TR I TR T N I S e T ST T T

THE CORRELATED HARTREE-FOCK EQUATIONS
AND THE GENERALISED DENSITY MATRICES

By K. S. ViswaNATHAN,* F.A.Sc.
(Memoir No. 126 of the Raman Research Institute, Bangalore-6)

Received January 12, 1961

. INTRODUCTION

ONE of the important problems of molecular chemistry concerns the evalua-
tion of the correlation energy of molecules and the study, in general, of cor-
relation effects in many-electron systems. The motions ol the electrons in
atomic or molecular systems are not independent of each other but are
dependent on (or correlated with) the positions and spins of the other elec-
trons. This correlation now is of two kinds—the first one arising from the
limitations imposed by the Pauli Exclusion Principle which forbids two
electrons of the same spin to stay in the same state, and the second kind
arising from the strong Coulomb repulsion experienced by any two electrons
when they try to approach each other closely.

The standard method of solving many-electron problems in quantum
mechanics is by means of the Hartree-Fock equations, which are the varia-
tional equations of the Hamiltonian operator for a wave function that is a
determinantal expression in the one-electron orbitals. Since the wave
function is a determinant in the one-electron orbitals of the different electrons
of the system, it will vanish when the co-ordinates of any two electrons
having the same spin become identical and thus the Pauli Principle is implicit
in this scheme. Or in other words, the Hartree-Fock equations suggest
and bring within their scheme the correlation between electrons of the same
spin, but because of the o:e-electron approximation they.fail adequately to
take into account of the Coulomb repulsion effects between the electrons.
Experience has in fact shown that the H. F. equations give a much higher
value for the energy of a molecular system than the experimentally observed
one; this is to be expected because the H.F. equations neglect the Coulomb
correlation between the electrons and would consequently contribute.a much
higher value for the repulsion energy of the system than is actually possible.

Coulomb correlation between the electrons can be brought into the
theoretical formalism in several ways, but the simplest and most direct method
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of them all is to multiply the wave function by a correlation factor g (7, 1)

..) which is symmetric in the inter-electronic distances ry,, q5... ... , etc.
Such a method has been found to be very effective for two electron systems
like Hetions and the hydrogen molecule, and it has been shown by Hyllerass,
Léwdin and Redei that by using simple correlation factors of the type e%'u
or (1 + ary,), the energy for the Helium atom could be improved much
beyond the value yielded by the H.F. equations. The introduction of the
correlation factor modifies the field in which an electron is moving, and
each electron moves in the average potential field of the remaining electrons
subject to the condition that no two electrons can approach each other
closely. The wave functions of the different electrons moving in such a
correlated field will be different from the one electron orbitals obtained by
solving the H.F. equations, and an important problem in the study of cor-
relation effects is to determine the one-electron orbitals in this case. The
equations determining these orbitals are given in Section 4 by making use
of a formula given by Lowdin; in Section 8 we give the correlated Hartree-
Fock equations for non-stationary systems. In Section 4, we have given
the integro-differential equations satisfied by the generalised density matrices,
and from these it is shown that one can obtain an expression for the energy
matrix of the system which will be useful in determining a correlated Thomas-
Fermi destribution. In Section 7, some remarks are made on the effects
of correlation by a study of the general equations for the simple case of two
electron systems.

2. DENSITY MATRICES

Let ¥ (x;, X3, ..., Xxy) be the normalised ecigenfunction of the system
so that we have

[ ¥P*¥dr =1 (1)
where

Id‘f =Idx1dX2 .o de

denotes integration over all space co-ordinates and summation over spin
co-ordinates. The generalised dens1ty matrices have been deﬁned by
Lowdin as follows:

T (xy | x)

= N[ ¥*(x,/x, xy) 'If(xlxgl. coXn) dxg . dxy
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I (x,'x, | x.x,)

N '
_(2])f'lf*(x1x2x3...xN)‘F(xlxz...xN) dX;g...de
Ixyxy oooxp' [ x3%5 .00 Xp)

f P* (0%, o xpxpy X)) ¥ O
X dXpyy - oo dXy. )

For a system of N electrons, ¥ is an anti-symmetric function of the co-
ordinates (space as well as spin) of the electrons and we choose for ¥ the
following determinant:

¥ (xx) o (xp) - Py ()

P = (NI~ Pi(xn) $a(xa) ... dn(xy) . 3)

------------------------

P(xn) o (xx) ... ¥y (x)

We assume for the sake of simplicity that the ¢’s form an ortho-normal
system so that we have

[ i* (%) e (x) dx = §i. | @)

Now

1 1
WY = o0 = g detl pig )

where

pij = ZNsbk* (x3) e ().

k=1

For future applications, we need also the Quahtity p'i; defined by

= 3 * () e () ©

k=1
Since the ¢’s form an ortho-normal set, we have

[ pinpnjdxx = pij. (7

haty
i

BiSiy o it 2 e

i
il
i
i
B
1




i72 K. S. VISWANATHAN

The integral of p over the co-ordinates of the various electrons has been
given in Mott and Sneddon.® By adopting a similar ‘procedure for the
evaluation of the integrals and making use of (7), we can show that

I(x, | X)=p1u=p

1 P P 1
L (3% | X1%0) = 53 , = 77 P2
2! Pa P 2! ,
P - Pip
ro ’ . . 1 1 ’
P(xlxz...xplxl...,xp)_.ﬁ ........... = 51P' (8)
Ppr--- Ppp

where we have written p’p for the determinant in the above line containing
p rows and p columns.

There are several problems that deal with time-dependent processes,
and the density matrices in such cases can be defined analogous to (2). Thus
if ¥ (x,%, ... xyt) is the normalised time-dependent wave function for the
system, we define the density matrix of order p as follows:—

T (X% .. xp't' | %5 - .. Xpl)

_ (N) V¥ (3% ... Xp'Xpyy oo xnt’) (g ... Xnl)
P dxp+1 e de. (2 a)

If as before we choose for ¥ a determinant built from one-electron orbitals
so that

¥ (xy ... oxnt) = (N~ det {y (x12) - . . P (x0)} (B a)
where the orbitals iy, ¢, ...,y satisfy the orthonormality conditions

Fis* (et) r® () dx = i 4 a)
then it follows that

T(x/x3 oo xp't' | %1 00 Xpt) = Pp%' . | 8 a)

In the above

Pu Pz P
, | Pn P'22~--Pzp

................
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and-
Py =p (x5 xit) = 2¢k*(xz ¢k(xg) - (6a

Further if G (x;x, ... x7) is a symmetric function of the co-ordinates o
| electrons, it can be shown (see Appendix I for proof) that

N
(1) f G iy .. x) Ly .. ey

NT
1 —1—1
n'ﬂfG(xl X)) pl+1dx1 - dxyy T )

P pr Pi

| G|

XY ey oodagy | Pl P Pun |- ©)
'l 0P 14,1 0 '

o

3. THE ENERGY OF THE SYSTEM

The Hartree-Fock equations are the Euler differential equations of the
variational principle

8| P*HWdr = 0. (10)

In view of the one-electron approximation, the Hartree-Fock equations
do not adequately take into account of the Coulomb correlation, and we shall,
following Lowdin, take the correlated wave function of the system as the
product of a correlation factor which is a symmetric function of the inter-
electronic distances and the Slater determinant. The wave function @ for
the system then becomes

D =gty rs..) ¥ (11)
For g, we shall choose the form
g(r123713---)=“+5%f(rij) | (11 )
i<

where the functions f(r;;) are supposed to be known. The simple functions
r,g or (¢¥» — 1) may be regarded as good choices for the correlation function
f(r2). One of the constants, say o, can be determined from the condition

[®* Gdr = | (11 5)
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and B can then be chosen as the best parameter minimising the energy. Now
the best one-electron wave functions hix) (=12 ..., N) can be determined
from the variational principle

W = § [ O*HPdr = 5[ p» H.¥dr =0 (12)
where |
H. = gHg. (13)

Before writing down the variational equations we shall first fix the form
of Hc.

