector and F is a possible mechanical force. Again L[ ¢] is the
collision operator defined by ‘

mm’m” vz

KK Q
x {2 V3 (k, K, --k")!2 OE+E —E") 0y p-iol¢+¢' —¢"]
+1Vak, —K,—K)? S(E~E —E")o_y_iol¢—¢'—¢"1}, (7)

where Q is a vector of the reciprocal lattice. The quantities h;; are components of the
Gruneisen parameter and are defined by

O0E 0
hy)= =2t = —h

0% _ by :
5“1‘] 5uij Wy, yu E] A (8)

where u; are the components of the strain tensor and y;; are the generalized Gruneisen
constants. To make the problem tractable, we assume that the Gruneisen parameter is
isotropic (i.e)

Thus hij (k) = ;hwk 'yéij’ (10)

where y is the Gruneisen constant.

If we replace for a moment the operator L by ™!, (2a) suggests that ¢(k) is
proportional to (a) wy in the first instance; (b) a function of r and ¢ represented by the
right hand side of (2a); and (c) by another function of the direction cosines of the vector
k, since the group velocity vector vy, on the left hand side depends on the orientation 6y,
¢, of the propagation vector. So we write

¢ = @i f Ok, di)g (xt). (11)

This assumption is more general than the form of the distribution function assumed in
the local equilibrium approximation (Beck 1975—equation (2.12)).

9B (rt)
p

since it involves a factor of the angles 6,, ¢, defining the direction of the vector k.
Further the angular bracket { ¢, |$, ) between two quantities is defined by

N g (ket) = No (k) — m(k)a (12)

(81162) =5 mK0T W2 (0) (13
Hence

1
<hir|¢ > = ‘?;m(k)hir G (14)
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or
hy
<hrr|¢ > = ‘—Vzm(k)wkq&k
k
= 2 9(0) $.f G mEo}
k
= —hyg(r)¢, (15)
where
¢ =5 2 m®) S G bk (16)
k

Again the modified elastic constants Srs are defined by the equation

S-ij, rs = u, rs <hu|hrs > (17)

where S;; ,, are the usual elastic constants. Substituting the expressions for h;; ;and £, we
find that

_ h%y?

Sij,rs = Sij, I By 5;‘,‘ Ops Z m(k)wf
14 P
= Sij, rs —‘hz)’zéijfsrs $o, | (18)
where |
=lzm¢mﬁ | (19)
V&

The quantities &, and ¢ can be easily evaluated. First

— Bexp (Bhay)
Lexp (Bhwy) — 17>

As we are dealing with phenomena happening at very low temperatures, the
Debye distribution can appropriately be used to describe the spectrum of the phonons.
The sum over k can be transformed into an integral using the rule

1
|4 };—»8“3 J‘d

m(k) = —BNo(No+1) =

(20)

1
Wpﬁmm. » VAV

Thus

_ _i exp (Bhwk) 212
©T g f [oxp (Bhay— 1) V4 490

- _g!i_J\C dQ '[ max( xex1)2 x4dx‘ ' . (22)

(BRC)?
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At very low temperatures, the upper limit x_, can be replaced by infinity as in Debye’s
theory. The integral in x is then well known and has a value 4n*/15. Thus

—nA
b = 5575 23)
where
dQ
Ao= f C 00 dn) (24)
Again
§= 5T mb)f O b)of
k
_ "‘ﬂAI
=305R | (25)
where
()
A, = SN dQ. (26)

3. The collision operator

- The major difficulty in solving the two-fluid equations is in obtaining an estimate for
the collision operator, which appears as a complicated expression with a double
summation, double delta function and anharmonicity coefficients. However with an
approximation for V3(kyji,K; j», K3 j3) due to Klemens (see Maradudin and Fein
1962), the various terms in this expression can be evaluated—some exactly, some
approximately—as we shall show below. Using a computer to evaluate integrals over
the angular variables 6y, ¢, numerically, it is possible to calculate the collision operator
fully at low temperatures. Now Klemen’s approximation may be written as (see
Maradudin and Fein 1962)

V3(kiji, Koja, Ksjs)
h3/2 ¢(k1j1 k2j2k3j3)

