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Abstract. The anomalies of the second order elastic constants have been derived for barium
titanate for the phase transition from cubic to tetragonal. The equilibrium values of the
components of the order parameter and the strain variables have been obtained from the
stability conditions. The fluctuations in the order parameter have been derived from the
Landau-Khalatnikov equations. Expression for the shift in the zero point energy in the
tetragonal phase is obtained and is shown to be proportional to (T — T,)2. The anomalies for
all the second order elastic constants have been derived and relations among them reported.
It is shown that the second order elastic anomalies suffer a discontinuity at the transition
temperature.
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1. Introduction

Barium titanate is a classical example of a substance undergoing a first order phase
transition. The optical, dielectric, piezoelectric, elastic and other properties of BaTiO,
and similar ferroelectric compounds have been reviewed in several articles and
monographs [1-14]. BaTiO; is paraelectric and has a cubic pm_3—m(0;) perovskite
structure above the Curie temperature of 120°C. At the Curie point, the crystal
becomes polar and its structure changes from cubic to a tetragonal phase. The resulting
space group is p4mm(C} ), a subgroup of pm3m. Below the Curie point, the vector
of spontaneous polarlzatlon is directed along the [001] direction. On lowering the
temperature, the d1pole moment increases and the crystal becomes correspondingly
more tetragonal, with an increase in the lattice constant along the polar direction
(tetragonal c-axis) and a decrease in a direction (a-axis) perpendicular to it.

BaTiO; undergoes two other displacive phase transitions on cooling. Below 5°C
the spontaneous polarization points in the [011] direction. The point group symmetry
is mm2(C,), and the crystal system is orthorhombic. This group is not a subgroup
of the tetragonal phase above (p4.mm), but is a subgroup of the parent phase above
(pm3m). Finally on cooling further, below — 70°C, BaTiO, undergoes a further phase
transition from orthorhombic to the rhombohedral R, , (C3,) phase, in which the
polarization vector is directed along the [111] direction. This too is not a subgroup
of the orthorhombic phase but a subgroup of the parent group pm3m. All the three
phase transitions cannot be described by a continuous second order phase transition,
but are first order phase transitions. There is no piezoelectric effect above the Curie
120°C point in BaTiO;.
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The temperature variation of the elastic contants and the consequent anomalies
have been investigated by several authors [1,6,8-10]. Variation of C,, and C,, were
measured by Luthi and Rehwald [13] in the vicinity of the upper transition at
T,=401K. C,, was found to vary as C, (T)=C{, — A4, (T— T,)™* with a critical
exponent u = 041 and T, is paraelectric Curie temperature (lower stability limit).

There are other ferroelectrics [4] like KNbO;(T, = 435°C), KTaO4(T, = — 260°C)
and PbTiO,(T, = 450°C), which are chemically similar to BaTiO; and whose dielectric
and structural properties are almost identical. The theory given in this paper will
apply equally well to these ferroelectrics also.

In this paper, we study systematically the anomalies of the second order elastic
(SOE) constants arising from the phase transition from the cubic to the tetragonal
phase. The equilibrium values of the components of the order parameter and the
strain variables in the two phases are obtained from the stability conditions [15]
while the fluctuations in the order parameter in the two phases are derived from the
Landau—~Khalatnikov equations. The strains developed during a phase transition are
infinitesimal and the third order deformation energy is one order smaller than the
second order deformation energy. Hence the corrections brought about by third and
fourth order deformation energies to the equilibrium values are negligible in
comparison with second order deformation energy. We shall therfore neglect them
in future calculations. In §4, we give an expression for all the SOE anomalies in a
single formula for the tetragonal phase. Relations among the anomalies of the SOE
constants have been derived. It is shown that the SOE constants are temperature
dependent, showing a discontinuity at the transition temperature.

2. The equilibrium values of the order parameters and the strain variables

The free energy F of the system is a sum of the elastic energy, the Landau energy
-and the coupling energy between the components of the order parameters and the
strain variables. The latter two have been given by Fatuzzo and Merz [4] for the
phase transition of barium titanate and similar compounds. We have

F=(1/2) Y, Cynin,+(a/D(P2+ P2 + P2) + (b/4)(P* + P* + P?)