Now

He = {a + 8 2 f(rij)} {é’: Ei+1 _2; F(Jéi, xk)}
X {a + 8 é‘ f("ij)}

i<y

N
= a? {‘E Ei+4 213 F (x;, xk)}
N
+ aof z 2 [f(rs0), EG))
b

+ 2a8 z %‘ S (rse) F (x;, xx)

1<t i<k

1 i=1 8’tr
<t <

+52{Z‘ > Z JUs)E (@) f(rsr)

8t ik L1634
<<t i<k s’y

+ 2 2 X f@r st) F (xi, xp.) f (r s't')}

=L+T,+T,+T, (149

In the above [u, v] denotes the operator (uv 4 vu). Consider now the term T,.
The summation here contajns N2 (N —1)/2 terms. Of these, the number
of terms for which i, s and ¢ are different 1s 3 () while the number of terms
ipvolving two indices only is N N — 1),
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Let us write
Ty(,8) = aB[f(ris), EG) -+ E ()] |
Ta(iy5,1) = oB{[f (rst), E()] + [f (rit), E(5)]

+ £ (i) E (] - (59
Then |
| T2 = ‘Z, T2 (ia S) + 2 T2 (ls §) t)' (15 b)
i<s i<rgy

Consider next T,. The summation over i, k, (i< k) and s, (s < ?)
contains N2(N — 1)%/4 terms. Of these, there are (£) (}) terms of the
type 7st F (x;, xx) involving four different indices, 6 (3) terms of the type
F (x;, x¢) ris involving three different indices and (§) terms of the type
tig F (x;, xx) involving two indices only. If we write

T3 (4, ) = 208 f (ris) F (xi, x5)
Ty (i’ S t) = 208 [F (xia Xf;) (f (P’ is) +f (T St)) +F (Xi, Xs)

X (fri)) + frst)) + F (s, x0) (f (rsd) + £ (1)) ]
Ty (i, k, 5, 1) = 208 [ f(rir) F (x, x¢) + five similar terms arising

from the permutation of i, &, s and f],

then
T3 = 2 T3 (I: S) + 2 T‘E (la S, t) "l" 2 T3 (l3 k1 \) t)' (16)
<k i<hes (<hgicy

We shall finally consider T,. The first term of T,, involving the operators
Ei, consists of N3 (N — 1)%/4 terms and these can be split up into 30 (3)
terms containing five different indices, 48 (3) terms containing four differ-
ent indices, 21 (3) terms containing three different indices and 2 (3) terms
containing two different indices. Similarly the second term of T, involving
the operators F (x;, xi) consists of N3 (N — 1)3/8 terms cnd the terms invol-
ving 2, 3, ..., 6 different indices in this are given by the relation

O o0 () +100(F) + 14 (§) +24(3)

+(3): (17

)
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Let us denote by T,(,8), TG 5,0, To( k,8,8) ... Ty k, s, ¢, 5, 1) the
terms in T, involving 2,3, ..., 6 different indices. Then

Ta= 2 TG+ ...+ 2 2 5 TiGksts, ). (18)

ik st 8’

i<s ICr<a<t <o’ <t
We shall now write
Hci = CL2 E(I)

He? (i, $) = a® F (v, %) + To (i 9) + T (i ) + To (i 8)
He* (G, 8, 0) =T (i, s, ) + TG 5,0 + T, 5, 0)

..................................................

HE Gk, s, 1,5, ) =T,k s, t,8,0). 19

Then obviously

N
H, = E 'Hcl(f)+§—! E' He2 (i, s) + ... +31~!
=] 4.8

X3 Y0, )
L, 8t,

1424

We may note that the functions He! (xy, x,, ..., X]) are symmetric in their
arguments.

Now ,
W = [ 0* HOdr = | ¥* H Wdr. 21
From (20) and (8) we have
W = [He' (x)) I'(xy" | x1) dxy + [ He? (eyxo) I' (' X"3 | %1%9) dxydxg
4 o T HEE Goxg.oxg) T(xy o g | Xq. . - Xg) dXy. . .dX.
(22)

where we are following the convention that, in the integrands, the operators
He' (x1), He? (x4, x2) . .. operate only on the unprimed co-ordinates xy, ..., Xg
and that, after these operations have been carried out, we have to put
X7 =Xy; X' = X5 ...; X’ = X; before the integrations.

We see from (22) that the energy of the system is a functional of thg
density matrices alome.
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4. THE CORRELATED HARTREE-FOCK EQUATIONS

Lowdin has determined the one-electron functions ¢y, 4, ..., ¥n
that make the determinant ¥ the  best’ approximation for the eigenvalue
problem

Qop. ¥V = WY (23)
where £op. is 2 many-particle operator expressible as
l ' 1 '
Qop. = & + 295,+2!29ij+§~!-2 Qi+ ... (24)
i if ik

The prime in the above indicates that the summation excludes terms having
two or more indices equal.

