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Abstract

Background: The main processes in the pathogenesis of cerebral malaria caused by Plasmodium falciparum involved
sequestration of parasitized red blood cells and immunopathological responses. Among immune factors, IgG
autoantibodies to brain antigens are increased in P. falciparum infected patients and correlate with disease severity in
African children. Nevertheless, their role in the pathophysiology of cerebral malaria (CM) is not fully defined. We extended
our analysis to an Indian population with genetic backgrounds and endemic and environmental status different from Africa
to determine if these autoantibodies could be either a biomarker or a risk factor of developing CM.

Methods/Principal Findings: We investigated the significance of these self-reactive antibodies in clinically well-defined
groups of P. falciparum infected patients manifesting mild malaria (MM), severe non-cerebral malaria (SM), or cerebral
malaria (CM) and in control subjects from Gondia, a malaria epidemic site in central India using quantitative immunoprinting
and multivariate statistical analyses. A two-fold complete-linkage hierarchical clustering allows classifying the different
patient groups and to distinguish the CM from the others on the basis of their profile of IgG reactivity to brain proteins
defined by PANAMA Blot. We identified beta tubulin Ill (TBB3) as a novel discriminant brain antigen in the prevalence of CM.
In addition, circulating IgG from CM patients highly react with recombinant TBB3. Overall, correspondence analyses based
on singular value decomposition show a strong correlation between IgG anti-TBB3 and elevated concentration of cluster-I|
cytokine (IFNy, IL1B, TNFa, TGFB) previously demonstrated to be a predictor of CM in the same population.

Conclusions/Significance: Collectively, these findings validate the relationship between antibody response to brain induced
by P. falciparum infection and plasma cytokine patterns with clinical outcome of malaria. They also provide significant
insight into the immune mechanisms associated to CM by the identification of TBB3 as a new disease-specific marker and
potential therapeutic target.
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Introduction

Malaria remains a major cause of morbidity and mortality in
humans, resulting 350-500 million clinical cases and over one
million deaths annually [1]. Plasmodium falciparum infection
generates pleiomorphic clinical outcomes, from asymptomatic to
severe syndromes depending on transmission intensity, age of the
individuals and on the immunity and the genetic background of the
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populations 2,3,4]. Anemia and cerebral malaria (CM) are the most
severe manifestations and deaths occur by CM in children and
young adults in area of high transmission [5]. CM is characterized by
a range of acute neurological manifestations including a diffuse
encephalopathy, alteration in levels of consciousness, deep coma and
seizure preceding death [6,7]. Sequestration of parasitized erythro-
cytes in cerebral blood vessels is often associated to CM [8].
Adhesion of blood stage parasite has been considered to lead to a
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decrease of the blood flow and to contribute to the induction of brain
damage and coma during CM [9,10]. Additionally, CM is also
considered to be the result of an immunopathological process
involving both lymphocytes and proinflammatory (Thl) cytokines
such as TNFa, levels of which are increased in affected patients
[11-13]. Thus, the outcome of P. falciparum infection may depend on
a fine balance between appropriate and inappropriate immune
responses [14,15]. Although the occurrence of numerous metabolic,
pathological and physiological abnormalities has been demonstrated
during CM, the mechanisms leading to progression into complicated
disease have not been yet adequately explained. Particularly,
pathogenic roles for autoantibodies are not defined in CM.

When exposed to Plasmodium parasite, the host immune response is
characterized by a polyclonal B-cell activation and a hyper gamma-
globulinemia [16,17]. Among antibodies produced some of them
recognize autoantigens [17,18]. High levels of antibodies against
phospholipids, cardiolipin, ssDNA, dsDNA, and rheumatoid factors
are correlated with disease severity in P. falciparum-infected patients
[19-22]. However, their role in pathophysiology of CM remains
unclear. Recently, by studying several cohorts of children manifest-
ing different disease spectrums induced by P. falciparum from a hyper
endemic area of Gabon, we demonstrated that antibody mediated
self-reactive response may contribute to the pathogenesis of CM.
Thus, in these children we observed a significant increase of the
repertoire of plasmatic IgG reacting with human brain antigens with
disease severity [23]. Interestingly, CM patients developed a high
IgG autoantibody response to brain o II spectrin which is
significantly associated with increased plasma concentrations of
TNFa [23]. These autoantibodies may or may not cause damage.
The relationship between CM and antibody dependent auto-
immune reactions has been also illustrated by the occurrence of
autoantibodies against voltage-gated calcium channels in African
populations [24]. Multiple mechanisms underlie the production of
autoantibodies such as a polyclonal activation of B cells due to
stimulation by parasitic mitogens [25], a stimulation of specific B
cells by molecular mimetism [26,27], or even a deregulation of the B
cells function [25,28]. Other mechanisms such as apoptosis of brain
endothelial cells occurring during cerebral malaria could also be
source of release of the auto antigens [29,30].

In this study, we extended our analysis to an Indian population
with genetic backgrounds, endemic and environmental status
different from the Gabonese population to determine if autoreac-
tive antibodies specific to brain antigens are present in CM
patients and could play a role in malaria pathogenesis. We used a
multidisciplinary approach based on quantitative immunoprinting
associated to biostatistics to study the autoantibody repertoire to
brain antigens in several groups of P. falciparum infected patients
from an epidemic area of central India manifesting different
clinical spectra of the disease. We found that the different clinical
malaria phenotypes can be discriminate according to their profile
of IgG reactivity to brain antigens. Furthermore, we identified a
novel discriminant brain antigen, the beta tubulin III (TBB3),
targeted by circulating IgG in the prevalence of CM. TBB3, a
cytoskeleton protein, is mainly expressed in neural tissue [31].
Finally, we show that IgG reactivity to TBB3 is strongly correlated
with elevated levels of the previously described cytokine cluster 11,
composed of IL10, TNFa, TGFB and IL1p, that characterized
CM in the same group of patients [32].

Materials and Methods

Ethics statement
This study was conducted according to the principles expressed
in the Declaration of Helsinki. The study was approved by the
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Institutional Review Board of NCCS, Institut Pasteur Paris and
Gondia hospitals. The study design was also approved by the
National health office ethics committee in India. All patients or
relatives provided written informed consent for the collection of
samples and subsequent analysis.

