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Cuspidal edges for elastic wave surfaces for cubic crystals
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Abstract. The paper deals with a detailed numerical study of the sections of the
inverse and ray velocity surfaces for cubic crystals. The figures for the sections
of the inverse and ray surfaces by the (001) and (110) planes have been plotted for
over 65 crystals and from these, the nature of the cuspidal edges has been discussed,
Typical graphs of the inverse and ray surfaces have been given. The parameters
characterising the dimensions of the cusps have been tabulated, It isshown that
the A-15 compounds exhibit very unusual and interesting wave surfaces at tempera-
tures below superconducting critical temperatures.

Keywords. Cuspidal edges; inverse surface; ray surface; A-15 Compounds.

1, Introduction

Elastic wave propagation is highly anisotropic in crystals and waves propagate
with different velocities in different directions. Except for certain special direc-
tions, waves are not strictly transverse or longitudinal in crystals. The group
velocity of the waves, with which energy is transported, is generally different both
in direction as well as in magnitude from the phase velocity.

The elastic wave surfaces have recently been studied (Brugger 1965, Musgrave
1970, Waterman 1959, Farnell 1961) and the ray surface exhibits cuspidal edges
for a large number of crystals, When a cuspidal edge occurs for the ray surface,
there exists two or three wave vectors corresponding to a single group velocity
vector. Not all crystals give rise to a cusp and the conditions for the existence
of cuspidal edges have been derived by Musgrave (1957, 1970), Mc Curdy (1974)
and others. Mc Curdy (1974) has pointed out that the directions along which
cuspidal edges occur might give rise to high phonon amplification.

The sections of the ray surface as well as the inverse velocity surface by the
principal planes of the crystals have been plotted by Miller ef al (1956), Auld
(1973) and others. Generally, these studies were confined to isolated examples
of substances which interested the authors, and no systematic study on the differ-
ent possible patterns of the elastic wave surfaces as well as their unusual or pecu-
liar features have been attempted before. In this paper, we have made an elabo-
rate numerical study of the nature of the inverse and ray surfaces for the (001)
and (110) planes for over 65 cubic crystals. Very little work on the nature of the
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sections of the ray surface by the (110) plane and the cuspidal edges for this
~ plane has been done earlier. The object of the present paper is to tabulate the
substances which exhibit cuspidal edges, the directions along which cusps occur,
and to give details of the parameters which characterize the dimensions of the
cusp. Such a study will help to classify substances which have striking or ano-
malous elastic properties and distinguish them from crystals which behave almost
as isotropic substances.

It is shown that the A-15 compounds display very interesting elastic properties
at low temperatures. They show very large cuspidal edges, and for Nb,Sn, the
sections of the inverse and ray surfaces by both planes are unique and are differ-
ent from the wave surfaces for any other substance reported earlier.

2. Wave propagation along the (001) plane
Let k (k,, k,, k,) and o denote the wave vector and the frequency of the wave
respectively. The wave velocity V is given by V = w/k. We denote the direc-

tion (k[k) of the wave vector by nand its components by (/, m, n). 'The equa-
tion for elastic wave propagation for cubic crystals is given by:

Cl’.kpz'I; C44 (ky2+kv2) (Cm‘l‘ C44) kzky (Clz+c44) k,kz
(C] g‘l’ C44) k.ky C.‘.‘.kyz—l;' C44 (koz'i'kzz) (C.‘.2+ C44) kykz =
—pw
(CIZ+C44) kzkl (CIZ+C44) kykz Cukz2‘f2‘C44 (k,z—l—k]ﬁ)
—pw

(1)
In this section we will specifically consider wave propagation in the XY or the
(001) plane. It is well known that for propagation in the XY plane, one mode
is a pure shear mode and the other two modes are quasi-shear and quasi-longi-
tudinal. The wave velocities of the three types of elastic wave fronts are given
by (Auld 1973)

(V) = (p/Cua)? | VX))
for pure shear wave polarized along the Z-axis,
(V)2 = (2o {Cpy + Cyy —1(Cuu — Cug)? c0s* 29 + (Cy3 + Cyy)?
sin? 2 2b)
for quasi-shear wave, and
(1yv)s = (2P)}‘ {Cy + Cug + 1(Cyp — Cyg)? €08%2¢ + (Cyy + Cyy)?
sin? 244} ' , (2¢)

for quasi-longitudinal wave. In the above equations, ¢ is the angle which the wave
vector makes with the X-axis.

