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Ordinary and extraordinary cyclotron waves in metals
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Abstract. Dispersion equations for the ordinary and extraordinary cyclotron waves
propagating perpendicular to the magnetic field in metals in the critical region where the
wavelength is comparable to the electron Larmor radius are derived as an infinite but rapidly

converging power series expansion in (= ©/Q —M). Numerical studies for the cyclotron
wave propagation near the first seven resonances are carried out. The non-local behaviour of
those waves in the critical region 0-1 < kR < 3-0is studied. For the ordinary waves the first few
resonances show significant dispersion than those near higher resonances which are
dispersion-frec. Only one extraordinary wave propagates near the fundamental cyclotron
frequency. For the higher resonances, two modes propagate near each of the resonant
frequencies, of which one mode remains constant for all values of kR whereas the second mode
shows significant dispersion. But beyond the fifth resonance both the modes are dispersion-
free.

Keywords. Cyclotron resonance; cyclotron waves in metals; perpendicular propagation;
ordinary wave; extraordinary wave.
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‘1. Introduction

In the presence of a strong magnetic field, a metal or a doped semiconductor can
support a variety of electromagnetic or plasma oscillations. The best known
electromagnetic excitation in a solid state plasma is the helicon, which is a circularly-
polarized wave propagating parallel to the magnetic field. Helicons can also propagate'
at small angles to the magnetic field and are characterized by the fact that their velocities
are very small, often of the order of the sound wave velocity in solids. This feature
bestows on them an ability to interact strongly with the phonons. Vast literature is at
present available both on the helicons as well as on their interaction with the phonons
(Viswanathan 1975, 1979; Sekhar and Viswanathan 1976; Idiculla and Viswanathan
1980, 1981). The subject has also been reviewed by Kaner and Skobov (1971) and
Platzman and Wolff (1973).

While the helicons have very low frequencies compared to the electron cyclotron
frequency, the solid state plasma can also support a class of high-frequency waves
known as the cyclotron waves. These waves propagate very easily at right angles to the
magnetic field in the neighbourhood of the electron cyclotron frequency or its
harmonics and have velocities which are comparable to the particle velocities in the
metal. Further, the propagation characteristics of the cyclotron waves depend strongly
on the Coulomb interactions among the electrons in the metals and on the non-local
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properties of the conductivity tensor. For these reasons they can be used as probes of
the many-body effects in metals. o

Kaner and Skobov (1964) first pointed out the possibility of propagating elec-
tromagnetic waves at right angles to the magnetic field in the vicinity of cyclotron
resonances. The cyclotron waves were first experimentally observed in alkali metals by
Walsh and Platzman (1965). As stated earlier, these waves depend sensitively on the
finite-k or non-local properties of the conductivity tensor. The dispersion charac-
teristics of the cyclotron waves were studied by Kaner and Skobov (1971) both in the
long-wavelength (kR < 1) and in the short-wavelength (kR > 1) limits. A search of the
literature on cyclotron waves suggests that much work remains to be done on the
nature of the waves in the critical region where the wavelength is of the order of the
electron Larmor radius. The solution of the dispersion equations for the ordinary as
well as the extraordinary waves near cyclotron resonance requires much analytical as
well as computational work in this domain. Besides, when the cyclotron waves
propagate obliquely to the magnetic field, though very nearly perpendicular to it, the
Doppler-like term in the denominator (of the conductivity tensor g, ;) introduces finite
regions of Landau damping, magnetic Landau damping and Doppler-shifted cyclotron
damping. Very little is at present known as to how such collisionless damping acts to
destroy the propagation of the cyclotron waves and it is our aim to address ourselves to
some of these problems. In this paper, we solve the dispersion equations for the
ordinary as well as the extraordinary waves in metals propagating near cyclotron
resonances and study the non-local behaviour of those waves for wavelen gths which are
comparable to the electron Larmor radius. Those results are presented in the next two
sections.

2. Ordinary cyclotron wave propagation

We shall choose the z-axis to coincide with the static magnetic field. Then the well-
known dispersion equation for the ordinary wave (for derivation see Appendix A) is

o,,=0. (1)

The components of the conductivity tensor are well-known and are reproduced in
textbooks or review articles by various authors, In this paper we use the expressions for
those as given by Platzman and Wolff (1973).