+ C(P2P2+ P2P? + P2P2) +g,,(n, P2 +n, P2 +n,P?)
+95, {1, (P + P))+1,(P; + P +15(PL + P))}
+ 944, PP+ 1P, P 4+ 0P P)) D
where a =a'(T — T.), a’ being a constant.
The coefficients b and C are constants, more or less independent of temperature.
Further, g,,, 9,, and g,, are coupling constants and #;(i=1 to 6) are the six
components of the strain tensor. P,,P and P, are the three components of order

parameter. The equilibriund values of the order parameter components as well as the
strain variables can be obtained from the stability conditions: These are

(8F/8P,)y =0 (for i=x,},2).
(0F/én)o=0 (for i=1 to 6). | | 2)
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In the cubic phase above 120°C, barium titanate is paraelectric: The simplest solution
of equations (2) are given by :

P,=P,=P,=0. ' | (3)

The solutions of the set of nine equations in (2) lead to the following equilibrium
values for the order parameter and strain variables:

Pxo=Py0=PzO=O (4)
and
Mo = Ma0 = M30 =MN4o = ’750 Mo =O. )

Barium titanate undergoes a phase transition from cubic to tetragonal structure
as it is cooled through 120°C: In the tetragonal phase, it is ferroelectric with an
electrical polarization along the c-axis. It can be seen that the set of equations (2)

- admit another solution, in which

P,=P,=0; P,#0. (6)

This solution corresponds to the ferroelectric tetragonal phase. When (6) holds, the
equilibrium values of the strain variables and electrical polarization for the tetragonal
phase are given by

x+y

Nio =My = 3 P?o’ (7
X2
N3p = 3 ypgm | 3)
where :
_ 911129, (9a)
C,, +2C,, ‘
and :
911 =942
y=——% (9b)
C11 _C12
Mao =150 ="go =0. | | (10)

Further the equilibrium value of the electrical polarization is described by

Pl =—apP, (11a)
where : :

1
P= . (11b
b—(2/3 )(g11 _*_2912)2 (4/3)(911 “912)2 )

c,+2¢,, C

11 "’Cu

It is seen from (7) and (8) that the lattice deformations are propotional to the square
of the spontaneous electrical polarization, in agreement with the experimental results.

3. The Landau — Khalatnikov (LK) equations

The LK equation relates the regression in the fluctuations of the order parameter
towards equilibrium to the thermodynamic restoring force. While the stability
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conditions give the equilibrium values of the components of the order parameter, the
LK equation gives expressions for the fluctuations of the order parameter from its
equilibrium value.

The LK equations for the three components of the order parameter can be written as

P.= —T,(6F/P,), < (12a)
P,= —T,(3F/P,), | (12b)
P, = —T4(3F/P.), | (129)

where ', T, and TI'5 are the kinetic coefficients.
We shall consider the solution of the LK equation for the ferroelectric phase
between 120° and 5°C. To solve these equations, we shall write

Px=PxO+P:; PszyO+P;; I.)z=on+P: andni=’1i0+r’?' (13)
Symmetry of the tetragonal structure ensures that
r1 = rz . (14)

By expanding 8F/dP; (i = x, y,z) about the equilibrium values of the components of
the order parameter and the strain variables, and ignoring product terms of higher
orders, one obtains

OFJOP,=(9F/OP)), + (8> F/0P,0P ), P¥ + Y, (9°F/0Pdn ), n’*. (15)
b i

Further by writing P¥* proportional to ¢*¥ (Q is the angular frequency of the acoustic
wave) we see that the LK equations reduce to

{(iQ+ T, (0*F/oP2),} P* + Tl(azF/BanPy)o P¥+ [,(6*F/oP_0P,),P¥

= —T', 2 (8*F/dP on)on}, | (16a)

- {iIQ+ Fl(azF/an,)o}P’y“ +T, (02F/5Py0Px)0 P¥ + rl(azp/apyapz)o P¥
= —T, Y. (3*F/aP,dn),n* (16b)

{iQ+ T ,(8*F/0P?),} P + F3(62F/8P25Py)0 P* +T',(3°F/0P,0P, ), P¥
= —T,(0*F/dP_on ) n¥. (16c)
By differentiating the free energy twice with respect to P,, P, and P,, and making
use of the expressions for the equilibrium values of the parameters given by equations

(7) to (11) we find that L

(82F/0P?), = (9*F/0P?), = a{l — 2CP + (2/3)P(g,, +29,,)*(C,, + 2C,,)~*

—(2/3)P(g11—'912)2(cl1'-"clz)—l}’ (17&)
(azF/apz)o = d{l —3b +(2/3)P(g11 + 2912)2(C11 + 2C12)_1'
+4/3P(g,, —9,,)*(C,, —C,,) "} (17b)
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In the same way, the equilibrium values of (§F/dP;0P;), and (3*F/0,0n;), can be
evaluated. The following relations only exist with others equal to zero.