If we write the dispersion eq. (1) in the form
Q(w, kyy kyy k) =0 , 3)
the group velocity of the elastic waves is given by (Auld 1973)
Vo=—= T Q2 w). @
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The group velocity denotes also the velocity with which the energy of the wave
field is transported and the components of the group velocity for wave propa-
gation in the XY plane are given by

gf 20k, (Cak? - Coy ki — pad) — 2Cy o (c]1 K,?
1 Gk — pe) + 2 (Co + Co)? kik,? (5a)
- gf = — 204k, (Cuk,? + Coo k2 — p?) — 2Cuq , (o K2
+ Cukit —p o) +2 (G + Cut hik? (56)
— —s-]? =0 (S¢)
20 x
= —20{(Ca + Cu) k2 —p . - (54)

If we introduce the vector m such that
m=nV . - ®

having the direction of the wave normal and magnitude equal to the reciprocal
of the phase velocity, m is known as the reciprocal velocity vector or slowness
vector. The (1/¥) surface is called the reciprocal velocity surfacc and it denotes
the locus of the end points of the radius vectors whose lengths are proportional
to the refractive indices. Corresponding to the three types of elastic wave fronts
propagating along any direction, one can draw three reciprocal wave velocity sur-
faces, which we shall denote by L, T, and T} corresponding to the quasi-longi.
tudinal, pure shear and quasi-shear modes given by (2¢), (24) and (2b)
respectively.

On the contrary, the ray surface is the locus of points reached at time £ = |
by a wave disturbance arising from the origin at ¢ = 0, and this surface consists
of points reached by the energy of the wave disturbance at a given instant. As
stated earlier, the ray velocity or the velocity of transport of energy is identical
with the group velocity of the waves and the components of the ray velocity are
determined by eqs (4) and (5). Using an IBM 1620 computer the components
of the inverse wave velocities of elastic waves propagating in the XY plane for
over 65 crystals belonging to the cubic class have been calculated and their inverse
wave and ray surfaces plotted. The computations were undertaken with a view
to understand the general nature of the elastic wave surfaces and to bring out
the geometrically intercsting features in these curves. The calculations were made
in intervals of 5°for the angle which the wave vector makes with the X-axis,
Unless otherwise stated, the elastic constant and density data were taken from the
reviews of Federov (1968), Auld (1973), Testardi (1973) and Hearmon (1966, 1969).
For the ray surfaces, a large number of these crystals were found to exhibit cus-
pidal edges either along the X-axis or along the diagonal line. In fact, the graphs
for the energy surfaces were found to fall into three typical patterns as follows:

(i) Some crystals exhibit cuspidal edges along the X and Y axis. Examples
of crystals with such cuspidal edges are: Cu, Ag, Au, Fe, Pb, Li, Na, K, Ir,
Ge, Si, GaAs, InAs, InP, GaSb, InSb, GaP, ZnS, LiF, Pb (NO;);, MgAl,0,,
B-brass, MgO, non-transforming V,Si at 4-2 K, non-transforming Nb,Sn at 4:2 K
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and V,Ge at 4-2 K. This list contains a large number of metals and semi- ?

. conductors. o _ _ ’ ) '
(i) Some substances have cuspidal edges along the diagonal or the (110) direc-

tion. Examples for such substances are: NH,Cl, GsI, KI, NaCl, AgBr, TIBr,

KGN, NaClO;, UO,, RbF, Bi;;GeO,,, transforming Nb;Sn at 4-2 K, non-trans-

forming Nb,Sn at 300K, etc. A large number of ionic crystals were found to

exhibit cuspidal edges along the diagonal direction.