Study area and subjects

Blood samples were collected from the individuals living in
villages in and around Gondia town, an epidemic region in central
India. Gondia is a low transmission region, and know as endemic
area for the last 20 years. P. falciparum appeared in Gondia over the
last 10 years [33]. The subjects were divided into the following
groups. Group 1 consisted of subjects, who had CM within the
past 6 months and recovered (ex-CM), healthy malaria endemic
controls (EC) were patient’s relatives (brothers/sisters/parents)
who accompanied the patient to the hospital and not had malaria
for at least the preceding 2 years, nor were they clinical
asymptomatic carriers; and malaria non-endemic controls (NEC)
were the subjects residing in the Pune city with no history of
malarial disease for =5 years. Group 2 consisted of patients
infected with P. falciparum having different clinical status, according
to the criteria defined by the World Health Organization [34]
i.e. mild malaria (MM), severe non-cerebral malaria (SM) and
cerebral malaria (CM). Samples from infected groups were
collected during the period of high malaria transmission. Patients
with MM (hemoglobin =8 g/dI, parasitaemia asexual =10000/pl,
fully consciousness) were not hospitalized and SM patients were
also complete conscious and displayed good verbal response to the
doctor’s questions. Patients with CM were at coma stages I and
IIL. Patients with severe malaria (SM or CM) received intravenous
quinine (25 mg/kg/day) with 5% or 10% glucose solution for non-
hypoglycaemic or hypoglycaemic patients for five days. The
patients with severe anaemia underwent blood transfusion. Most
of the CM patients recovered from disease in one or two weeks
and have been discharged from the hospital. The clinical history
and informed written consent were obtained from all the subjects
and a demographic profile was recorded.

A Pool of CM serum was constituted with samples from patients
showing a high reactivity to brain antigens. An EC pool of 5 sera
was randomly chosen as negative control.

Blood samples collection and parasite assessment

Ten milliliters of whole blood was collected from each subject
by vein puncture in sterile EDTA tubes or in sterile vacutainers
during 2001-2003 from different hospitals in and around Gondia
town. Plasma was obtained by centrifuging the blood samples at
4500 ¢ for 15 min and stored at —80°C until further use.
Parasitemia was assessed, on thin blood smear, by counting
asexual forms of P. falciparum under a light microscope after
Giemsa staining. The total numbers of infected and uninfected
erythrocytes from 10 fields (magnification, X100) were counted,
and parasitemia were calculated.

Extraction of antigen

Parasites extract. Parasite antigen prepared from syn-
chronous cultures of a field derived P. falciparum parasite line
FANSHS [33], =25% parasitemia, was used. The parasitized red
blood cells (pRBC) were washed five times in sterile PBS and then
lysed by lysis buffer containing protease inhibitors and briefly
sonicated. The contents of the tube were agitated by cyclo-mixing
and then centrifuged at 6,000 rpm for 30 min at 4°C. The
supernatant was collected in a separate tube and the pellet was
discarded. Aliquots of the antigen were frozen at —70°C until use.
Parasite protein was quantified by the standard Bradford method
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[35]. The concentration of the parasite line FANSHS was
1.2 mg/ml.

Normal RBC extracts. Normal red blood cell (RBC) extract
was prepared from the same batch of RBCs used for culturing the
parasites [33] and followed the same procedure as previously
described for pRBCs.

Human brain extract. The protein extraction of brain was
done by homogenization of whole brain taken from a healthy
Cluban national, who died accidentally and never had malaria
[36,37]. The brain tissue was suspended in extraction buffer
containing 60 mM Tris, 2% SDS, 100 mM Dithiothreitol (DTT)
and protease inhibitors: 1 pug/ml Aprotinine, 1 pg/ml Pepstatine,
50 pg/ml n-o-todyl-L-lysine chloromethyl ketone (TLCK). After
centrifugations at 10000 rpm at 4°C for 10 minutes, the
supernatant was transferred into a clean tube and protein
contents were estimated using a commercial available kit
(BCATM protein assay kit, Pierce, France). The concentration
of the brain extract was 3 mg/ml. Commercially available brain
extract (Protein MEDLEY, Ozyme, France) was also used to
compare auto reactivity to an external standard extract in the
same samples.

Determination of IgG and IgM levels

Total IgG and IgM. The total IgG and IgM were quantified
by “Sandwich ELISA” [23]. Briefly, 96 flat-bottomed plates were
coated with monoclonal antibodies directed against human IgG or
IgM (5 pg/ml) and left for adsorption at 4°C overnight. Plates
were washed 5 times with PBS-0.1% Tween 20 and blocked with
PBS-1% Gelatin at 37°C for 1 hour. Wells were incubated with
serum samples diluted at 1:100 in PBS-1% Gelatin-0.1% Tween
20 for 1 h at 37°C. Excess antibody was removed by 5 PBS-0.1%
Tween 20 washings and then plates were incubated with
peroxydase-labeled anti-human IgG and anti-human IgM
(1:2000 in PBS-1% Gelatin, 0.1% Tween 20) at 37°C for 1 h.
The assay was developed by adding the enzyme substrate (O-
phenylenediamine diluted to 0.3 mg/ml in Phosphate-citrate
buffer in the presence of hydrogen peroxide). After appearance
of yellow color in negative wells, the reaction was stopped with
10% SDS. The OD was measured at 450 nm using an Emax
ELISA plate reader and results were analysed by the Sofmax
software.

Specific anti-parasite and anti-brain IgG and IgM

The anti P. falciparum and anti-brain IgG and IgM were
analyzed by direct ELISA. Flat-bottomed 96 well plates were
coated overnight at 4°C with 5 pg/ml parasite line (FANSHS) or
brain antigen. After washing, the plates were saturated with PBS-
1% Gelatin for 1 hour at 37°C.. Subsequently the sera were diluted
(anti-parasite and anti-brain IgG 1/1000 and 1/500 respectively
and IgM 1/500 and 1/500 respectively) in PBS-1% Gelatin, 0.1%
Tween 20 and added in duplicate to the wells and incubated at
37°C for 1 hour. The plates were washed five times in PBS 0-1%
Tween 20 and incubated for 1 hour at 37°C following the addition
of peroxydase - conjugated human anti-IgG or anti-IgM (1:4000
and 1:2000 for anti-parasite and anti-brain respectively in PBS-1%
Gelatin, 0.1% Tween 20). The process of revelation is the same as
the total IgG and IgM.

