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Solitons in a linear lattice with defects

V NARASIMHA IYER* and K S VISWANATHAN

Department of Physics,- University of Kerala, Kariavattom, Trivandrum 695 581, India

*Department of Physics, Mahatma Gandhi College, Kesavadasapuram,
Trivandrum 695 004, India ’

.- MS received 11 August 1982; revised 8 March 1983

Abstract. Solitons are generated in an anharmoniclinear lattice in which neighbouring
atoms interact through a Morse potential by giving either a strong initial impulse or a
large displacement to an end atom. Studies on the variation of the characteristic
properties of the soliton with the strength of the initial pulse show that the velocity
and the amplitude of the soliton increase with the strength of the initial impulse, but
below a certain critical value for the initial impulse, only an oscillatory tailis generated.
1t is shown that when a defect is present in the lattice, a localised mode appears at the
site of the defect and additional solitons travelling forward or even backwards, are
generated. When two solitons collide at a defect region, they reemerge but leave a-
localised mode at the site of the defect. If an initial velocity is imparted to a parti-
cular particle, synchronously with the crossing of the particle by the soliton, a localised
mode emerges at the site of the particle and additional solitons are also generated.
When a soliton moves from a denser to a rarer medium, a strong localised pulse is
created near the region of the density discontinuity and additional solitons appear;
and further a weak oscillatory tail is left behind in the denser medium, On the other
hand, if a soliton moves from a rarer to a denser medium, it is reflected back and a
small localised mode is generated at the site of the density discontinuity. The varia-
tion of amplitude of the soliton with the velocity of propagation is also studied.
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1. Introduction

Solitons are finite amplitude waves having remarkable stability and can propagate
in a medium without distortion or change of shape. Solitons have been either
observed or studied in a variety of contexts, such as solid state, plasma or elementary
particle physics. Russell (1844) first noticed the remarkable stability of the solitary
wave in shallow water and also the break-up of an initial pulse into two solitons.
Korteweg and DeVries (1895) derived the nonlinear differential equation satisfied by
the solitary waves. Interest in the subject revived after the classical work of Zabusky
and Kruskal (1965) who showed by a series of numerical experiments that solitons are
extremely stable on collision. In the field of condensed matter physics, solitons find
applications in different topics such as phase transitions and critical phenomena,
spin waves, dislocations, defects in crystals and one dimensional metals. The diverse
applications of solitons in solid state physics have been reported in the excellent review
of Bishop and Schneider (1978). ; :

A linear lattice bound by anharmonic forces had been studied by Fermi et al (1955),
Toda (1970), Zabusky and Kruskal (1965). Hardy and Karo (1977) had made
theoretical and numerical studies of soliton-like behaviour in one-dimensional systems.
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Rolfe et al (1979) investigated the solitary wave motion on linear chains of equal
masses which interact either in accordance with Morse or Lennard-Jones potentials
with their nearest neighbours. They also studied the scattering of solitons by mass
inhomogeneities and showed that when the mass ratio is 13/12 a solitary wave survives
at least 500 collisions and its energy is modulated cyclically. In the present paper we
generate solitons in an anharmonic lattice by giving a strong initial impulse as well as
alarge displacement to a boundary atom. That the disturbance propagating through
the lattice represented in reality a soliton was verified from the characteristic properties
of the soliton, such as its stability, retention of shape through propagation or re-
emergence after collision with little distortion. We have investigated in particular the
effect of varying the initial impulse on the characteristic properties of the soliton and
the scattering of a soliton by a defect. The problems investigated in the paper are
different from those studied by Rolfe and Rice (1980). It is shown that when a.defect
is present in the lattice, a localised mode is generated at the site of the defect; addi-
tional solitons are also created at the site of the defect, some travelling even backwards.
The velocities of propagation and amplitudes of the additional solitons have been
found to be different from the original soliton. When two solitons collide at the site
of a defect, they re-emerge without much distortion but leave the trail of a localised
mode at the site of a defect. If the initial force imparted to the boundary atom is
increased, both the amplitude as well as the velocity of the solitons increase. If an
initial velocity is imparted synchronously with the crossing of a particular particle by
the soliton, a localised mode is produced at the site of this particle, and besides addi-
tional solitons are generated. Several initial or boundary value problems relating to
the propagation of solitons in a linear chain are also presented.