(0*F/OP0n5)o = (0*F/OP,014)0 = G4 P, (18a)
(azF/aPza’h)o =(62F/6Pza’72)0 =2¢1,P.0, (18b)
(52F/5P25173)0 =2¢,1P,. (18¢)

Substiiuting (18) and (17) in (16) the fluctuations of the order parameter about the
equilibrium values reduce to the form

P¥ = An¥ (19)
P¥ = An%, . (20)
6
Pr=} o, 1)
i=1 ‘
where ‘ '
A= _(rlg44pzo)/P15 (22a)
a, =0, =—2(,9,,P,)/P;5, , (22b)
o0y =—2(T39,,P,4)/P;, (22¢)
a, =as=0,=0. (22d)
Further
P, =iQ+ rl(aZF/apg)o, (23a)
P,=iQ+T, (aZF/apj)o. (23b)

4. The elastic anomalies in the tetragonal phase

Substituting equation (13) in (1) for the free energy, we find that

F= (1/2) {Zcu(mo + ’TE“)(’?,-O + 77;‘)}

+(@/2){P¥ + P¥ + (P, + P¥)} + (b/H{P} + P¥' + (P, + P¥)*}
+ C{P¥'P¥ 4 (P¥ + P¥)(P,, + P)?) |
+ 00 {000 +DPE + (130 + TP + (139 + 13)(P, + PE)
+91, {010+ 1DIPY + (P, + P)*] |
+ (155 +1)IPE + (P o + PXP1 + (130 + 5)(PY + PE)}
+ Gaq{ao + )Py (P + PY)+ (s +13)PE(P,, + PY)
+(ngo +nE)PFPY} (24).
In the above expression for free energy, the linear terms in #} vanish in view of the
stability conditions. We denote by F,, F,, F5 and F, respectively the terms of orders

zero, two, three and four in the strain variables. The zero order term F, gives the
shift in the zero point energy at the transition temperature. Its derivative with respect
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to temperature will give the specific heat anomaly at the transition temperature. In fact,
Fo= (1/2)Z CiiMiojo +(a/2) P2, +(b/4) P}, + 9111M30P%
ij

+912P30(7710+’720)' (25)

By substituting the values of P2, 7,, etc. in the above expression and simplifying we
find that

Fy= — a*Pjd= —(@*/4)P(T— T, | (26)

The change in the zero point energy is proportional to (T— T.)* near the phase
transition; consequently the change in specific heat proportional to (T.— T) is given
by the formula

C,=(0Fo/0T)y = (@*P/(T.— T). 27)
4.1 Anomalies in the second order elastic (SOE) constants

By collecting all the terms which are quadratic in strain variables, we can write the
expression for the second order deformation energy as

F,= (1/2)2; Chn¥ny (28)
ij

where C}; represent the modified SOE constants. Let us write
C;’;‘= C,+AC} (29)

AC} then gives the anomalies in SOE constants arising from the phase transition. Now
F,=(1/2)L,Cnfn} +AF,
ij

L= (1/2);j C it +(@D{P¥ + P¥ + P} + (3b/2){P}, P¥')

+CP%, P:z+P;2)+911(’710P:2+’720P;2+’730P:2 +2P,,n3 PY)
+g12{’710(P;2+P:2)+'720(P2‘2+P:2)+’730(P:2 + PIZ)
+2P (T PF + M3 P} + GouPoo (3 Py + NS PT ) (30)

Substituting the expressions for P¥, P}, P¥ from (19) to (21) and collecting all terms
containing 7%} in this expression, we find that

AC?}/2 = A2(5i55j5 + 5i45j4){a/2 +CP2, + 9,510 +730) + 911M10}
+ ay0,(a/2 + (3b/2) P2, + g, N30+ 201,M10)
+2P,5(9,,96;, + 91,40, + g11%9;3) |
+ 944 P A(0,46,4+ 0:50;5). 7 (31)
The above equation gives the anomalies for all the SOE constants in a single
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formula. By giving integral values for the indices i and j ranging from one to six, we
can obtain anomalies for the individual SOE constants. The existence of elastic
anomalies shows that the velocities of sound waves undergo a change during the
phase transition. In view of the complex nature of AC;‘;, the waves are attenuated in
this region.

The following relations among the elastic anomalies can easily be verified.

AC* = AC*, = AC%, . (32a)
ACt, = ACY, (320)
AC*, = AC¥, (32c)

The anomalies in the individual SOE constants are given by

ACY, = —8T%g%a 2/PZ{ 3bP%/2 + (P*/3)(g,, +29,,)*(C,, +2C,,)7?
+ P/2+(2P*/3)(9,; — 9:,)(C1; —C1) 7'}
+8I,92,Pa/P, (33a)
ACy;=—38T 3911 Z/Pz{ 3bP2/2+(P2/3)(911+2912) (C11+2C12)_1
SR + P2+ Q2P*/3)(g,, — 9,2)(Cy, — C15) 7"}
+8T, g2 Pa/P, ~ (33b)
AC*, = —8T2%g, ,g,,/P2{—3bP?/2 +(P?/3)(g,, + 29,,)%(C,, +2C,) 71
+P/2+(@2P%/3)(g,, — 9,,)*(C,;; —Cy,)7 1}
+8T.g,,9,,Pa/P, | (33c)
AC}, = —-2Tgi,a a*/P}{— CP?/2 +(P?/3)( 911 +29,,)7(Cy +2C )" '
+P/2—(P?/3)(gy; —912)°(Cy, = Cy) 71}
+2T,42,Pa/P, | (33d)