For propagation perpendicular to the magnetic field, we have
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In the above equations w, 1~ 1, Q, k, v, n, and m* stand for the frequency of the
electromagnetic wave, the collision frequency of electrons with defects or impurities,
the cyclotron frequency, the magnitudes of the wave vector and the Fermi velocity, the
particle density and the effective mass of the particle respectively. Replacing (v;/Q2) by R
(the Larmor radius) we get

b=kRsinf. ()

The expression for the square of the Bessel function is (Watson 1958)

© (—=1y (2n+2s)! b+t
2(h) = .
Iv() s};‘o .[s!(2n+s)! [(n+s)1]> 2242 | ®
Substituting the above expression in (2) and using the formula
n . : g +S)!]222n+23+1
: 2n+ 25+ 1 2040 = [(n
Jo s 6o0s’0d0 = G 2s+1) @n+25+3) @n+ 29" ©)

we find that the dispersion equation for ordinary cyclotron wave becomes

i i%(w >=0, . | (10)

~2 2
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where .
2 ( — l)s (kR)2n+2s

Pre = (1+8,0)s! 2n+5)!2n+2s+1) (2n+2s+3)

11

The dispersion equation is in the form of an infinite power series in kR and holds good
for any value of k.

As stated earlier, the cyclotron waves propagate very freely near the cyclotron
resonances. For electrons in a metal at very low temperatures, 7 is of the order of 10™°
t0 10~ # sec and Q is of the order of 10*! rad/sec. Thus Qt > 1 and for this reason we can
safely ignore collisions among the particles (electrons). We shall now investigate how
the non-local effects modify the dispersion of the waves.

Near the Mth resonance, we shall assume

w = MQ+3, (12)
or @ =M+35. ‘ (13)
Here @ = w/Q | | ' (14)
and 5 = 8/Q. (15)

It is presumed that 5 is small compared to unity, or 6] < 1.
Expanding (10) as a power series in 3, the dispersion equation for the ordinary wave
takes the form

~

S Cuy 89=0, | | (16)
j=0 .

where the coefficients C;. , are given in Appendix B.
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Normally 4 is small so that the infinite series expression in (16) can be truncated with
the first two terms. This gives a linear equation of the form

C,+C8 =0 o Coan

leading to
0= —(C,/Cy). (18)

Occasionally, when 4 becomes comparable to unity though less than one, it is advisable,
in the interest of accuracy to take the third term of (16) also and solve instead the
quadratic equation

Ci+C,5+C8%=0. " (19)

Equations (18) and (19) were solved for different values of kR in steps of 0-1 in the
interval kR = 01 to kR =30 for the first seven resonances using a digital computer.
Due to the rapid convergence of the three infinite series in the expression for C; . ;, we
considered only terms upto the order of 12th power in kR for all the three series. As a
further check we extended our calculations to terms of the order of 26th power in kR
and solved (18) and (19). The result was the reassurance of the correctness of our first
approximation. The computer was instructed to print the values of kR and é& for each
value of kR in the interval. ,

In our calculations one of the two real roots of the quadratic equation always
happened to be greater than unity and was therefore discarded. ‘

The calculations using the linear and the quadratic equations gave identical results
for resonances higher than or equal to 2. For the first resonance the quadratic
approximation gave results that agreed better with a direct solution (as elaborated
below) of the dispersion equation (10).

To check the accuracy of the numerical results, we solved the dispersion equation
directly by another independent method. The dispersion equation for the ordinary
wave may also be written in the form '

where o
U,=)> P,. (21)
' s=0

To study the dispersion equation for the nth resonance, we retained the first (n + m)
terms in (20) where m is small. The resulting algebraic equation can be solved directly
with the aid of a computer.

For studying the first five resonances we retained the first six terms of the dispersion
equation (20). Then (20) reduces to the simplified form

Vo' + V0% + V,0% + V,0* + Vad* + V5 =0, (22)

where the coefficients ¥, to ¥ are given in Appendix B. Here due to the rapid
convergence of the terms of the infinite power series in kR for U,, we retained only
terms upto (kR)'® for evaluating U, to Us and ¥, to V.

A computer program was written to solve the algebraic equation (22) for different
values of kR in steps of (-1 in the interval kR = 0-1 to kR = 3-0.
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Figure 1. Dispersion curves for the ordinary cyclotron waves in metals propagating near the
first seven cyclotron resonances.

The dispersion curves for the propagation of ordinary cyclotron waves near the first
seven resonances are shown in figure 1.

It is found that the linear approximation (dashed line) is inadequate for the first
resonance. Hence for the first resonance we used the other computational methods
described above. For the next six resonances, even the linear approximation agrees with
the solution of the quadratic equation or with the direct numerical method of solution
of the dispersion equation.