(iif) The elastic wave propagation is nearly isotropic in the XY plane, without
" any cuspidal edges for a large number of crystals and examples for such crystals
are: Al, Mo, W, V, Nb, BaF,, NaBrO;, St(NO,),, FesO, Bi,Ges0,5, FeCr,0,,
a0, Y;AL0;; (YAG), GgH,.Ng, SiTiO,;, KAISO, CH3;-NH;-GaSO,, G,H,N,
V,Ge at 300 K, PbS, diamond, transforming and non-transforming V,Si at 300K
and transforming NbgSn at 300 K. ‘

Obviously it is not possible to give the graphs of all the 65 crystals studied
due to lack of space. We reproduce in figures 1, 2 and 3 three typical graphs
for the substances lithium, rubidium fluoride and tungsten to illustrate the three
different types of curves mentioned above. Li has a large cuspidal edge along the
X-axis. In figure 1, we denote the ratio 4B/OA by y. Then the semi angle § =
/. PAB of the cusp together with the parameter y gives an idea of the dimensions
of the cusp and helps one to picture the shape of the energy surface, and the
shape of the cusp. The dimensions of the cusp differ from crystal to crystal and
the parameter y shows wide variations, starting from near zero values (such as
0-055 for Si), to large values like 5-00 for V,3Si, and it assumes the value infinity
for non-transforming NbsSn at 4-2 K (table 1).

Figure 2 illustrates the ray and inverse surfaces of RbF which has a cusp along
the diagonal or (110) ditection. For RbF the ratio AB/OA = vy is equal to 0-211
and the semi angle of the cusp is 63°. From table 1 we note that the y values
rarely exceed unity in this case. Figure 3 gives the ray and inverse surfaces
“of W which is nearly isotropic having no cuspidal edges either along the (100)
ot (110) direction. The T; and T, velocity curves are identical over the entire
plane and the corresponding ray surfaces almost coincide. A good number of
crystals studied show a section of the ray surface having this shape.

sy x106cm/s
WV 1418siem 0
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Figure 1. (a) Section of the ray velocity surface for lithium in the (C0I) plane
(b) Section of the inverse Velocity surface for lithium in the (001) plane,
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Figure 2. (a) Section of the ray velocity surface for RbF in the (001) plane,
(b) Section of the inverse velocity surface for RbF in the (001) plane.
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Figure 3. (a) Section of the ray velocity surface for tungsten in the (001) plane,
(b) Section of the inverse velocity surface for tungsten in the (001) plane.

N

In figure 1 it may be noted that L is the innermost of the three inverse wave
surfaces showing that quasi-longitudinal wave velocity is generally the highest
among the velocities of the three elastic wave fronts. Fur:her, 7, surface contains
the T, surface. It has been found by an inspection of the graphs that if a substance
shows a cuspidal edge along the X-axis, then the 7, (quasi-shear) slowness surface
has a characteristic shape and is stretched out along the diagonal. There isa direct
relationship bstween the magnitude of the maximum along the diagonal in the
inverse surface to the dimensions of the cusp. 'The latter islarger if the stretching
is higher, and vice versa. To show this we have calculated the parameter
& = PQ/OP which denotes the stretching of the 7, curve along the diagonal for
23 crystals which exhibit cuspidal edges along the (100) direction and plotted
¥ versus 8 in a graph. It has been found that the points almost fall along a curve,

which is parabolic near the origin and hnear for larger values of y. The curve is
shown in figure 4 (thick line).

Besides, we calculated the correlation coefficient given by

Prarr, = Zys 8Dyt (T3 2yt 0
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ok " Figure 4. Variation of § with y (thick line
. / for substances having cusp along the X-axis and
ok ’/f dotted line for substances having cusp along
f the diagonal direction),
AN ,:
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for these two parameters y and & and it was found that p,,, = 0-987. This
proves that the degree of stretching in the inverse surface along the diagonal
direction is highly correlated to the dimensions of the cusp for the ray surface.
The stretching depends on the anisotropy factor A4 = 2C,,/(Cy; — Cy,). For
substances for which 4 exceeds unity, the curves for the inverse velocity surface
are stretched further along the diagonal direction, while for substances for
which 4 < 1, they are contracted inwards along the same direction.