The equations determining the functions ¢y, ¢y, ..., ¥y are given by

e () P ()
p(xgs %) p(%y'%y)
Ui () P (x5) g ()
+ 2“1‘, f Qs | p(x)  pOe/x)  p(xa'xy) | dxads
p(xy'x)  p(xs'xg)  p(xy'xa)

dx,

Qe (x1) + f £

= g Neithi (%1)- (25)

fm ]

Now H, is a many-particle operator similar to (24) and thus the best one-
electron orbitals that minimisc the energy of the system can be obtained
from (25) by replacing Qop. by He. By expanding the determinants in (25)
along the first row and denoting by p1.;; the co-factor of p'y; in p';, we can
write the integro-differential equations determining the correlated orbitals as

‘ Hcl (xl) ¢k (xl) + Z (?'“_}_*'1“5“, f Hcl (xlxz ces JCI)

X Z P1; e (%) dxy ... dxy

i=1

N
— Z /\kil)bi (xl) = () (k = l; 2: ey N)'* | (26)
{iml

1:’
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The conjugate complex of the above equation is given by

He' (o) P* (1) + Z U—_—_Ll—)j f He! (2 - .- x1)

]

X Z P *1; 15 % % () dx, ... dxy

- Z Nighi* (o) = 0 | @n

Equations (26) determine the correlated orbitals ; (x;). They are
a generalisation of the Hartree-Fock equations and since they explicitly take
into account of correlation effects, they can be expected to give better theo-
retical values for physical parameters like energy, than the simple Hartree-
Fock system of equations.

From (26) we have
= D o [ G HE G )
J (l—-l)! ) 1) Ile 1--- N
1=1
1

X E p'1; 151 (x5) dxy ... dxy (28)

and from (27) we see that
Mei = A¥i. (29)

As in the H.F. scheme we see that the Ay; are a set of arbitrary constants
forming a Hermitean matrix. Again as in the H.F. scheme, the set of orbitals
1, P, - .., Py are not uniquely determined as the equations (26) are in-
variant under an orthogonal transformation of these functions. The ele-

ments p';; of the density matrices (and consequently the density matrices
themselves) are, however, uniquely determined.

Multiplying (26) by ¥1* (x,"), summing over k& and remembering that

1

1 4 ’ ’ ’
T‘: Pl;ljp]j'—_r(xl PR xl, !.xl.--XL) (30)

{=1
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we get from (26), (28) and (30) that

E lchl(xl...xz)I’(xl’,xz’,...,xz’lxl...x;)dxg...dxz

=1

]
2 L |
== m f Pychl (x.uX2 oo x&)

I=1

P’m P - Pl
Plow Paz--- pPal

dx,dx, ... dx. (31)

Multiplying (26) by #%* (x,) and subtracting from it the corresponding

equation for the conjugate of i (x,) multiplied by i (x;,) and summing
over k, one gets -

zzzjj(_l_—:lT)ﬂ!chl(xl N 4))

P'ul P'a.z ca P'll

X P21 Pa2--.pP2l dX2...dx1

----------------

P’m P’12 . P’1l

> P2a P22---Pal dx, ... dxp. 32)

---------------

Pla Pla---PUu

'Equa‘gions (31) and (32) are integro-differential equations governing the density
matrices. When correlation effects are neglected, we have g = | and there-
fore « =1 and B = 0. It can easily be verified that in this case equations
(26) reduce to the ordinary Hartree-Fock equations. Further, if we write




it eSS ST, o o

et

]

F (1, xp) = €*| ryp and B (xy) = | F (x;, x5) p (%3, X3) dx, then equation: (32)
reduces to the well-known equation.®

E®+Bx)—EE)—BX)}plx x)
— [F @, x) —~F &, xD)]p (x, x7) p (x", x7) dx" = 0. (33)
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If we write

p? - h?
E(x) = %"" V(x) = - gﬂzm vx2 + V (X),

equation (31) becomes

~ go [ 36— ¥) Ve (X  + (V + B p 5 )
= [F (6 %) p (6 %) Pdx + [ p (¥, %) E () p (3, ¥) d’
+IF G, %) | p (%) [2 o (', x') ddx’
(R, %) p (¥, x) p(x, x") p (x", x) dr'dx". (34)

The above equation can be used to determine the charge density p (x, x)
of the electron cloud of the. atom.