The curves in figure 1 show that the frequency generally decreases as kR increases.
This decrease is more pronounced for the first resonance but not so for the higher
resonances.

3. Extraordinary éyclotron wave propagation

We shall next consider propagation of the extraordinary electromagnetic waves with.
frequencies close to the cyclotron frequency or its harmonics.

The dispersion equation for the extraordinary wave (for derivation see Appendix A)
is '

O Oyy T 02y = 0- (23)

Assuming as before that the wave is propagating perpendicular to the impressed
static magnetic field, the three relevant components of the conductivity tensor, namely,
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Oxx Oy and o, are given by (Platzman and Wolff 1973)

® ~ n y2
LT
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and

b

Using the series expansions for the squares and products of the Bessel functions or
their derivatives in the integrals occurring in (24) to (26) and integrating term by term
We can express the integrals as a power series in the parameter kR. Then the expressions
for o,,, 0,, and O, €Xpressed as power series in kR are
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To solve the dispersion equation, we look for solutions for the frequency of the
extraordinary wave lying close to the cyclotron frequency or its harmonics, Writing as
in (12) to (15) and substituting the equation for @ in (27) to (29), we find that in the
neighbourhood of cyclotron resonances the three relevant components of the
conductivity tensor can be expressed as a power series in kR. Thus we have,

O =ING)' Y 45, 8, (30)
j=0

J

Mo .. .
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and o, = N (o) ! ST
oy & Paends (32)

where the expressions for 4;,,, By, and Dy, are given in Appendix B.

Substuuting (30) to {32} in the dispersi i
; ; dispersion equation (23) and simplifyi
assumes the form ! (23) and simplifying, the atter

]

- 34f &;] P n

J%“ﬂ A (33)
where

1 j ! *! T

W, k., ’ (0D, A Brisy) (34)

For numerical study of the extraordinary wave propagation near cyclotron
resonunces we procecded as follows.

As i first approximation we truncated the dispersion equation (33) with the quadratic
term and solved the equation

W, 1 W 4 Wt =0, (33)

| A COMPULET PTORTIAM Wiy written for calculating the terms Ay, Ay, A3, By, Bz, B3, Dy,
D, and D and hence for W, W and W) of the quadratic equation (35). Due to the rapid
convergence of the series expansions for Ay, 1, Byyyand Dy in the expressions for W}
we considered only terms upto the order of 12th power in kR.

Byuation (35) was solved through the computer for various values of kR in steps of
-4 1 the range kR = 01 1o kR = 30 for the first seven resonances. This yielded two |
real roots for all resonances. However, one of the two real roots for propagation near
the first resomitnee was discarded as it violated the required condition |6| < 1 even from
kR = (1. Tt follows that there are two distinet modes propagating near any
subhurmonic except near the fu ndamental resonance frequency where there exists only
One WHVE,

_For the econd and third resonances, one of the two roots violated the condition
18] « 1 for kR = 'S for the second resonance and kR > 29 for the third resonance. So
in order to obtain correct numerical results, we had to proceed to equations of higher
ornder, N

It wits seen that for propagation near the second resonance the value of ¢ tends to
unity in the range 15 < kR < 30. As a result, the dispersion equation has a slower
convergence in this region. Therefore an accurate solution of (33) in this region
necessitited the consideration of a fairly large number of terms. In fact we had to solve
an equation of order fourteen in & (in which the various terms contained powers of kR
of order 12) for waves propagating near the second resonance to obtain real
roots satisfying the condition 6] <.1. This was achieved by suitably modifying our
computer program.

Also for propagation near the third resonance we have to solve a dispersion equation
of the third or higher order in d. So we solved a fourth order equation.

The fact that the solution of the cubic and the fifth order approximations of the




550 A Pushpahasan and K S Viswanathan

1st mode
-——2nd mode
7 -
6 -
5 — ===
— " 4 —
S J—
3
3 T TTeE==I I
2 B ‘hN\\\
' —
| [ |
O 1 2 3
kR

Figure 2. Dispersion curves for the extraordinary cyclotron waves in metals propagating
near the first seven cyclotron resonances. For the sixth and seventh resonances the frequencies

of both the modes almost coincide. Hence for the two resonances both the modes are shown
together as one continuous line, '

dispersion equation (33) for propagation near the fundamental cyclotron frequency
yielded only one real root confirms our earlier finding that only one wave propagates in
the vicinity of the fundamental cyclotron frequency. L

In figure 2 we give the dispersion curves for the propagation of extraordinary
cyclotron waves near the first seven harmonics. '

Near the first harmonic there exists only a single wave represented by a continuous
line. The frequency of the wave remains almost constant at Q upto kR = 1-5. Thereafter
the frequency of the wave decreases as kR increases.