In figure 2 for RbF, T, is contained in Ty. In figure 2 we see that curves for
the inverse surface for which T, (quasi-shear) is contained in T4 (pure shear) and
further has a minimum along the diagonal, exhibit a cusp in the ray surface along
the (110) direction. The parameter § = OP/OQ which is a measure of the con-
traction of the 7, inverse surface has been measured for crystals with cusp along
the (110) direction, and the y vs § graph is plotted which is a straight line as
shown in figurc 4 (dotted line). The correlation coefficient was calculated and
is found to be 0-982 which shows that y is highly correlated to & in this case
also.

It is well known that the vibration directions of the quasi longitudinal and quasi
transverse elastic waves are obliquely inclined to their directions of propagation.
For propagation in the XY plane, the vibration direction of the quasi longitudinal
mode makes a small angle with the direction of propagation. In order to ascer-
tain whether the departure from longitudinality of the waves is correlated with
the presence of large cusps, we selected 25 crystals from the list given in table 1,
and our list contained representatives of all the three types mentioned above, viz.,
crystal in which ray surfaces are isotropic, and crystals that have cuspidal edges
along the X-axis or along the diagonal direction. The angle which the vibration
direction makes with the direction of propagation was calculated throughout the
XY plane for all thess crystals. These were obtained making use of the following
expressions (Miller et al 1956) for the amplitudes of vibration for plane waves
along the X and Y directions.

pV? — Cyy — (Cyy — Cyy) m?

&= G F G P T 17— Cu— (G — Coyyr 89)

A = [.’71 (C‘.2 "]'_ 044) . (8 b)
v {(Ce + 044_)2 Im® 4 p V' = Cyy— (Cy — Cyo) m2]2}5
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Then the angle which the vibration direction makes with the direction of propa-
gation is given by

cosf = Id, -+ mA,. : )]

It was found that the maximum angle B .z Which the vibration direction makes
with the wave vector varied from 1°to 18°. We give in figure S5 the variation
of B with the direction of propagation ¢ for the quasi-longitudinal branch for
Al, KI and GaAs. Also we calculated the correlation coefficient for the variables
Bmsx and v for about ten crystals having a cusp alongthe X-axis and having values
from 0-055 to 5-00. This was found to be p(gmax,y = 0 566 showing that there

is good correlation between the existence of cusps and the departures from longi-
tudinality of the elastic waves.

3. The wave surfaces of A-15 compounds

Substances like V,Si, Nb,Sn, V:Ge, etc. with A—15 structure have aroused a lot
of interest in recent years, because they exhibit high superconducting critical tempe-
ratures and other anomalous properties such as phase transition, elastic softening,
etc., at low temperatures (Testardi 1973). Sound wave measurements for these
crystals have shown that the elastic mode propagating along the (110) direction
with (170) polarization becomes soft at very low temperatures. Our studies have
shown that the elastic wave surfaces for A-15 compounds are very interesting
and are unique. From the table we see that V;Si at 4-2°K has a very high
value for p viz.,, 5-00, which is next only to Nb,Sn at a temperature of 4-2° K.
It has a very large cusp, and the 7, branch of the inverse surface shows a long
spike at 45°, ' ‘ .

For NbySn of the non-transforming type, the relation Cj; = Cj, holds good
at 4-2°K and the spike in the inverse surface extends up to infinity. This is
because the 7, mode strictly becomes soft at 4-2°K. As can be seen from figure
6, the energy surface is made up of only cusps and the large cuspidal- edges
reduce to four straight lines intersecting at the origin. 'The value of the para-
meter y tends to infinity. At 300°K, the anisotropy factor A = 0-56 and is less
than unity. Hence at this temperature the substance exhibits a cusp along-the
diagonal direction. However when the temperature is lowered to 4-2° K, the
anisotropy factor tends to infinity and this explains why the cusp is directed along
the X-axis. In fact, the change in the nature of the cusp should occur at a higher
critical temperature where A is equal to unity. The A-15 compounds are unique

Figure 5. Variation of g with direction
of propagation ¢ for Al, KI and GaAs.
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Figure 6, (a) Inverse velocity surface of NbySn (non tra,) at 4:2°K in the (001)
plane, (b) Ray velocity surface of NbsSn (nontra.) at 4:2°K in the (001) plane.

for the very large cuspidal edges that they exhibit at low temperatures. We have
plotted the graphs for these substances both at 300“K as well as at 4-2°K and
it was found that the wave surfaces show remarkable temperature variations.