Cytokine quantification

The levels of cytokines (IL1B, L2, 114, IL6, IL10, IL12, TGF,
TNFa and IFNY) in plasma were estimated by use of Opti-EIA kits
(BD-Pharmingen); the results of which are already published
earlier [32].
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Immunobloting using PANAMA-blot method

Patterns of recognition of brain proteins by plasma IgG were
detected by quantitative immunoblotting as described earlier [23],
using a protein extract from the brain of a healthy individual as the
source of antigens and normal RBC as control as described above.
Briefly, normal human brain and RBC protein extracts (300 ug
protein/gel) were separated by a standard SDS-PAGE in a 10%
polyacrylamide gel. The proteins were transferred onto nitrocel-
lulose membranes (Schleicher & Schuell, Dassel, Germany) by
semi-dry electro transfer method (Pasteur Institute, Paris, France).
Membranes were then incubated with patient plasma samples
diluted 1:20 in PBS-0.1% Tween 20 (non-adjusted assay) in a
Cassette Miniblot System (Immunetics, Cambridge, MA, USA).
The immunoglobulin reactivities were detected by incubation with
v chain-specific secondary rabbit anti-human IgG coupled to
alkaline phosphatase (Sigma-Aldrich, France). Revelation was
done by using BCIP/NBT. As described [36] dried membranes
were then scanned by a high resolution scanner (600 DPI) using an
8-bit linear grayscale. Subsequently, transferred proteins on the
membranes were stained with colloidal gold (Protogold, British-
BioCell, Cardiff, GB), and the stained membranes scanned again.
Using colloidal gold staining, immunoreactivity profiles were
adjusted for migration inequalities, so that equivalent immunore-
activities could be rescaled to equivalent positions on a common
standard migration scale within and between membranes.
Intensities were adjusted between membranes by a standard,
consisting of a pool of serum from Gabonese CM patients [23]
that was replicated twice on each membrane.

Protein identification by mass spectrometry

Briefly, human brain extract was separated on a 10% SDS-
PAGE. After Coomassie staining, the band analogous to section 10
was cut and analyzed by peptide mass fingerprinting. Bands were
excised from gels using ProPic Investigator (Genomic Solutions,
Ann Arbor, MI, USA) and collected in 96-well plate. Destaining,
reduction, alkylation, trypsin digestion of the proteins followed by
peptide extraction were carried out with the Progest Investigator
(Genomic Solutions, Ann Arbor, MI, USA). After desalting step
(C18-pZipTip, Millipore) peptides were eluted directly using the
ProMS Investigator, (Genomic Solutions, Ann Arbor, ML, USA)
onto a 96-well stainless steel MALDI target plate (Applied
Biosystems/MDS SCIEX, Framingham, MA, USA) with 0.5 ul
of CHCA matrix (5 mg/ml in 70% ACN/30% H20/0.1% TFA)
[38]. MS and MS/MS analysis: Raw data for protein identification
were obtained on the 4800 Proteomics Analyzer (Applied
Biosystems/MDS SCIEX, Framingham, MA, USA) and analyzed
by GPS Explorer 2.0 software (Applied Biosystems/MDS SCIEX,
Framingham, MA, USA). For positive-ion reflector mode spectra
3000 laser shots were averaged. For MS calibration, autolysis
peaks of trypsin ((M+H]+ =842.5100 and 2211.1046) were used
as internal calibrates. Monoisotopic peak masses were automat-
ically determined within the mass range 800-4000 Da with a
signal to noise ratio minimum set to 30. Up to twelve of the most
intense ion signals were selected as precursors for MS/MS
acquisition excluding common trypsin autolysis peaks and matrix
ion signals. In MS/MS positive ion mode, 4000 spectra were
averaged, collision energy was 2 kV, collision gas was air and default
calibration was set using the Glul-Fibrino-peptide B ((M+H]+ =
1570.6696) spotted onto fourteen positions of the MALDI target.
Combined PMF and MS/MS queries were performed using the
MASCOT search engine 2.1 (Matrix Science Ltd., UK) embedded
into GPS-Explorer Software 3.5 (Applied Biosystems/MDS SCIEX,
Framingham, MA, USA) on the NCBInr database (downloaded
2008 10 22, 7135729 sequences;2462332163 residues) with the
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following parameter settings: species: homo sapiens, mono charged
peptides, 50 ppm peptide mass accuracy, trypsin cleavage, one
missed cleavage allowed, carbamidomethylation set as fixed
modification, oxidation of methionines was allowed as variable
modification, MS/MS fragment tolerance was set to 0.3 Da.
Protein hits with MASCOT Protein score =65 and a GPS Explorer
Protein confidence index =95% were used for further manual
validation.

Antibodies absorption experiments

The 96 wells flat-bottomed microtiter plates (NUNC, Denmark)
were coated with 5 ug/ml of beta tubulin (TBB), beta tubulin III
(TBB3) and Glial Fibrillary Acidic Protein (GFAP) and left for
adsorption at 4°C overnight. The assay was performed on these
plates after blocking with PBS-1% Gelatin and washing with PBS-
0.1% Tween 20. Briefly, coated wells were incubated with serum
samples (Pool of CM and EC sera) or monoclonal antibody (mAb)
anti-TBB3 as positive control diluted at 1:100 and 1:500
respectively in PBS-1% Gelatin, 0.1% Tween 20 for 1 hour at
37°C.. Following incubation, wells were washed 5 times with PBS-
0.1% Tween 20 and the plates were then incubated with
peroxydase-labeled anti-human IgG (1:10000 in PBS-1% Gelatine,
0.1% Tween 20) and anti-mouse IgG at 37°C for 1 h respectively.
Each supernatant was consecutively submitted 40 times to the
same treatment. The process of revelation was identical to the one
for total IgG and IgM.

Following depletion assays, all serum samples including mAb
TBB3 and control non-depleted sera and mAb TBB3 were blotted
on membranes containing human brain antigens separated on
10% SDS-PAGE. The immunoglobulin reactivities were detected
by incubation with a y chain-specific secondary rabbit anti-human
IgG and rabbit anti-mouse IgG coupled to alkaline phosphatase
(Sigma-Aldrich, France). Revelation was done by using BCIP/
NBT and then dried membranes were scanned with a high
resolution scanner (600 DPI).

Statistical analysis

Immunoblot data were analyzed by multivariate statistical
methods, using IGOR software (Wavemetrics, Lake Oswego, OR),
including specially written software packages. The standard
migration scale was divided into sections around individual peaks
of immunoreactivity. Section-wise absorbance values were sub-
jected to principal component analysis (PCA), based on covariance
calculation. For quantitative comparisons between groups, we
used either Mann-Whitney (between two groups) or Kruskal-
Wallis tests (>2 groups). Qualitative association was tested by
Pearson’s % test. The association between continuous quantitative
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parameters was assessed by linear regression, with the exception of
correlations between two different types of parameters such as
reactivity and cytokine profiles, which were tested by Spearman’s
rank correlation. The p values<<0.05 were considered significant.