= —= Ak, + ky +k . : —=, 27
2312 6\/—ﬁ itk +k) [o(kyji)o(koj2)o(Kaj3)] 72 ,( )
where N denotes the number of unit cells in the crystal and further
k.i, k,i : V2 48))2 2 2 2
[p(kyjy kaja ksjs)|* = MC? wj, (kl)wh (kz)C% (k3). (28)

In the above, Cis a typical sound wave velocity and y is the Gruneisen constant. Further,
if v, is the volume of the unit cell, one may write (M |v,) = p where p is the density of the
crystal. :

The expression for L(¢) in the curly bracket contains two terms, each of which is a
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product of two delta factors. Consider for example the first term in the curly bracket.

This term has two delta factors and will be non-vanishing only if
k+k'—k"=00r Q (29a)

and E+E —E' =h{ok) +ok)—ok’)}=0. (29b)

At very low temperatures, only the acoustic modes are excited and we shall use the
dispersion relation of the form

w(k) = Ck, (30)

where the sound wave velocity C is a function 6,, ¢, of the propagation vector k.
Substituting the expression for ¥® from (27)and (28) taking into account the two delta
factors and summing over k", we find that

B —my? mk)ymk + k) /*
)= s L)
x [p(k)+(k)—pk+K)](E+E ~E)

N [m(k’)m(k -k

1/2
0 } [9() - $(K)

—qb(k-—‘k’)]é(E——E’—E”)}. (31)

We shall first evaluate the second summation, as this can be calculated exactly without
approximation. We shall consider the case Q = 0, but our argument is not restricted to
normal processes only and can be extended to Umklapp processes too. The delta
factors lead to the conservation laws

k—-k'—-k"=0 (32a)
and Wy — Wy, — WDy = 0. . (32b)
Now from (20) we have

"n’t(k')"’t(lﬁk’)]”2 _ if* [1—exp (— phay)]

(k) “H—ewp(-fhooll-op(-frog)] O
Now
K)m(k — k) T2
) [’"( );’((k) )J b (k") 3(0, — 0 — )
V +1/2
=—8—n§tﬁ [1 —exp (— phwy)]
x J A D dk’ (34)

(1 —exp (— fhoy)) [1 —exp (— fhawy)]

g -
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In this integral, if we make the change of variables k" = k — k', the variables k' and k"
get interchanged in the integrand, which is symmetric in these variables. Hence this
transformation does not alter the integrand including the delta factor, while on the
other hand dk” = —dk'. So

= — _2 iB2[1—exp (— Bhwy)]
8

X J‘ ¢(k”)5 (wk — Wy — COk") dk”
[1 —exp (—Bhwy)][1 —exp (= fhow)]

(35)

Hence

)

g

[m(k')m(k—k’)

1/2
e ] [o(K')+ P (k")] 6h (o — wpr — wy) = 0, (36)

as the two integrals are of opposite sign and cancel each other.
Finally consider

' k—Kk 1/2
g[ﬁ(—"—){-&;} ----- X »3] B (@ — o~ )
= B2 ) [1 — exp (~ fhes)]

- 8 (W — Wy — W)
i [1 —exp (— phawy)] [1 —exp (— fhoy)]

(37)

Now

1
S = [ exp (= Phaog) 111 —oxp (— Pho)]

=Y exp (— ph) (nwy +mwy»).

In view of the delta factor, w, -, = w,: one can separate out terms n=m
in the double summation and this term gives a contribution exp ( — nphw,). Thus if
W + Wy = Wy

S =Y exp(—nphw,)+ ), exp[—ph(nwy +mwy)]

n>m

+ 3 exp[— ph(nwy +may)]

n<m

=[1—exp(~fhan)] ™'+ ) exp(—mphwy)exp[ - (n—m)wy]

n>m

+ Y exp(—nphwy)exp [~ (m—n)we]. (38)

n<m

The difference between the two terms lies in the exponential function, which involves
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wy in one term and w,- in the other. Hence

m(k')m(k — k')
2"

&

1/2 |
:, @ (k) 6 (w, — wy ~ Wy ~k')

= 1ﬁ1/2¢(k) Z 5(60;( —~ Wy — CUk")
Py

iﬁl/z
+g Vo) [1—exp (- fhay)]

x{ D exp(—m,Bhwk)Jexp[——(n—m)wk:]é(w,‘-—wk'—wku)dk’

n>m

m>n

+ ) exp(—nphawy) '[exp [—(n— m)cok,,] O (g ~ Wy — a)ku)dk’}.