It can be shown that if the wave velocity becomes zero, the energy surface
should pass through the origin. If S, and S, denoté the components of the energy
velocity along the X and Y axis, it follows from eqs (4) and (5) that

Ss Sy PV(CH + C44)
Dy Py . 10
/ T m (Cy + Cy) —pV* - (10)

For shear mode propagating along the (110) direction, the wave velocity is given
by :

P ((.u/k)2 = sz = (C11 - Cm)/Z (1 1)
and becomes zero at 4:2°K for Nb,Sn. So the right hand side vanishes and the
section of the energy surface in the XY plane degenerates into the straight lines

S;+8S,=0 ' (12)
in the neighbourhood of the origin. The energy surface for the 7, branch should

thus pass through the origin and reduce to straight lines inclined at 45° with the
axes. The numerical calculations, as depicted in figure 6 confirm this finding.

4, Wave propagstion along the (110) plane

Next we consider the nature of the sections of the inverse and ray surfaces by
the (110) plane which contains the face and cube diagonals of the unmit cube.
Numerical work on wave propagation has generally been confined to the principal
cubic planes of the crystal and very few studies have been made on the nature
of the ray velocity surfaces along the (110) planme. A unit vector lying in the
(110) plane has direction cosines (/, /, n) so that

284+ n2=1or k2= k*(1 — 2k,2/k? (13)
By substituting k, = k, = Ik and k, = k(1 —2k%k®) in eq. (1), we can
obtain the dispersion relation for the propagation of a wave along a general
direction in this plane. The dispersion relation (1) can now be written as
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Q= X34 A4, X2+ A,X + Aqg (14)

where
X =pV2=p (wfl2

The coefficients 4,, A, and A3 are related to the elements of the matrix given by
(1). Let us denote the (i, j)th element of this matrix by oy, and let a; =
(ay/k?). Let us denote by A4, the cofactors of the elements of the matrix 4 =
(ay) and by A, the determinant of this matrix. Then ome can find that

Ay = apn + ay + ay

Ay = Ay + Ay + Az

A3 = A.
By direct differentiation, we find that
102 1220 2
i SE = %5 b_k,, = —2(V)2(C + 2Cy) I +

2(pV?) [Cus (@22 + a3+ 2av) 1+ Cuy (a2 + ags) I —

(Cig + Cu) (ap | + @y N)] — 2[Cya (au a5 + G Gaz— G1g®
— a3 [+ Cyy (G gz — 5% 1+ (Crz + Cy4) (22 @snt +
Qg Qogl — ay9035] — a13a551)] (15a)

12Q
IEBSE. = —2(pV)2(Cr +2C) n+ 2 (pV?) [Caa (a1 + @22

2az) n+ Cyy (G + o) 1 — (Ciy + Cuy) (@13 + asg) 11—
— 2[Cys (avag + g0 Qy3—0p3% — a;3%) 1 + Co (@G — ?212) n
+ (Ciz + Cu) (a12a13 + @283 — A11.Go3 — @13G0,) 1] (s b)

122
B 30 = 2030274 — 2 (V) (a1 + as + as) +

+ ana, 4 Qulgs + Qoplzy — A% — A — 4127 (15 c)

The components of the group velocity vector ¥, along the three principal axes
can be obtained from the formula (4). It can be seen from (15) that the compo:
nent (V,* — V,;")/4/2 of ¥, along a direction (1/4/2 —1/4/2, 0) normal to the plane
is zero and the group velocity vector for the waves propagating along a general
direction lies in the plane itself. We shall call the direction (1/4/2, 1/4/2, 0) of

the face diagonal as the £-axis. Then the principal axes for this plane can be
taken as the £-and Z-axes, and further

Vot = (V! + VA2 | (16)
A computer programme was written to solve the cubic eq. (14) as well as to
evaluate the_coml?onents Vi and Vf given by (154) and (155). The three roots
of the equation give the three different phase velocities (or their inverses) of the
three elastic wave fronts. ‘The computer was instructed to print the values of the

three.inverse Wave velocities as well as the components ¥V, and V,! of the group
velocity vect |

tor in intervals of 5° for the direction of propagation in this plane,
The correctness of the calculations were - checked by comparing the  values of
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the inverse wave velocities and the components of the group velocities along the
direction (110) with the values for the same quantities calculated on the basis of
eqs (2) and (5), and these were found to agree up to four or five decimal places,
From the computer output data, curves for the inverse and ray surfaces could be
plotted. We have plotted these graphs for sixty five crystals for wave propagation
in the (110) plane.