Correspondence analysis (pcc) was performed after singular
value decomposition (SVD) of the different distance matrices.
Inertia of the dimensions are expressed as percentages. The results
of the decomposition of the principal dimensions are expressed as
relative contributions of each variable, or the relative contribution
of a arithmetic mean of a group of variables, to the principal
dimension under study. Two-way complete-linkage hierarchical
clustering (HC) based on Euclidean distances was used to analyze
the relationship between the clinical groups and section cross-
reactivity of the antibody preparations. SDV, pcc, PCA, and HC,
as well as plotting of the results were performed using proprietary
software.

Results

Demographic profiles of malaria patient groups

Ninety eight P. falciparum infected individuals were included in
the present study. Selection according to the clinical variants
shown that among, 16 patients corresponded to the mild malaria
(MM), 10 to the severe non-cerebral malaria (SM) and 42 to CM.
In controls, 5 individuals were classified in the ex-CM, 11 in the
non-endemic controls (NEC) and 14 in the endemic controls (EC)
groups. The demographic characteristics of each group are shown
in the Table 1. Males and females were 65 and 33 respectively; a
median age was 30 years (range 7-70). The NEC individuals were
from a non-endemic area of P. falciparum and are individuals from
laboratory staff that did not contact disease during at least the 5
preceding years. No parasitemia was detected in the EC, NEC or
in the ex-CM groups at the time of inclusion in the study. There
were no mixed infections. The median level of P. falciparum in the
blood of patients from the infected groups (MM, SM and CM) was
1.5, 1 and 2 respectively but no statistical difference was observed
between infected groups.

Total and specific IgM and IgG responses to P. falciparum
and brain antigens according to clinical groups

We assessed the levels of total IgG and IgM in sera of the
different groups of patient by ELISA. Interestingly, EC, NEC and
ex-CM groups exhibit similar levels of total IgM and IgG. Thus,
they were considered as a unique control group of non infected
patients. Median levels of total IgM in MM, SM and CM patients
were significantly higher than in controls (p =0.018, 0.02 and 0.04
respectively). It is noteworthy that no significant difference was

Table 1. Demographic profiles of the P. falciparum malaria patient groups.

Groups Patients no. (%) Median age (range) Median Parasitemia % (range) Sex (M/F)
NEC 11 (11,2%) 35 (25-63) 0 10/1

EC 14 (14,3%) 26 (23-37) 0 13/1

MM 16 (16,3%) 30 (15-45) 1,5 (0,1 - 4,25) 9/7

M 10 (10,2%) 30 (8-65) 10,1 -15) 7/3

™M 42 (42,9%) 36 (9-70) 2 (0,25 - 60) 22/20
ex-CM 5 (5,1%) 24 (7-60) 0 5/0

Total 98 (100%) 30 (7-70) 0,5 (0,1 - 60) 65/33

doi:10.1371/journal.pone.0008245.t001
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NEC- non endemic control, EC- endemic control, MM- mild malaria, SM- severe non-cerebral malaria, CM- cerebral malaria, ex-CM- Ex-cerebral malaria.
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observed between infected and control groups for total IgG levels significant increase in the rate of specific IgG and IgM to parasite
(Figure 1A and 1B). Then, we measured the concentrations of = was observed in infected compared to non-infected groups.
specific IgG and IgM to P. falciparum (FANSHS). A slight but non- However, in CM group of patients, we observed a significant
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Figure 1. Total, brain-, and P. falciparum-specific IgG and IgM responses in different groups. Distribution of total levels of IgG (a) and
IgM (b) in the different group of patients determined by Sandwich ELISA (** p=0.003). Median level is indicated. Rate (optical density) of specific
1gG against P. falciparum FAN5HS erythrocytic stage extract quantified by direct ELISA (** p=0.008) (## p=0.001) (c). Rate (optical density) of IgG
(** p<<0.001) (d) and IgM (** p=0.002) (e) recognizing the human brain extract quantified by direct ELISA.

doi:10.1371/journal.pone.0008245.g001

@ PLoS ONE | www.plosone.org 5 December 2009 | Volume 4 | Issue 12 | e8245



decrease of specific IgG to P. falciparum when compared to SM
(p=0.001) (Figure 1C).

Furthermore, when assessed the levels of IgG and IgM
recognizing brain proteins in the different group of patients and
controls, we found significant higher levels of antibody against
brain proteins in infected groups than in the control (p<<0.001 and
p = 0.002 respectively) albeit their rates were significantly lower in
the CM patients (Figure 1D and 1E).

Taken together, these data suggest that the efficiency to produce
specific antibody response to either parasite or brain antigens is
diminished in the CM patients group. Also, no significant
correlations were observed between age, sex or parasitemia and
the rate of total and specific IgG or IgM to P. falciparum and brain
antigens and no relationship with disease severity and level of total
or specific IgG or IgM to brain or to P. falciparum antigens.

We next used correspondence analysis to examine the
relationship between the three types of specific antibody responses
(total, parasite and brain) and clinical outcome. Correspondance
analysis of the specific antibody responses measured in all patients
reveals that the first principal component (pccl, 55% inertia)
separates the response to the parasite extract from the other two,
and only the second principal component (pcc2, the remaining
inertia) places the antibody response to the parasite roughly
equidistant to both the brain and total IgG responses (Figure 2A).
This result indicates that the production of antibodies against
brain antigens is independent of this specific to the parasite.
Decomposition of both dimensions and arithmetic averaging over
patient groups reveals that pccl represents IgG response in CM
and ex-CM, whereas pcc2 is in majority defined through response
in ex-CM and EC groups (Figure 2B). Specially, the decompo-
sition of pccl confirms that CM patients seem to develop lower
measurable levels of antibody to parasite antigens, but broader in
term of specificity as exemplified in the Figure 2C, than both SM
and MM patients. Some of these P. falctparum specific antibodies
are still detectable in ex-CM patients.