2. Equation of motion

We consider a linear lattice of N atoms each separated from its neighbour by an
equilibrium distance a. We restrict the interaction to the first neighbours only and

assume that the interaction potential between the neighbouring atoms is described by
the Morse potential of the form

'Vn+],n =k {1 — €Xp [—— B (un+1 - n)]}2 ) ’ (1)

where u, represents the instantaneous displacement of the nth atom from its eqﬁili-
“brium position; B and k are constants. The kinetic energy of the system is given by
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The relative displacement between two neighbours is dendted by
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Taking r;=u; and using (3), the kinetic energy of the system can be expressed as
m . \? ’
K= ) ( r f) : C)

We assume that a force £,(¢) is applied to the nth particle. The potential energy of
the system is given by

N

U= b= i), )
n=1 ) .
where  $, =V, oy =k [1=exp (B )] O ®

The momentum conjugate for r, is denoted by s, and is given by

N J

n $(50)

J=n I=1
" The Hamiltonian is a function of 7, and s,, and may be written as

N N
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The Hamiltonian equations of motion are given by . -
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‘Bquations (9) and (10) constitute a set of 2N equations in the variables r, and s,
which can be solved with the aid of a computer. For analysing our computational
results and for physical visualisation, it is necessary to return to the actual displace-
ment u,. In terms of u,, (9) and (10) may be written as

§;=—2k B [l — exp (— B uy)] exp (— B uy) + f1(0), -
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o =2k B[l — exp (— B (uy — p-1)] €xp [— B (ty — )] + £i(1)

(n=2,3,..,N) (11)
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Equation (11) represent a set of 2N simultaneous equations in the variables u, and
s,. They are a set of first order differential equations and can be solved using a
computer, under different initial and boundary conditions. We considered a lattice
consisting of 60 atoms. A computer program was written to solve the set of 2N
equations. The numerical method of solving (11) is different from the algorithm
mentioned by Rice et al (1979). We have solved the set of equations by fourth order
Runge-Kutta formulae with the modification due to Gill. The computer was
instructed to print the displacements u,, the relative displacements r, and the
vélocities u, of the set of N atoms at different periods of time at intervals of 2 units.
The equations were rewritten in non-dimensional form using 7=10-2* sec; displace-
ment unit=10-8 cm, mass unit=10"2* g and force unit=10"2 dynes.

Solitons were generated in the lattice by giving a large initial displacement to the
boundary atom and subjecting the atom to a force of infinitesimal duration. Mathe-
matically this can be achieved by treating the initial impulse as a delta function. The
remaining atoms are kept unaffected. Several numerical experiments were conducted
by modifying the initial and boundary conditions, as well as by introducing defects in
the lattice, some of which are as follows

(i) A large initial impulse was given to the first atom alone. The boundary
conditions are

£it) = Fy Ay [exp (= 1%/20)]

where A, is the Kronecker delta function. By taking 0=0-001, the Gaussian distri-
bution can be made to approximate a delta function. F, was given values of the
order 10* and 10® and B8 was given different values ranging from 3(3-333) to (3-333)
att=0;u, =iy =0foralli=1,N.

(if) A soliton was produced as above by introducing a large initial impulse to the
first atom and a vacancy was created at the 13th place of the linear chain.
(iif) The crossing of 2 solitons at the site of a defect was investigated. v
(1v) The parameters m, k and B were kept constant for n=21 to 60, but were changed
to 2m, 2k and 38 respectively for n=1, 20. The lattice corresponds to a medium
with different densities and the propagation of solitons in this lattice corresponds
~ to propagation in a medium with a discontinuous change of density at some
point. :
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-(v) When the soliton is crossing a particular atom, say the 48th atom, an instant-
aneous velocity was given to this particle. The effect of this.on the future time
development was studied.

(vi) The nature of propagation of the disturbance, when the initial force F, was
reduced by a factor of 10 to 103 from 10% was studied. ,

(vii) In addition to the impulse, an initial displacement of the order of the interatomic
spacing was given to the first atom.

3. Solitons produced by an initial impulse

Solitons were produced by giving a strong initial impulse characterised by the para-
meters Fy=2x 10%, B=13-333, to one end of a chain containing 60 atoms. The distur-
bance thus generated represented a soliton and this was verified by the fact that the
pulse travelled with uniform velocity and retained its height as well as width without
any distortion throughout the propagation up to the end of the chain. Further two
solitons generated at both ends of the lattice crossed each other without any change
of shape or velocity of propagation.