By changing the integration variable from k' to k” by means of the substitution
k" =k —K, the delta factor remains unaltered while dk” = —dk’. By renaming the
summation indices n and m into m and » in one of the two terms above, we see that the
two integrals cancel each other. Thus :

mk)m(k —k')) /2
I=§{W} ¢(k)5h(a)k‘wk"wk“)

=h‘1iﬁ”sz(k)Zé(cur—a)k'——wku). , (39)
5

Let us suppose that out of the 3N wave vectors K, the relation w, — w, ~ wp=01s
satisfied for 3M values, and we shall write Z = (M|N). Then

I=h"tipll2 p(k)Z. : (40)

From the values of the elastic constants and the structure of the crystal, Z can be
evaluated with a computer. Though the above result has been derived for Q = 0, it is

formally true even if K"=k—k'+Q where Q is a reciprocal lattice vector as the
argument will not be altered.

We shall next consider the three sums contained in the first term of (31). Here the
conservation laws are

Wy + W — Wi = 0, (41a)

k+k'—k"=0. (41b)
Again

[M(k’)m(k + k’)]”z _ _IB'[1 —exp (— Bhay)] exp (~ Bhey)
m(k) [1—exp (- fhoy)][1 ~exp (— Bhwy )]
Unlike the previous case, the terms containing ¢ (k')and ¢ (k") do not cancel here,and it

is not feasible to evaluate the integral exactly because of the delta factor. We shall
therefore use the approximation,

(42)

kK'=|k+K|=k+k'cosh, : (43)
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where 0 is the angle between the vectors k and k'. Such approximations are used in other
contexts too, for example in evaluating the attenuation of acoustic waves as a result of
three phonon processes (Truell et al 1969). By expanding |k + k'| as a series involving
Legendre functions, one can of course improve the accuracy.

Now
Z[m(k’)m(k+k’)]1/z (b @ —‘_w )
k‘ m(k) kT O — Wp+k
Vo .
= 3 iB**[1 —exp (— phax)] p(k) x Iy, (44)
where
JCXP(—ﬁhwk’)a(wk'{"wk'—wk+k')dk’
I, = . (45)
[1—exp(—phwy)][1—exp (— fhwysr)]
Now |
W+ O — Dy = Ck+ Cyk’ = Cy ol k+ K|
= Ckk+ck'k’ —Ck+kr(k+kl COS@)
= (Cx = Cyq )k +k'(Cy — Cy y r c0s )
_ Cx—Cxix)
= (Cy4ycosf Ck'){(Ck_}_kfcosB—Ckz)k k' >. (46)
Hence '
8(wy + W — Wispr) = (Cip i €080 — Cp) ™1 8 (rk — k'), 47)
where
¥ = (Cx~Cy4r)/(Cxiwcosd —Cy) (47a)

The delta factor in the integral (45) will be non-vanishing if
(1) (Cx—Citx) and  (Cyyi cosf—Cy)

are of the same sign and (2) if k' = y k. Hence only those elements of the solid angle d2,
in the integral contribute, for which

(Ck_" Ck+k') and (Ck+ x COS 0 — Ckk;)

are of the same sign. The integration over k' can now be performed very easily in (45)
because of the delta factor and we find that

J(Ckﬂc’ cos 0 —Cy) ™' exp (—BhCy k) k*? dQ
I, =
' [L—exp (— BhCy k)1 [1 —exp (— BACy o o (Cik + Ciokip) T’

where the integration is to be performed only over those regions of the unit sphere for

(48)
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which (Cy —Cy ) and (Cy . cos @ —Cy) are of the same sign. Consider next

exp (— phowy) ¢(K') 6 (wy + 0 — Wy 44 ) dK’