‘We shall now define the relaxation time ¢ for the system by the relation
1= {[,(8*F/0P?),} ' ={T,(8*F/oP2),} 1. (34)

For simplicity, we assume that the relaxation time is isotropic. Then equations (23a)
and (23b) become

P, =T,q,a(l +iQr) (35a)
P,=T,q,a(l +iQ1) (35b)

where g, a and g;a are given by (23a) and (23b) respectively.
Now the relaxation time has a temperature dependence given by Lemanov [12] as

1=1o/|T.— T| - (36)

where 7, has a value of order (10~ **-1071%) sK. Under most experimental conditions,
the acoustic frequency is chosen in the range 108-10° Hz. Hence Qt, has a value of
the order of 10721073,
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Substituting (35a) and (35b) in (33a) to (33d), we find that all the elastic anomalies
have the form

ack = Fuldy = B4 (37)
Y (1 +iQr)?

where F;, A;; and B;; are constants that can easily be determined from (33a)—(33d).
Further, the real parts of these constants are given by

R(ACY) = F, {4, — Q*c* (A, +2B,) }(1 + Q*¢*) 7 (38a)
When T=T,, Qt— oo and it follows that

R(AC}) 0. >
When |T— T.|=Qr,= 1072, we have Qr=1 and

R(AC*) = 1-51—34 ' ' (38b)
1) 2

We further see that the stationary point for the expression on the RHS of (38a) is
reached for the value of Q?¢? =1+ 24,,/(4,;+ 2B;;) and for this value,

R(ACY) = — F (A, +2B,)*/{8(4,;+ B,)} (38¢)

When Qtr—0, R(AC) =F ;4

This is the asymptotlc value of the elastic anomalies in the low symmetry phase.
The temperature dependence of the elastic anomalies can now be easily understood.
It follows that the elastic constants C}=C,;+ R(AC*) have a dip at the transition
temperature of order — F,(4;;+ 2B, )2/{8 A B,,)}. Within a temperature range of
1071 K the elastic constants reach thelr low symmetry value of

Cy+ F Ay, (38d)

We conclude that the SOE anomalies are temperature dependent, showing a
discontinuity at the transition temperature.

References

[1] D Berlin Court and H Jaffe, Phys. Rev. 111, 143 (1958) '

[2] R Blinc and B Zeks, Soft modes in ferroelectrics and antlferroelectrlcs (North -Holland
Publishing Company, Amsterdam) (1974)

[3] A D Bruce and R A Cowley, Structural phase transitions (Taylor & Francis Ltd, London)

- 2-110(1981)

[4] E Fatuzzo and W J Merz, Ferroelectricity, (North-Holland Publishing Company,
Amsterdam) Ch. 2 and 3 (1967)

[5]1 P A Fleury and K Lyons, Structural phase transztzons-l edited by K A Muller and H
Thomas (Spinger Verlag, Berlin, Heidelberg, New York) (1981)

[6] S Fushimi and T lkeda, Rev. Elec. Commun. Lab (Tokyo) 14, 161 (1966)

[7] C W Garland, Physical acoustics, W P Mason and R N Thruston (New York, Academic
Press) Vol. VII (1970)

[8] T F Heuter and D P Neuhaus, J. Acoust. Soc. Am. 27, 292 (1955)

[9] E J Huibregtesem, W H Bressey and M E Drougard, J. Appl. Phys. 30, 899 (1959)

) 38 Pramana — J. Phys., Vol. 41, No. 1, July 1993

.



Second order elastic anomalies in BaTiO,

[10] T Ikeda, J. Phys. Soc. Jpn. 13, 809 (1958) .
[11] Sh Kashida, I Hatta, A Ikushima and Y Yamada, J. Phys. Soc. Jpn. 34, 997 (1973)
[12] V V Lemanov, Optical and acoustic waves in solids— M odern Topics, Proc. of the Second

ad Int. Conf. on Condensed Matter Phys. (1982)
£ [13] B Luthi and W Rehwald, Structural phase transitions 1 edited by K A Muller and
H Thomas, (Springer Verlag, Berlin, Heidelberg, New York) (1981)
- [14] W Rehwald, Adv. Phys. 22, 721 (1973) :
[15] A F Devonshire, Philos. Mag. 40, 1040 (1949) v o
1

Pramana - J. Phys., Vol. 41, No. 1, July 1993 ‘ 39