Analysis of the serum IgG autoantibody repertoire
expressed against brain antigens in patients with distinct

clinical forms of P. falciparum malaria

We first analyzed the reactivity patterns of IgG from the
different groups of malaria patients to brain protein using
PANAMA-BLOTS as previously described [23]. Reactivity against
brain antigens expressed by Indian patients and by the standard
consisting of a pool of serum from Gabonese CM patients are
shown in Figure 3A. We found a high correlation between disease
severity and an increased diversity of the repertoire of antigens
recognized by circulating antibodies in P. falciparum patients. This
was principally observed in CM patients. Those patients
recognized more protein sections than the other groups of
individuals tested. Healthy individuals completely lack reactivity
against the brain extract. It is interesting to note that the link
between CM pathology and the increase of IgG reactivity to brain
antigens is reinforced by the low number of sections observed in
the ex-CM patients (Figure 3B). These data are in agreement with
our earliest observation in children from a hyperendemic area of
Gabon [23]. Optical density analysis of the profiles of reactivity on
the immunoblots allow defining peaks of density which corre-
sponds to a section of brain protein recognized by IgG from a pool
of sera of Gabonese CM children constituting our standard used
for adjustment [23]. Profiles of antibody reactivities were
separated into 18 sections as shown in the Figure SI1. Next,
profiles of reactivity from each patient group were compared by
principal component analysis (PCA). In PCA, the components are
identified in decreasing order of importance. Thus, by definition,
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Figure 3. Profiles of IgG reactivities to brain antigens of the
different P. falciparum infected groups. (A) Example of IgG
reactivity from SM, CM, or ex-CM patients sera showing the increase
with disease severity and the number of brain antigens (section)
reacting with patient sera. (B) Median number of sections recognized by
each patient from the different groups (** p<<0.001). (C). PCA factor 1
score from unadjusted IgG reactiviy profiles. Groupwise distribution of
PCA factor 1 scores. PCA1 score were significantly higher in infected
than control groups (** p<<0.001) and in CM than other groups
(* p=0.01).

doi:10.1371/journal.pone.0008245.9003

the first two components identified account for a large proportion
of total reactivity. Factor 1 scores mostly reflected the recognition
of one particular section and significantly higher in CM patients
than the other groups with brain extract (p=0.01) (Figure 3C).
These results thus demonstrate a production of autoantibody to
brain proteins in CM patients.
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Figure 4. Reactivity to brain antigens of the different malaria
patients group. (A) Distribution of mean intensity reactivities of IgG

from CM patients with the different sections in brain extract. The
section 10 is the most recognized among 18 sections. (B) IgG reactivity
with section 10 is significantly higher in CM group than other groups

(** p=0.006). (C). Correlation of IgG reactvity with two different brain
extracts. PCA factor 1 (o) correspond to the IgG reactivity from CM
patients with Cuban healthy brain extracts (B) represent the reactivity of
a commercial protein medley sample. Correlation coefficient: R=0.6237,
Regression: p=0.003.

doi:10.1371/journal.pone.0008245.9g004

In CM group, section 10 which corresponds to proteins of

approximately 50 kDa, had maximum impact; more than 90%
of total reactivity corresponds to PCA factor 1 (Figure 4A). In
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addition, the mean intensity of serum IgG reactivity to brain
against antigens of section 10 was significantly higher in CM
patients than control groups (p =0.006) (Figure 4B). In order to
exclude alloreactivities, we used another source of brain antigens,
the Medley brain protein extract. Results obtained were similar
than those found with the previous extract. A high significant
correlation between reactivities expressed by the different group of
patients with the two brain antigen sources was calculated
(r=0.623, p=0.003). This observation thus suggests that the
IgG reactivity against brain proteins observed during malaria is
irrespective of the brain donor (Figure 4C).

We also compared the average ability of sera from Indian and
from our previous published Gabonese CM patients data to react
with the same brain antigen extracts [23]. Interestingly, their
profiles of reactivity to the brain extract overlaid suggesting that
these different groups of patients originating from India or Gabon
recognize the same spectrum of brain proteins. Nevertheless, the
Gabonese CM group show a dominant reactivity with proteins of
the section 0 while the Indian CM patients are distinguished by
their predominant reactivity with proteins of the section 10 even if
they also recognize section 0 (Figure S2).

To assess if the reactivity with section 10 in CM patients is specific
to the brain tissue, we analysed the patterns of reactivity of same sera
with RBC protein extract. An example of reactivity of patient serum
IgG against RBC protein extract is shown in the Figure S3A.
Statistical analysis reveal high differences between infected patients
and controls (p<<0.001) (Figure S3B). However, no statistical
differences were observed when comparing groups of infected
patients (MM, SM and CM). Profiles of reactivity of patient plasma
samples with RBC proteins were separated into 20 sections
according to the standard used for brain extract. However, PCA
analyses allow us to identify the section 17 contributing to the
difference between groups but not the section 10 identified in brain
extract (Figure 5A). Moreover, the mean intensity of the IgG
reactivity to section 17 was significantly higher in SM than control
groups (p=0.002) (Figure 5B). These results suggest that the IgG
reactivity to antigens in brain section 10 could be a signature of CM
patients. It is noteworthy that no significant correlation was
observed between the reactivity profile to brain antigens represented
by PCA factor 1 scores and age, parasitemia or sex. Besides, levels of
total, brain or parasite specific IgG do not correlate with brain
autoreactivity profiles.

Importantly, when arithmetically averaged over the patient
groups, the reactivity of patient sera to the different sections on the
blots can be used to classify the different patient groups using two-
fold complete-linkage hierarchical clustering (Figure 6A). As would
be expected, P. falciparum infected patients and the control groups
form distinct clusters. Interestingly, among malaria affected groups,
SM and MM are more closely related amongst each other than with
CM. Also, it is worthy to note that the close relationship between
EC and ex-CM sets them apart from the NEC group, indicating a
possible contamination of the EC group with undetected ex-malaria
cases. Correspondence analysis of IgG reactivity to brain antigens of
the patient groups according to their average response to the
eighteen different sections (Figure 6B) reveals that the second
resulting principal component (representing 26% of total inertia) is
almost solely responsible for separating the ex-CM and CM patient
groups from the control and other P. falciparum infected groups.
Decomposition of the first two principal components (Figure 6C)
demonstrates that sections 10 and 17 account for the majority of
pec2 whereas section 17 has the least and section 10 the principal
contribution to pccl. Taken together, this dimensionality reduction
analysis firmly establishes the predominance of section 10 and 17 in
distinguishing CM from ex-CM and of section 10 in defining CM.
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different groups of patients. (A) Distribution of the mean intensity
of IgG reactivity to RBC protein extract separated into sections (B) mean
intensity of 1gG reactivity to section 17 is significantly higher in SM than
in the other groups (** p=0.002).
doi:10.1371/journal.pone.0008245.9g005

Note that the contributions of the individual sections are
expressed as relative measures with the barycentre at (0,0). No
significant contribution of any other section is observed.
Therefore, IgG reactivity to antigens in section 10 and 17 could
be biomarkers of ex-CM cases whereas IgG reactivity to section 10
could be used as a disease-marker for CM.