I, = . 49
* = "= exp (= Pharg) 111 — exp (= Phaoe )] @)
If we substitute as in (11) viz,
¢ (K) = Cyk' f Ors Pi)gs (50)
We find that
g JﬂXp (= BhCi K)(Cy f) S (wy + w0 — @y g )k’ A’ AQy
: (31)

b = T e (P )1 T1 = exp (= e rp)]

Evaluating the integral over k' by substituting (47) for the delta factor, we get

gf(ck+ w008 0 — Cy)™ " exp (— BACy ki) (Ciefe >y dQy

= op (CphC )T e = Pkt CoiT} O

As before the above integral should be evaluated only over those regions for which
(Ck—Ci+k) and (Cyyy cosf—Cy)

are of the same sign. Consider finally the integral

exp (— phaw) @ (k") 6 (wx + wp — @ 11) Ak’

b = e (PR ) [l —oxp (— B )] 3)
Hee (k') =/ (60 de-)op 901, 1)
= f(Op, r) (r + wy) g(r; f). (54)

We might mention that f (6, ¢-) is a function of the angular variables (6, ¢,) and
(O, Px). Hence :

Jexp (— Bhwy) (firg) (Cik + Cipk') 6 (wy + @y — i)k Q. di!

Iy =
3 [1 —exp (— Bheoy)][1 —exp (— phay)]

gﬁcm c0s 8 — i)™ exp(— BAC, k) fur (Cik + Ciekip)kPy? dQy
[1—exp (— Bh Cyok)T {1 — exp [ — Bk (C+ Cy)1}

(55)
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Thus
B nTj/2
Z[ﬂ&%’;{%ﬂ] [¢(k)+ ¢(k) — d(k+ k)] (W + 0p — Diesi)
2 «
- ;3—:—3,'131/2 [1—exp(~Bhw)] 11 ¢(K) + 1> —15]. (56)

This sum is proportional to k*. We had considered only normal processes for which
Q = 0, but the argument can be extended to Umklapp processes too. For this, one
should replace k by (k + Q) and sum over Q. Normally it is sufficient to sum over values
of the Q vectors in the first supercell centred around the origin in the reciprocal space.
The integral over &' and ¢’ can be performed numerically with a computer. Combining
(31), (39), (40) and (56), we find that the collision operator is given by

— 2.
Lol =72 NnMyClzh {‘b(k)z
| +4_’;_3[1 —exp (— fhan) 1 [11¢(K) + 12 —131}- (57)

4. Coupled wave equations for second sound and acoustic waves

The modified elastic constants have been defined in (18). For cubic crystals, we have

§11,11 = 611 = Cu “ﬁzvz’fo

nﬁzyon
=Cut+—575 kT, _ (58)
5'—11,22 = §11,33 = c12
TCﬁz'yon
=Cot—5ps (kT)*, (59)
5'11,23 = S_n,31 = S-u,xz =0, ' (60)
Si2.12 = 823,23 = S31,31 = Cas = Caa. (61)

We denote the modified elastic constants by a bar. We may note that C;;andC,, havea
correction term that is proportional to T%. Most of the experiments on the second
sound at low temperatures have been carried out for solid He*, which belongs to the
hexagonal class. For crystals belonging to the hexagonal system, the elastic constants
are given by '

C_n =Cy1— hz)’zéo, (62a)
633 = Cs3 “hz)’z &os 613 =Cy3 "hz)'zfo, (62b)
Ciy =Cyy— 0?80 Cas = Cua, (62¢)

Ces = Ces = 3(C11—C12) = 3(C11 — Cy2). : (62d)
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Thus as a result of the interaction of the phonon gas with the elastic deformation, the
constants C,4, C,2, Cy3, C33 get modified by the presence of an additional term that is
proportional to T4,

Let us take the angular average of (2a) and cancel the factor w, throughout. We shall
further write

(V) = 21; J(Q‘Vk)f(ek, @) d€%; (63a)
p= % Jf(ek’ Pi)d Q. (63b)
Also (L(®)) = iy* v gS. | (63c)