For the second and higher harmonics, two modes generally propagate near each of
the resonant frequencies. Of these one mode, denoted by a continuous line has a
constant frequency in the range for kR whereas the other mode denoted by a dashed
line shows dispersion. As can be seen from the figure, the dispersion is strongest for the
second mode near the second harmonic. For the third, fourth and fifth harmonics, the
frequency of the second mode almost coincides with that of the first mode upto a
certain value of kR and starts branching off afterwards. For the sixth and seventh

harmonics, the frequency of the two modes almost coincides throughout the entire
range of values of kR that we calculated. :
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Appendix A

For a discussion of the dispersion behaviour of the high frequency waves (HFW) we
concentrate on the bulk dielectric properties of the metal (i.e. solid state plasma).

It is well known that for propagation accurately perpendicular to the static magnetic
field, the HFw are undamped if the collisions are neglected. (At low temperatures in pure
samples 7 ~ 107°-107° sec and Q ~ 10!* rad/sec. This is the range of parameters
where HFW are observed. Thus, in this regime Qt > 1 and collisions are unimportant).

Assuming a perturbing field of the form E =E, -exp[i(k:r—ot)], the Maxwell’s
equations yield

k x (k x Eg)+ (@/c)? e Eq =0, (A.1)

where we have defined the magnetic field B to be para]lel' to the z-axis and the wave
vector to be parallel to the x-axis

(z|| B and x||K).

In (A.1), k is the wave vector, w the frequency of the HFw and & s the dielectric tensor
defined as

&yp (K, @0, B) = 0,5+ (4ni/w) 0,4 (k, @, B). | (A2)

In (A.2), the first term d, is the displacement current and the second term is a complex
tensor contribution due to the magnetized conduction electrons where 0, (k, @, B) is
the wave-vector-, frequency-, and field-dependent conductivity tensor.

Equation (A.1) will have a non-trivial solution when the determinant of the
coefficients vanishes, i.e.,

Exx Exp ‘ Exz :
€ Eyy— (kcjw)* By =0, (A.3)
&,x €3y g,, — (ke/w)? :
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But in our coordinate system z||B and x| k. Then using the symmetry of the
magnetoconductivity tensor, we have ¢,, = ¢, = ¢,, = ¢,, = 0. Then (A.3) reduces to

Exx Exy 0
Eyx  Eyy — (ke/w)? 0 = 0. (A4)
0 0 &,z — (ke/w)?

This yields us the familiar dispersion relation

[e2: — (ke/@)*] [£ax &y + €5y — s (ke/w)*] = 0. (A9
The first root,
&z = (kc/w)? (A.6)

is the ordinary wave which is purely transverse in character (E || z). The other root,
(Exx Eyy + 85,)/ 80 = (ke/w)? (A7)

is the extraordinary wave which is not purely transverse in character but has a weak
longitudinal component as well.

Using (A.2) in (A.6) we get the dispersion relation for the ordinary wave as
- (ke/w)* = 1 + (4ni/w) 0, (k, w, B). (A.8)

The experimental conditions under which cyclotron waves are observed lead to a

simplification of (A.8). In the range of parameters where the HFw are observed one has
w2 /w? ~ 101 > (kc/w)? ~ 10° 3 1 |

(Where @ ~ 10! rad/sec and w, = (4mne’/m*)'"> ~ 10'6 rad/sec in the plasma

frequency) and the term (4ni/w)-g,, ~ O (w,/w)* ~ 10*°. Therefore one can neglect the
first term on the right hand side of (A.8) coming from the displacement current in
Maxwell’s equations. In other words, because of the extremely high plasma frequency
in metals, the response due to the conduction electrons is dominant, and so one can
neglect the contribution ,, due to the displacement current in the expression for
&,5[equation (A.2)]. Thus, for metals, one can define E.p AS

&5 (k, ©, B) = (4ni/0)* 5,5 (k, w, B). | - (A9)

Again, in the regime where cyclotron waves are observed, (kc/w)? ~ 10° so that
solutions of (A.8) are given to O(kc/w,)* ~ 10~5 by the zeros of the conductivity,

0. =0 (A.10)

which is thus the dispersion relation for the ordinary wave. ,
Similarly using (A.9) in (A.7) we have for the extraordinary wave,

(ke/w)? = [ (0,1 0,,+ 2,)/0,.]" (4ni/w). ' (A.11)
Hence solutions of (A.11) are given to O (kc/w,)* ~ 107% by

(0rxOyy+03,)/0, = 0. ~ (A.12)
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Hence
OxxOypy+ 0%, =0 (A.13)

is the dispersion relation for the extraordinary wave.