It is well known that two of the wave velocities (7, and T},) of waves propagating
along the (111) direction are equal and internal conical refraction can occur for
this direction. 'This fact was numerically verified for all the crystals, and the
inverse T; and T, surfaces intersect each other at an angle of 36 ° corresponding to
the direction of the cube diagonal in this plane. As in the case of the XY plane,
cuspidal edges occur for the 7, wave surface only and a large number of crystals
were found to exhibit cuspidal edges either along the ¢- and Z-axes simultaneously
or along the direction of the cube diagonal. The slowness surface for the T}
branch is found to be an ellipse, with its major axis either along the ¢-axis
or along the Z-axis, and this fact is strongly correlated with the nature of the
cusps also. For example if the section of the wave surface for the T, branch
is an ellipse with its major axis along the Z-axis, in this case the T, ray surface
will exhibit two cuspidal edges along the £ and Z axes respectively. If, on the
other hand, the inverse velocity curve for the T; branch happens to be an ellipse
elongated along the Z-axis, the ray surface for the 77y branch will be an ellipse
with its major axis along the ¢-axis, and in this case, the section of the ray sur-
face for the T, branch will have a cusp along the direction of the cube diagonal.
It has also been found that the dimensions of the cusp are correlated with the
eccentricity of the ellipse; the greater the eccentricity, the larger will be the cusp.
It is difficult to give the curves for the sections of the inverse and ray surfaces
for the 65 crystals. These curves were found to fall into three classes as follows:

(i) More than 25 crystals in the list showed two.cusps for the T, branch, one
each along the ¢- and Z-axes respectively. Examples of these types of crystals are:
Ou, Ag, Au, Fe, Li, Na, K, Ge, Si, Ir, GaAs, InAs, InP, GaSb, GaP, ZnS, LjF,
B -brass, Pb (NO,),, MgAlO,, V,Si (transforming at 4-2° K) V,Si (non-transform-
ing at 4:2° K),Nb,Sn (non-transforming at 4:2°K), etc. 'The cusps are of varying
dimensions for the different crystals. The three curves for the slowness surface
were found to have a definite pattern in this case. It is found that the T, sur-
face contains the T, surface between the Z-axis and the direction of the cube
diagonal, and the T3 curve contains the T curve between the ¢-axis and the direc-
tion of the cube diagonal where the two curves intersect.  We reproduce in figurc
7 the curves for copper to illustrate the types of wave surfaces having two cusps.

(ii) A number of substances exhibit one cusp for the T branch along the direc-
tion of the cube diagonal for the ray surface. As examples, we may cite the
crystals NH,Cl, KI, RbF, NaCl, TIBr, NaClO;, KGN, UO,, Gsl, V,Ge (4-2°K),
transforming Nb,Sn at 42 °K, etc. For these crystals, the ‘ray surface for the T,
branch is an ellipse with its major axis along the §-direction and correspondingly
the slowness surface for the T; mode turns out to be an ellipse, with its major
axis along the Z-direction. For these substances, it is found that the inverse
wave surface for T, will be contained within Ty between the Z-axis and the direc-
tion of the cube diagonal, and in the region between the cube diagonal and the
¢-axis, the reverse will happen. The nature of the curvesis just the opposite
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Figure 7. (@) Section of the ray velocity surface for copper in the (110) plane,
(b) Section of the inverse velocity surface for copper in the (110) plane,
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Figure 8. (a) Section of the ray velocity surface for KIin the (110) plane. (b) Sec-
tion of the inverse veloeity surface for KI in the (110) plane. ‘

of the case (i) mentioned above corresponding to two cusps along the £- and Z-axes.