In figure 1 (A-D) is given the displacement pattern of the lattice at four different
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Flgures 1-4. 1. Displacement vs atom number., Parameters F, = 2 X 104,

B == 3-333; k = 03; T = 50 (for A), 100(for B); 140 (for C) and 300 (for D)

2. Relative dlsplacement vs atom number. Parameters same as that for figure 1.
.3, Parameters’ Fy = 5 X 10%; B=3.333; k=03, 4. Parameters F, =2 X 10%;

B=2x 3333; k=03 Xaxis1cm=10 atoms, Y axis=1 A .
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instants of time for a chain of 60 particles, when the first atom was given an initial force
Fy=2x10% The parameter B characterising the oscillation period was given the value
B=3-333. It is seen that a shock propagates in the lattice and the displacement suffers
a steep drop in value at a particular point in the lattice at any instant of time, Figure 2,
gives the plotof the relative displacement (u,—u,,) of the neighbouring atoms at four
different periods of time. It is seen that a soliton is generated in the lattice and it
travels forward in the lattice without any distortion or change of shape. In figure 3,
we consider the effect of increasing the strength of the initial force to understand how
the soliton parameters such as the pulse height, width and velocity of propagation
depend on the initial force. When the force is increased to 4x 104, both the ampli-
tude and the velocity of propagation increase. The amplitude increases by a factor of
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Figures 5-8. 5.. Displacement vs atom number. Parameters F, == 1000°0;
B =3 X 3333; k = 0-333. 6. Relative displacement vs atom number. Parameters
same as for figure 5. 7. Thecaseofa vacancy at the place of 13thatom. Parameters
Fo =3 X104 B x 3:333; k.=0333. 8, The case of crossing of an excited atom

by a soliton. A backward moving soliton crosses the 48th atom which is Just excited.
Xaxis 1 cm=10 atoms, Yaxis=1 A
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nearly 4/5/2~1:6,equal to the square-rootof the ratio of the initial forces, whereas the.

velocity increases by a factor approximately equal to the ratio of the initial forces.:
In figure 4, we compare the effect of increasing the parameter 8 by a factor 2. In the
absence of anharmonicity, 8 is proportional to the frequency of the zone edge mode.

It is-seen that as 8 increases by a factor 2, the pulse height decreases but the velocity of-

propagation.of the soliton increases rapidly. In figure 5, we show the nature of
displacement of the atoms when the initial force was reduced by a factor of twenty.
This figure corresponds to the case Fy=10% and B'=38. The increase in the B value
will ensure that the disturbance travels fast. The figure shows that the solution is no
longer.of the soliton type. It is seen that the displacement consists of a leading wave
followed by a train of waves or an oscillating tail. When soliton solutions are present,
the displacement has the character of a step-like function and figure 5 compared
with figure 1 will show the difference between the two cases. In figure 6, we plot the
relative displacements (v, — u,—;). Itis seen that instead of a pulse, we obtain an
oscillating solution. It is clear from these figures that the emergence of solitons
depends on the magnitude of the initial impulse and for values of F, below a critical
value, one obtains a train of waves instead of a solitary wave.

4, Interaction of a soliton with a defect

We next consider the case in which there is a vacancy in the lattice, say at the position
of the 13th atom. In order that the lattice may not break up, we assume a weak
coupling force between the 12th atom and the next atom (designated as 13th) at the
14th place in the lattice, the distance between these two atoms being twice the lattice
spacing. Alternatively our model corresponds to a lattice in which one bond in the
chain has a structure and strength different from the rest. While the equation of
motion of the atoms from 1 to 12 and from 14 to 60 remains unaltered, the equation
of motion of the atoms 12 and 13 near the vacancy gets altered. It can be shown that
the set of equations (11) undergo only a single change viz.

S13=—2k"B (1 —exp [— B (w5 — up)]) exp [— B’ (g — )] (12)

where k’ and B’ are constants of the Morse potential for the pair of atoms 12 and 13.
We are justified in taking k" < k and 8’ < B and for our calculation we have chosen
B'=RB/4 and k' = 2k/5.

Figure 7 (A-D), gives the plot of the time development of a solitary wave in a lattice
with a vacancy. The soliton was generated as before by giving a strong initial impulse
at one end of the chain with F,=3x 10 and B =3-333. Itis seen from figure 7a that a
soliton is travelling along the lattice at t=60; (7B) shows the nature of the relative
displacements of the atoms at time #= 100 when the soliton has just touched a vacancy.
In addition to the forward-moving soliton, a localised mode is produced at the site
of the vacancy. Our computer calculations show that for another 80 units of time,
the lattice undergoes a non-equilibrium phase and this can be seen from figure 7c¢
corresponding to t=160. The vacancy in fact arrests the free propagation of the
soliton. At time =160, two additional solitons have been produced and these
travel forward along the lattice. Figure 7D representing =250 shows that the
vacancy produces in addition a soliton travelling backwards. It is clear that a

B |
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vacancy arrests the free propagation of a soliton and scatters it. At the site of a
vacancy a strong localised mode is generated. Further additional solitons travelling
both forward as well as backwards are created by the vacancy and these seem to be a
general characteristic of the collision of a soliton with a vacancy.