Appendix B
Vo = 1/3. (B.1)
= (kR)?/15 — (55/3). B2
v, = (1023/3) — (18/5) (kR)* + (kR)*/35. | (B.3)
= (kR)/63 — (10/7) (kR)* + (323/5) (kR)* — (1645/3). (B.4)
v, = (21076/3) — (6676/15) (kR)* + (769/35) (kR)*
— (41/63) (kR)® + (1/99) (kR)®. - (B.5)
— (1/143) (kR)*® —(25/99) (kR)® + (400/63) (kR)®
—(720/T)(kR)* + (960) (kRY? —4800. (B.6) -
Al _ ) M2 (_1)3 (kR)2M+25—2 . (B_'])
LosIeM +5)! @M +25+1)
B (—1) (M +s) (kRPM+22
15 L 2s1@M+5—2)!|2M +2s—1) M +2s+ 1)
_3 (=17 (M +s) (RRYM >
L SI@M +9)! @M +25+1) @M +25+3)
(—1F (M +s+2) (kR)M*+2+2 B.5)
Z 23'(2M+s+2)'(2M+2s+3)(2M+2s+5) )
C, = i (=1 (kR (B9)
L STeM+9)!(2M+2s+1) @M +25+3)
® (—1yMM+ S) (kR)ZM+2“ -2 (B.10)
Di= L “STaM+)1@M+2s+1)
© @ IM2(—1F(n+s) (kR
D, = ,21 ,Zo M2 —r2)sl@n+9)!2n+2s+ 1)
(—1pskRP™2 o & (=1F(M+s) (kR
+s§0 T+ T ,;0 STOM+5)! M + 25 +1) (B-11)
where ¥, stands for the summation over all values of n + M. For j =20,
Z,= (- 1//M*, (B.12)

Q! = (—1)/@M)’*, (B.13)
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QF = (=1)/7H/(@" M) (B.14)
and
L ( 1)}MJ+1 2r 2'(}+1)
= 2 —n®)*(j+1=-201 20" (B.13)
where L is the integer part of the positive real number (j+ 1)/2. For j =1,
B oo’ @ (__l)snz (kR)2n+2s—2 .
Aj“—[Fls_os'(2n+s)'(2n+2s+1)}G"
@ ( l)sMZ(kR2M+2s 2
+[,ZOS!(2M+S)'(2M+2s+1)]Q’ b (B.16)
_ ® 2(_1):(kR)2s+2
By “[,=0sz(s+1)1(2s+3) (2s+ 5)]2,_1
+{ 2 [ 2 (=17 (n+) (kRy>"* 2+~
n=1 Ls=028!2n+s5s-2)1 2n+2s—1) 2n+2s+1)
B © (_l)s (n+s) (kR)2n+2s
s=08!@n+9)!(2n+25+1) 2n+25+3)
N © (—1y (n+s+2) (kR)>n*2s+2 ] G,
s=028!2n+s+2)!1(2n+25+3) 2n+25+5)
+{ i I: (=1 (M +5) (kR)M+2-2 :
s=o [ 2S1CM+5-2)' QM +25—1) QM + 25+ 1)
_ (—1F (M +5) (kR)M+2s
STRM +5)! QM + 25+ 1) QM + 25+ 3)
(—1y (M+S+2) (kRyM+2+2 Ql B.17)
251 2M 45+ Q1M +254+3) QM +25+5) || =7
_ 2 (~eRry
Ci1 -,EO[W (2s+1) 2s+ 3)]Zf‘1
o) ( 1)5(kR)2M+25
+ 2 [s'(2M+s)'(2M+2s+1) (2M+25+3):| Q)
00’ ( l)s(kR)2n+2s
+ ;, 0sv(2n+s)'(2n+2s+1)(2n+2s+3)] G- (B1Y)
aul © ( 1)s(n+s)(kR)2n+2s—2 )
’”_[‘;, o S!(2n+38)!2n+2s+1) ]G
(=17 (M+5) (kR M+
+[ o S!(2M +5)! (2M+2s+1)ilQ’? (B.19)

and G? = (GHM+G!_,

(B.20)