TBB3 is a major discriminant antigen recognized by
serum IgG of CM patients

Furthermore, candidate proteins in section 10 were identified
using mass spectrometry. In three independent experiments based
on matching of peptide mass, the family of Beta Tubulin (TBB), in
particular TBB3 specifically expressed in the brain and Glial
Fibrillary Acidic Protein (GFAP) were identified as discriminant
antigens using the Swiss-Prot database. However, due to the
structural homologies between the several tubulin isotypes, it was
not possible to distinguish by mass spectrometry if one or several
isoforms of TBB were present in this section (Figure 7A).
Therefore, additional analyses were performed to specifically
analyze the involved tubulin isotypes. To validate the mass
spectrometry results we further depleted sera samples from CM
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Figure 6. Reactivity to section 10 distinguishes cerebral
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Decomposition of correlation analysis.
doi:10.1371/journal.pone.0008245.g006
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and EC with TBB3, TBB or GFAP proteins. After 40 rounds of
depletion of 1 hour each, levels of antibodies recognizing TBB3,
TBB or GFAP were quantified in the depleted samples by ELISA.
A decrease of the level of specific antibodies with round number to
the respective proteins was observed except for GFAP demon-
strating that we can exclude GFAP as a candidate (data not
shown). It is noteworthy that 40 rounds of depletion were
necessary to remove TBB or TBB3 specific antibodies in CM
sera whereas only 7 rounds were sufficient for EC samples. In
addition, the recognition of section 10 by depleted serum samples
was analysed by Western blot (Figure 7B). No signal at 46 kDa was
detected in CM samples depleted with TBB3 or TBB after 40
rounds whereas a signal was still detectable when the membrane
was blotted with GFAP depleted sera. In addition, no signal was
seen in depleted EC sera and TBB3 monoclonal antibody
(Figure 7B). Taken altogether these results indicate that TBB3 is
a discriminant autoantigen targeted by IgG in CM patients.

Relationship between IgG reactivity to brain proteins and
cytokine activity patterns in P. falciparum malaria

Cytokines are thought to play an important role in malaria
pathogenesis, particularly in CM (11). The relationship between
the clinical severity of malaria and the complex pro- and anti-
inflammatory cytokine network has been addressed in the same
cohorts of P. falciparum infected patients and the results were
previously published [32]. Among the 12 cytokines quantified, a
coupled 2-way clustering and discriminant analyses allowed
identification of a cluster cluster-II cytokines (IL1f, IL10, TNFa
and TGFB) that displays significantly increased (p<<10~°) activity
in the CM group compared to other groups, and which can be
used to differentiate between different clinical forms of malaria
and control groups [32]. As we show here, similarly TBB3 auto-
antigen presence is a marker for CM and immune-reactivity of
subjects can be used to classify different clinical forms of malaria as
well as control groups. We therefore wanted to know whether or
not both markers truly correlate and are surrogates. To this end
we calculated Spearman rank correlations between cytokine
reactivity and immune-activity towards the 18 sections on the
blots for each subject in our patient cohorts. We considered the
entire panel of cytokines used in our previous study [32]. When the
resulting Spearman rank correlation distance matrix is singular
value decomposed and analyzed for its principal covariance-based
components, the cluster-II cytokine TGFB, TNFo, IL10, and
IL1B, also form a distinct cluster (Figure 8A). Therefore, the
correlation between cluster-II cytokine levels and total immuno-
reactivity to the different sections on the immune-blots is
sufficiently strong to allow distinction. The Spearman rank
correlation for the cluster-II cytokine activities and the immune-
reactivity to section 10 thereby is highly significant (Figure 8B). In
conclusion, IgG reactivity to TBB3 in central Indian malaria
patients is statistically significantly correlated with the cluster-1I
cytokine levels which we had previously shown to be a marker for
cerebral malaria in the same population.

Discussion

Recently, we have shown autoantibodies to o-II spectrin of the
brain in the serum of Gabonese P. falciparum infected children with
CM [23]. Nevertheless, the exact nature of this response remains
elusive. Considering the multifactorial character of malaria, the
purpose of the present study was to validate these findings by
generalizing our analysis to an Indian population with different
genetic background, endemic and environmental status. The
presence of autoantibodies in malaria patients has long been
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Figure 7. Identification and characterization of proteins contain in the section 10. (A) Protein identification by mass spectrometry. Twelve
human proteins identified from the section 10. Identification of proteins was carried out as described (see material and methods). In this case, Mascot
protein scores greater than 65 are significant (p<<0.05). (B). Characterization of section 10 protein candidate by antibody depletion. Immunoprinting
with sera depleted (d) or not depleted (nd) with TBB, TBB3, and GFAP proteins. No signal was detected at 46 kDa in CM sera depleted with TBB and
TBB3 proteins in lane 3 and 4 respectively. MW, Molecular weight marker; 1, EC sera (nd); 2, EC sera (d); 3, CM sera (d) with TBB; 4, CM sera (d) with
TBB3; 5, CM sera (d) with GFAP; 6, CM sera (nd); 7, TBB3 mAb (d) with TBB3; 8, TBB3 mAb (nd).

doi:10.1371/journal.pone.0008245.9007
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Figure 8. Correlation of total IgG reactivity against brain with
cytokine profiles. (A) Principal component analysis (PCA) of the
Spearman rank correlations between cytokine levels and IgG reactivity
towards the eighteen sections of the Panama blots for each subject in
our patient cohorts. We considered the entire panel of cytokines used in
our previous study (32). (B) Distribution of Spearman rank correlations
of PCA factor 1 scores between IgG self-reactivity in CM patients to
brains proteins and the levels of cytokines from cluster 1 (IL2, IL5, IL6,
IL12, and IFN-y) and 2 (IL1B, IL10, TNFo, and TGFp) quantified by ELISA.
doi:10.1371/journal.pone.0008245.g008

recognized but their role in the pathophysiology of CM is very
little explored and not defined [22,23,28].