Time development of the interaction of the soliton with 2 vacancy for various other
cases also have been studied with F, ranging from 1 X 104to 5§ X 104, but are not
reproduced in this paper. It is found that when the initial force is reduced to 1 x 104,
the soliton and the additional solitons created at the vacancy travel slowly. On the
other hand when the force is increased to 5 X 104, the initial soliton travels faster and
the vacancy generates two other solitons travelling forward and one soliton travelling
backward. The amplitudes of the additional solitons are different and they travel
with different velocities. The leading soliton always travels faster.

5. Interaction of a soliton with other excitations

What will happen when the atom that has been hit by the soliton is simultaneously
subjected to an increase in its velocity? In figure 8, the soliton was generated by
giving an initial impulse to the last atom and it travels backwards. It was observed
that the soliton crossed the 48th atom at time ¢ = 72. An initial velocity of 105 cm/
sec was given to this atom at ¢ = 72, when the soliton crossed it. The initial velocity
given is of the order of the velocities of the various atoms in the chain after the soliton
has crossed them. The time development of the relative displacements of the various
atoms in the chain is given in figure 8(b, c, d). It is seen that the initial velocity given
synchronously with the crossing of the soliton produces a localised mode and also
generates an additional soliton propagating in the opposite direction. The figure
also shows that the original soliton has gained both in its amplitude and the velocity
of propagation. '

6. Collision of two solitons at a defect

It is well-known that two solitons can collide and cross each other but they recover
their shape later. How far does this property hold good when they collide at the site
of a defect? To verify this, we generated two solitons from both the ends of a chain
in which the mid atom happened to be a vacancy. The time development of the
system is given in figure 9 (a~d). At time 7= 150 (figure 92) the 2 solitons approa-
ched each other close to the site of the defect. Figure 9b represents the system at
the instant of the collision and shows that there is a single soliton which has a double
peak or an internal structure. At time = 172, (figure 9¢) the 2 solitons have merged
into each other resulting in a single soliton of large amplitude. The system has been
found to be in a non-equilibrium phase from ¢ = 170 to 190 with the amplitudes of
the atoms surrounding the defect undergoing large oscillations, but thereafter settles
to a uniform state. Figure 9d, corresponding to ¢ = 250, shows that the two solitons
re-emerge after the collision without much distortion but a small trail consisting of a
localised mode is left at the site of the defect.




Solitons in a linear lattice with defects 423

T=150 A
(¢]
- 168 B
0
< L ANA
23‘:' (o
!c - 190
- 250 D
TV
1
0 30 60
n
)
A
oV

(Un'un-i)
o
T % T

0 30 60 o] 30 60
n n
(10) an

Figures 9-11. 9. Collision of two solitons at a vacancy at the place of 30th atom
in the chain of 60 atoms. 10, 11. Propagation of soliton in a medium with density
discontinuity. 10. Propagation of soliton from a rarer to denser medium 11. Pro-
pagation from a denser to rarer medium. X axis 1 cm=10 atoms, Y axis=1

77. Propagation of a soliton in a medium with a density discontinuity

There are several situations in physics in which a wave encounters a discontinuity in
the density of the medium as it propagates. To understand qualitatively the nature
of propagation of a soliton in a medium with density changes, we studied the case
of a linear lattice in which the atoms 1 to 20 have a mass m whereas the atoms from

21 to 60 had a different mass »’. The parameters chosen were Fy =3 X 10* and m, -

k and B for atoms 1 to 20 and 2m, 2k and 38 for 21 to 60. The soliton was produced
by an initial impulse to the boundary atom. Figure 10 (a-d) denotes the time deve-
lopment of the disturbance in such a hypothetical chain. The soliton reaches the
region of density change at ¢ = 150, and its propagation is smooth till then. The
subsequent figures show that the soliton gets reflected at the discontinuity. Further
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as before, a localised mode of moderate amplitude is created at the region of density
discontinuity and another soliton is created which moves forward. The amplitude
of the additional soliton created is much smaller than the original one, this is because
energy has to be imparted to a medium with higher density. The denser medium
could thus reflect a soliton. We then investigated the case of the propagation of
a soliton from a denser to a rarer medium and for this we exchanged the parameters
mentioned above. The propagation of the soliton in this case is depicted in figure
11(A~-D). It is seen that a strong localised mode, with a height greater than in the
preceding case is created near the discontinuity at the denser medium region. The
presence of a localised mode at the site of the discontinuity is reminiscent of the
creation of a shock during supersonic flow past an obstacle. Further two additional
solitons are created. The state of vibration in the region between atoms 1 and 19
is drawn as a zig-zag line in the figure as the amplitudes of these atoms are small,
but the same relative displacement when magnified by a factor of 50 is shown in
figure 12. When a soliton moves from a denser to a rarer medium, a strong localised
pulse is generated at the site of density change on the denser ‘medium side and
additional solitons are generated. Further the trail left by the soliton in the denser
medium consists of an oscillatory tail.