Then (2a) becomes
Qhyg,s, +i(pQ—{q Vi) +Sy*)g = 0. ' (64)

In the absence of any external forces, the coupled set of equations for a wave
propagating along a direction (Imn) or (g, /q, q2/4, q3/4) in a cubic crystal are given by

pVis; ={Ci1 P+ Cos(m* +n*)}s; + (Ci2+Cas)lms,

- ~ jlyh
4+ (C12+Cas) Ins; —%'fg (65) »
—n(kT)*
where &= ——7;((%—;—)— Ay, ' (66)

and two similar equations.
We shall write (2/g) = V and n = (q/q). Eliminating s,, 55, 53 and g from (65) and
(64), we get

For propagatxon along the principal axis or the direction (100), this equation smphﬁes
much and is given by

2 2,2
(C-44“PV2)2{(C—11—PV2)(PV— <n'Vk>+—S—g—)+h Z : V}= 0.

(68)

Two roots of this equation are given by (Cyy — p¥?) = 0. These are the two transverse
modes. Since C,4 = Cq4, the coupling between the acoustic waves and the phonon gas

- - - ~ h
C11 P +Cas(m* +n?) (€Ci2+Cas)im (C12+Cua)in —151
—pV?
(C_12+C44)ln C_ll m2 +C_44(n2 + 12) (C_12 +C44)In —iy—'—l- c
—pV? o
€12+ Caa)in (C12+Cad)mn V Cyn*+C(P+m? —B’-flﬁ
—sz
mylv hymV hynv i(pV—— <n~V,‘>+§y2)
1 (67)
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does not affect the velocities of the two transverse modes and these are still given by the
classical value (C44/p)'’*. The term in the curly bracket shows that the longitudinal
mode interacts with the second sound. This is a cubic equation in ¥ (not p¥?) and its
roots will give the velocity of the longitudinal mode as well as the velocity of the second
sound, along with the damping. We do not propose to solve this equation numerically
here but without solving this equation directly, one can approximately obtain an
expression for the longitudinal velocity. From (68) we have

hzyz é: V
a{pV—(n-vi ) +5v*/q}
To find out the velocity of the longitudinal mode, we solve the above equation by

iteration and substitute a trial solution ¥, = (C1/p)!* on the right-hand side. Then
writing ¢ = —BT*, we get

pV?i=Cu+ (69)

BT*h*y*(Cy1/p)'"*
q[p(Cy1/p)*"* = {n-v ) +5y%/q]

The above equation shows that the longitudinal velocity has a correction term which is
proportional to both T* and y2. Franck and Hewko (1974) measured the longitudinal
sound wave velocity as a function of temperature for *He from 0-75K to nearly 4 K.
They found that the velocity always increases with falling temperature in accordance
with an equation of the form C = (Co— AT#). Our result gives an explanation for this
experimental observation regarding the dependence of the correction term on the
fourth power of T and also shows that the correction term should be proportional to y?
besides. :

Franck and Hewko carried out the measurements in fact for HCP “He, though (70)
has been derived for cubic crystals. But the structure of the equation continues to be the
same for hexagonal crystals too, as can be seen from the values of the modified elastic
constants and the dispersion equation along (0 0 1) direction for hexagonal crystals.
Thus as a result of the coupling between the phonon gas and the elastic deformation,
the longitudinal wave velocity gets modified by the presence of an additional term that
is proportional to both T* as well as v2. Secondly the second sound interacts with the
longitudinal mode only for propagation along the principal axes.

A casual look at the expression for the collision operator suggests that L(¢) is
strongly dependent on the direction of propagation of phonons. It is well known now
that at very low temperatures, phonons propagate ballistically, and are focussed in
certain directions. (Maris 1971; Jacob Philip and Viswanathan 1978; Northrop and
Wolfe 1980). Obviously, the second sound which depends on the fluctuations in the
number density of the phonons, should also be correlated with phonon focussing and
should be prominently observable in directions where there is an abundance of
phonons. A thorough numerical investigation of the collision operator and the coupled
dispersion equation would throw more light on the directional dependence of second
sound in solids but this will be dealt with elsewhere.

pV?=Cyy—

(70)
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