We have used a global approach aiming not only at studying the
individual components involved, but also the complex interactions
between these components, in order to elucidate the global nature
of autoantibody response to brain antigens produced in patients
with different clinical spectra of malaria. The population studied
was from Gondia in the central India where P. falciparum malaria is
epidemic [39]. In the groups of patients studied, the most severe
form of the disease is developed for the greater part in 30-year-old
adults on average. This could mainly due to the fact that the
majority of these patients were seasonal workers staying in the
region of Gondia only during the periods of harvest. Gondia is a
zone where the spread of P. falciparum is rather recent. Most of the
patients studied developed their first P. falciparum malaria episode
and do not present a mixed infection. In our population of study
and, in agreement with previous reports, the parasitemia rate
alone was not enough to evaluate the severity of the disease since it
was equivalent in CM than in SM and MM groups [40].

Polyclonal B cell stimulation through parasite mitogens coupled
with the secretion of parasite specific antibodies can explain the
higher amount of total antibodies observed in infected compared
to control groups [25,26,28]. Similar observations have been made
when analysing the autoantibody response to brain antigens
among the various groups of patients. The group of CM presents
the lowest specific IgG and IgM reactivities to brain proteins while
those are increased when infected versus non infected group of
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patients are compared. As demonstrated and confirmed by the
correspondence analysis, the antibody-mediated immune response
to brain proteins detected in P. falciparum infected patients seems to
be mainly due to a selective and inducible process during the
infection. The disappearance of these autoantibodies in the ex-CM
group reinforces this hypothesis. As revealed by pccl factor
(Figure 1), the antibody response to brain antigens is largely
independent of the parasite specific response. In addition, there is
no relationship with disease severity and total antibody levels,
neither with specific IgG or IgM to brain or to P. falctparum
antigens. Overall, these observations suggest that the spontaneous
autoantibody production against the brain during malaria carries
the hallmark of a typical immune response induced by parasite
infection.

Interestingly, reactivity to all 18 sections of the brain extract with
circulating IgG from the different individuals of the cohorts is
sufficient to comprehensibly cluster the different patient groups as
demonstrated by the hierarchical clustering analysis. Decomposition
analysis reveals that reactivity with section 10 in CM patients is
mainly responsible for this classification capacity. Brain specificity of
the IgG response to section 10 in CM patients has been demonstrated
by the lack of reactivity to the same section when normal RBC
protein extract has been used as antigen. Thus, IgG reactivities
against human brain and RBC extracts strongly suggest that the
development of autoimmune antibodies is more noticeable in patients
who develop CM than in the other group of malaria patients.

This study highlights the important finding of the increase of the
repertoire of brain antigens recognized by IgG of Indian CM
patients. These results validate and extended our previous
observations in Gabonese patients [23]. They also strongly
support the hypothesis that an antibody-mediated self-reactivity
to brain antigens triggered during P. falciparum infection is
associated with cerebral malaria. However, we do not know yet
if this antibody response is an aggravating factor that contributes
to the development of cerebral malaria or is one of the
consequences of the syndrome. Nevertheless, on the contrary to
the Gabonese CM patients mostly characterized by an autoanti-
body response directed to o-II spectrin, Indian CM patients
showed strong reactivity with the human brain proteins TBB3
identified by mass spectrometry in section 10. It is noteworthy that
only some Indian CM patients recognize the o-II spectrin. This
observation indicates a particularity of IgG self-reactive response
to brain proteins in the Indian population. The correlation of the
profiles of reactivity of CM patients to two different brains extracts
point out that the profile of IgG reactivity to brain cannot be
explained by an alloreactive response. Opposite to the observa-
tions made in the study with P. falciparum infected children from
Gabon, no correlation was found between the age, the sex,
parasitemia and concentration of total IgG, and the IgG
autoreactivity to brain antigens.

TBB3 is a cytoskeleton protein, which is abundant in the central
and peripheral nervous systems (CNS and PNS) and expressed
during fetal and postnatal development. In adult tissues, TBB3 is
mainly expressed in the brain and PNS and used as a neuron-
specific marker molecule encoded by a gene located at the long
arm of chromosome 16 in man [41] thereby highlighting a possible
pathogenic role between such autoimmune response and the
occurrence of CM. In support of this interpretation, no significant
increase in anti-tubulin antibody levels was seen in sera of patients
infected with Plasmodium vivax or with tuberculosis [42]. However,
the level of serum anti-tubulin antibodies was significantly elevated
during infectious diseases such as visceral or cutaneous leishman-
iasis, onchocerciasis, schistosomiasis and leprosy, but it is unknown
if such autoantibodies involve a reaction against TBB3 [42].

December 2009 | Volume 4 | Issue 12 | e8245



A two-way coupled cluster analysis revealed 2 clusters of
cytokines relevant to clinical subgroups of disease in the same
cohorts of malaria patients studied [32]. In particular, the
significant abundant level of cluster-II cytokines (TGFp, TNFa,
IL10 and IL1B) was relevant to the discrimination of CM from
SM. Importantly, we have shown that cluster-II cytokine levels
strongly correlate with reactivity to TBB3 in CM. The fact that we
have been able to classify the different malaria and control groups
based on the statistically significant IgG reactivity to TBB3
associated with cluster II cytokines despite the relatively small size
of our cohort, demonstrates the prevalence of this autoantibody-
mediated reactivity in CM and therefore its clinical relevance.

To summarize, the IgG response against TBB3 found in CM
could be a new biomarker of CM in the Indian population. While
the molecular mechanisms of antibody production to TBB3 during
P. faloiparum infection remain unknown, the study of this
phenomenon potentially leads to new avenues in the understanding
of malaria physiopathology. Despite these findings, a longitudinal
study of malaria clinical states, in conjunction with studies of
cytokine production, specific and self-reactive antibody responses
and several other biological parameters on largest populations from
endemic and epidemic areas of India would appreciably add to our
understanding of the role of immune responses in general in disease
severity associated with P. faletparum infection. We have here
established the basis for such a deeper investigation.

Supporting Information

Figure S1 Determination of sections. Localizations of the bands
on Western blot profile of different groups obtain after the
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computer analysis of membrane N19 and sections are defined
using the IgG reactivity of standard (pool of Gabonese CM
patients). Bands are ordered from high to low molecular weight
(between about 230 kDa and 20 kDa).

Found at: doi:10.1371/journal.pone.0008245.s001 (1.05 MB TTF)

Figure 82 Comparison of IgG reactivities within different clinical
groups with section 0. The mean intensity of IgG reactivity in
different groups of patients with section 0 (* p=0.012) (** p=0.018).
Found at: doi:10.1371/journal.pone.0008245.5002 (1.04 MB TTF)

Figure 83 Profiles of IgG reactivity in different clinical groups of
patients with RBC extract. (a) A blot represents increase IgG
immunoreactivity in CM patients than others (b) Groupwise
distribution of PCA factor 1. The PCAI score was significantly
higher in infected than control groups (** p<<0.001)

Found at: doi:10.1371/journal.pone.0008245.s003 (1.17 MB TIF)

Acknowledgments

We thank Pr. Shobhona Sharma, Pr. Laurent Rénia, and Dr. David
Dombrowicz for critical reviews of the manuscript. We also thank Pr.
Monique Capron for scientific advice and for providing facility and Jacques
Roland for fruitful discussion.