8. Solitons produced by an initial displacement

We have generated the solitons in all the above numerical experiments by imparting
a strong initial impulse to the boundary atom of the linear chain. Solitons can
alternatively be produced by giving an initial displacement, smaller but of the
order of the lattice spacing, to the boundary atom.

In figure 13, we draw the relative displacement pattern of the chain in which the
first atom is subjected to an initial displacement u; =10 att = 0. Tt is seen that
two solitons freely propagate in the lattice.

In this section we study the interaction of the soliton with a defect, situated at the
centre of the chain at the 30th place and having a mass different from the rest (m'
= m/2). The defect mass interacts with both its neighbours with a force different
from the rest of the pairs. Let k', 8 be the constants of the Morse potential for the
pairs of atoms (29, 30) and (30, 31) of the lattice. Tt is seen that three of the set of
equations (11) are to be modified as

Sg9 = — 2k'B’ {1 —exp [ — B (uz, — uas)]} exp [— B’ (uzp — tizg)]

S == 2B (L~exp [ — By — o)) exp [— B (g — 1))

and uyy = (539 — Sg1)/m’

the other equations of the set (11) remaining the same. : R
- Figure (13A~C) represents the state of disturbance in the lattice. Figure (13B)
corresponds to ¢ = 180, when the pair of solitons have touched the defect site.- Itis
‘seen that there are two strong localised modes of opposite amplitude at the site of the
defect atom. Figure (13C) corresponding to ¢ = 300, shows that in addition to the
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Figures 12-14. 12. The trail left by the soliton in the denser medium as.it passes
from denser to rarer medium. 13. Crossing of soliton through a defect mass placed
at the 30th place. The defect mass is taken as m/2 where m is the mass of every other
atom except the 30th. 14, A. u, =05 at r=0; B. u;,=0.75 at r=0; C.
uw, =1.0at ¢t =0. Xaxis 1 cm=10 atoms, Y axis=1 A B

two solitons which have travelled from the defect site, a few other solitons have been
generated close to the defect site. Our numerical data for different instants of time
suggest that the additional solitons in the system travel with a velocity different from
the original solitons and are slower. It may be seen that the soliton close to the defect
site has an internal structure with an additional peak. It is noticed that whenever
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Table 1. Velocity-amplitude relationship.

) ¢ Distaﬁme mlc;ved

Amplitude o by the peak in Time of travel Velocity*

soliton waves terms of C y
lattice spacing (10712 sec) (cms/sec)

A)

3 9a 180 500 a

>3 2Za - 250 800 a

70 6 a 38 1578 a

73 27 a 140 1928 a

*Velocity expressed in terms of a where the lattice spacingis a Au.

Common for all figures: Scale along X axis 1 cm = 10 atoms
Scale along Y axis 1cm = 14

a soliton shows an internal structure, it is in a non-equilibrium phase and it later
disintegrates into two or more solitons.

9. The velocity amplitude dependence

An important property of the soliton is that its velocity of propagation is dependent
on the amplitude. No experimental or numerical work seems to have been carried
out to verify this property. We have generated solitons of different amplitudes and
calculated their velocities of propagation in a chain of 60 atoms. The consolidated
result is given in figure 14, which clearly depicts the velocity dependence of the soli-
tons on their amplitudes. To achieve this, we changed the values of the initial dis-
placement u; (u; = 0-5, 0-75, 10, etc.,) at t=0. The amplitude or pulse height of a
soliton can be controlled by varying the initial displacement of the end atom. The
velocity of a soliton can be easily calculated by measuring the distance travelled bya
soliton in two adjacent intervals of time and dividing it by the time interval. The
amplitude vs velocity chart containing four different cases was thus obtained and is
reproduced in table 1.

The velocity of a sound wave in the lattice can easily be obtained from the equa-
tions of motion by ignoring the anharmonicity and for our lattice (8 = 3-333), it is
given by v = (447-2a) where a is the lattice spacing in Angstrém units. It is seen
from table 1 that a soliton always travels with a velocity greater than the sound wave

velocity in the medium and that the velocity of a soliton is an increasing function of

the amplitude. It also shows that the relationship between velocity and amplitude
is parabolic. ”
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