We reproduce in figure 8 the ray and inverse surfaces of KI to illustrate this type
of wave surfaces.

(iii) A large number of crystals are isotropic, and the curves for both the ray
and inverse wave surfaces were nearly circular. Examples are: Al, Mo, W’. v,
Nb, BaF,, Sr(NOy),, Fe;O,, Bismuth-Germanate, Chromite, Yittrium Aluminium
Garnette, SrTiO,;, KAISO,, Succino nitrile, CaO, etc. A typical curve for sub-
stances with isotropic wave section is given in figure 9 for the case of BaF.

Lithium, Sodium, Potassium, 8-brass, V,Si and NbySn have large cusps along
the axes for the 7, branch. TIn table 1, y, = A4,B,/0A4, (figure 7) and y; = AsBaf
OAd, (figure 7) are the parameters giving the dimensions of the cusps for the
T, branch along (110) and (001) directions respectively; 6, and 6, are the corres-
ponding semiangles of the cusps. For crystals which exhibit cusp along the (111)
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Figure 9. (@) Section of the ray velocity surface for BaF, in the (110) plane
(b) Section of the inverse velocity surface for BaF, in the (110) plane.
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Figure 10. (a) Section of the ray velocity surface for Nb;Sn (non tra.) at 4:2°K
in the (110) plane (T and T, branches only). (b) Section of the inverse velocity
surface for Nb,Sn (non tra,) at 4-2°K in the (110) plane.

direction for the T,-branch, the dimensions and semiangles of the cusps are
given as y; and 6, (figure 8) in table 1. For Li, K, Na, f-brass, V,;Si and
Nb,Sn, the values of ¥, and y, are larger, but these never exceed unity, unlike
the case of cusps for the (001) plane. The other crystals in the list have relatively
smaller cusps.

5. Results for A-15 compounds

In the (110) plane also the A-15 compounds distinguish themselves by their unique
behaviour and have very interesting wave surfaces. Since the T, mode becomes
soft at low temperatures for propagation along the £-axis, the computer encountered
division by zero along this direction for Nb,Sn of the non-transforming type but
could give values for the other directions. In view of the fact that the components
of the phase and group velocities showed steep variation, the computer was made
to perform the calculations at intervals of 1° so that the graphs could be correctly
drawn. Both the transforming and non-transforming varieties of V,Si at 4:2°K
show two cuspidal edges, one each along the ¢ and Z axis. Non-transforming
'Nb,Sn at 4-2°K -has an almost distinct type of wave surface amongst all the
sixty-five crystals considered here. In figure 10 a, we give the ray surfaces for 7
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and T, branches and in figure 105, the inverse surfaces. Itisfound that the
inverse surface for T; in this case degenerates into two straight lines, parallel to
the £-axis and symmetrically situated with respect to it, and that the ray sur.fac‘e
for the T, branch reduced just to two points marked with a circle. By the princi-
ple of reciprocity, for every tangent line to the inverse surface, .ther-e exists a corres-
ponding point lying on the ray surface. Since the tangent line at every point on
the T, branch in this case reduces to the line itself, the ray surface should con-
sist of two points, which are the polar reciprocals of these lines.

The unique nature of the wave surface for the Nb,Sn can also be proved mathe-
matically. By subtracting the elements of the second row from that of the first

in the determinant (1), it can be secen that one of the roots of the equation (1)
is given by

PV2 = (Cyy, — C.'.?.) 12 4 Cyynt. (17)

This cxplains why the inverse as well as the ray surfaces for the T mc6>de ;rct
ellipses. Since Cy; = Cyy, for Nb,Sn at 4'2° K, it follows from (17) and (6), tha
the inverse velocity surface reduces to the two lines

M= (p/Cyel 19)
and thesc are parallel to the ¢-axis. Further, one can see from equation (15) that
S,=S,=S;=0, and (19)
Se = £ (Cyglp)? 20)

The component S, is independent of the direction. The above equationd Sh?w,s
that the section of the ray surface by the (110) plane for Nb,Sn should dcgene

rate to two points situated symmetrically at a distance of (Cy4/p)? from the origin
along the Z-axis. :
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