Author Contributions

Conceived and designed the experiments: PD PAC GCM SP. Performed
the experiments: DB FH PL JCR AN. Analyzed the data: DB FH PL CB
VG JCR AN CF AB SP. Contributed reagents/materials/analysis tools:
PD CB VG IdM RJ GCM CF CF AB. Wrote the paper: DB FH PAC
GCM CF CF AB SP.

. Adu D, Williams DG, Quakyi IA, Voller A, Anim-Addo Y, et al. (1982) Anti-
ssDNA and antinuclear antibodies in human malaria. Clin Exp Immunol 49:
310-316.

. Jakobsen PH, Morris-Jones SD, Hviid L, Theander TG, Hoier-Madsen M, et al.
(1993) Anti-phospholipid antibodies in patients with Plasmodium falciparum
malaria. Immunology 79: 653-657.

. Consigny PH, Cauquelin B, Agnamey P, Comby E, Brasseur P, et al. (2002)
High prevalence of co-factor independent anticardiolipin antibodies in malaria
exposed individuals. Clin Exp Immunol 127: 158-164.

. Soni PN, De Bruyn CC, Duursma J, Sharp BL, Pudifin DJ (1993) Are
anticardiolipin antibodies responsible for some of the complications of severe
acute Plasmodium falciparum malaria? S Afr Med J 83: 660-662.

. Guiyedi V, Chanseaud Y, Fesel C, Snounou G, Rousselle JC, et al. (2007) Self-
reactivities to the non-erythroid alpha spectrin correlate with cerebral malaria in
Gabonese children. PLoS ONE 2: €389. doi:10.1371/journal.pone.0000389.

. Lang B, Newbold CI, Williams G, Peshu N, Marsh K, et al. (2005) Antibodies to
voltage-gated calcium channels in children with falciparum malaria. J Infect Dis
191: 117-121.

. Minoprio P (2001) Parasite polyclonal activators: new targets for vaccination
approaches? Int J Parasitol 31: 588-91.

. Greenwood BM (1974) Possible role of a B-cell mitogen in hypergammaglob-
ulinaemia in malaria and trypanosomiasis. Lancet 1: 435-6.

. D’Império Lima MR, Alvarez JM, Furtado GC, Kipnis TL, Coutinho A, et al.
(1996) Ig-isotype patterns of primary and secondary B cell responses to
Pl li habaudi chabaudi correlate with IFN-gamma and IL-4 cytokine
production with CD45RB expression by CD4+ spleen cells. Scand ] Immunol
43: 263-70.

. Daniel-Ribeiro C, Druilhe P, Monjour L, Homberg JC, Gentilini M (1983)
Specificity of auto-antibodies in malaria and the role of polyclonal activation.
Trans R Soc Trop Med Hyg 77: 185-8.

. Touré FS, Ouwe-Missi-Oukem-Boyer O, Bisvigou U, Moussa O, Rogier C, et al.
(2008) Apoptosis: a potential triggering mechanism of neurological manifestation
in Plasmodium falciparum malaria. Parasite Immunol 2008 Jan; 30(1): 47-51.

. Tripathi AK, Sha W, Shulaev V, Stins MF, Sullivan DJ Jr (2009) Plasmodium
Jaleiparum infected erythrocytes induce NF-{kappa} B regulated inflammatory
pathways in human cerebral endothelium. Blood 2009 Aug 27.

. Jouhilahti EM, Peltonen S, Peltonen J (2008) Class III beta-tubulin is a
component of the mitotic spindle in multiple cell types. J Histochem Cytochem
56: 1113-9.

. Prakash D, Fesel C, Jain R, Cazenave PA, Mishra GC, et al. (2006) Clusters of
cytokines determine malaria severity in Plasmodium falciparum-infected patients
from endemic areas of Central India. J Infect Dis 194: 198-207.

December 2009 | Volume 4 | Issue 12 | e8245



33.

34.

36.

37.

Duarte J, Deshpande P, Guiyedi V, Mécheri S, Fesel C, et al. (2007) Total and
functional parasite specific IgE responses in  Plasmodium falciparum-infected
patients exhibiting different clinical status. Malar J 6: 1.

WHO (1990) Severe and complicated malaria. Trans R Soc Trop Med Hyg 84:
1-65.

. Bradford MM (1976) A rapid and sensitive method for the quantitation of

microgram quantities of protein utilizing the principle of protein-dye binding.
Anal Biochem 72: 248-54.

Haury M, Grandien A, Sundblad A, Coutinho A, Nobrega A (1994) Global
Analysis of Antibody Repertoires. 1. an Immunoblot Method For the
Quantitative Screening of a Large Number of Reactivities. Scand J Immunol
39: 79-87.

Nobrega A, Haury M, Grandien A, Malanchere E, Sundblad A, et al. (1993)
Global Analysis of Antibody Repertoires. II. Evidence for Specificity, Self-

@ PLoS ONE | www.plosone.org

13

38.

39.

40.

41.

42.

TBB3 Discriminates CM in India

Selection and the Immunological Homunculus of Antibodies in Normal Serum.
Eur J Immunol 23: 2851-2859.

Saveanu C, Namane A, Gleizes PE, Lebreton A, Rousselle JC, et al. (2003)
Sequential protein association with nascent 60S ribosomal particles. Mol Cell
Biol 23: 4449-4460.

Kumar A, Valecha N, Jain T, Dash AP (2007) Burden of malaria in India:
retrospective and prospective view. Am J Trop Med Hyg 77: 69-78.

Gendrel D, Kombila M, Martz M, Nardou M, Lecointre C, et al. (1992)
Parasitemia in Plasmodium falciparum malarial attacks in children. Presse Med 21:
1805-8.

Katsetos CD, Herman MM, Mérk SJ (2003) Class III beta-tubulin in human
development and cancer. Cell Motil Cytoskeleton 55: 77-96.

Howard MK, Gull K, Miles MA (1987) Antibodies to tubulin in patients with
parasitic infections. Clin Exp Immunol 68: 78-85.

December 2009 | Volume 4 | Issue 12 | e8245