5. THE ENERGY MATRIX

Let us now consider in greater detail the left-hand side of equation (32).
We have

‘ , ° ] P
LH.S. = He' (x) p'art Z (-1t 1;;2 (Al dx; &
=2

Pax Paz--- Pal
Pu P pla

---------------

Pu Pla---Pu

, Z L (u,
= He' (xy) p'ay + (7:——_1)'.' Hcl(xl ce. X1)
i i=2

1
X {p'.up'z; u + E, P,akP,l;lk} dx . .. dxy. (35)

k=2




Correlated Hartree-Fock Equations & Generalised Density Matrices 181

Now since He! (x; ... X1) is a symmetric function of X1y Xgy - .5 X1, it can
be seen by simple transpositions (x, xx) (k =3, ...,1) of the integration
variables X, Xy, ..., X that the (/ — 1) terms in the second summation of
the above integral are all equal to [ He! (x; ... X7) p/gp0's: 108X, . . . di.

Thus,
LH.S. = He' (x)) p'ay + U:Lm f He! (% ... xy)

X {P'a1P'l‘11 + (- 1) P'azp'l‘m} dx, ... dx;. (36)

Now pij = p (i, X;) = & ic* (x3) i (x;) can be regarded as the (x;, x;)-th
element of a continuous matrix p. We shall define a matrix K (xz, Xy)
by means of the following relation:

K (x5, ;) = K* (x5, x7) + Z (l Kl (35, %) (37)

where
K (%5, 1) = [ 8 (xy — ) He! (0, py) 8 (7 — X)) dy
K! (g X1) = 8 (xy — Xy) B! (e)) + (= 1) J H! (¥ ... x7)

X p'1; dXy ... dxy; , (38)
and \
B! (x) = [He' (%, ... x)) Prudx, ... dx. - (39
We shall define the (al)-th clement of the product by pK? by
(PK ey = [ K (xy, x1) p (Xg05) . - (40)

The definition is the same as the usual matrix multiplication law, but we take
care to write p (x,, xy) after the operator K (xy, x;) so that the latter can
operate on p (x,, x,). We can then show the left-hand side of equation
(32) to be the (al)-th clement of pK. We have in fact

(PKl)am = [ 8 (xy — Xp) B! (1) p (X, X5) dx,
+ (= DIH (o XD Pl ity . dy

i
= B! () Pl +f H! (x) ... x1) kZ; P11k akXs . . . dXy
Par’ Pag-- Pl

z.chl(xl-..xz,) Pan Paz--.Pal dx, ... dx;. (41)

...............
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Further H¢! (x;) p’'o1 1s obviously the (al)-th element of pK!. Thus the left-
hand side of equation (32) is the (a')-th element of pK. Similarly

HaGap 4 ] b [
R.H.S. = H, (%;}P 1a T £ C—D!J dx,...dx "

P1a Pz --- Pl
P2 Paa--- Pl

--------------

X

= He' (%) par +Z(N_l)1 ]....1)!

X [ (XX - .- xy) Hel (%5 ... x7)
X P*(xpXe ... Xn) dXs ... dxy

= He' (x4) par +Z(N Y (1._1)1

X I‘Il (XaXg ... Xn) Hc (Xaxs ... x1)
X ¥(X3Xg ... Xn)dXy ... dxy 42)
since He! is a real operator.
Thus we have

Z 1 » el
R.H.S. == I‘{c1 (xa.) Pay’ + (l —_ 1)’ fliccz (xf dXI, xl)

Plal P’a.2 .o Prcl
’ ’ I 4
% P2 Pog -+« Pal . (43)
P2 P'u

Now

| (Kp)al = Z (1’__}71'5" f Kl (xa.s xﬂ) P' (xz, xl) dXZ

= D a5 B ) P+ U= DIHE (o - )

X p'1; gap 2dXs . . . dX1}
= RH.S. (44)
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as can be seen by expanding the determinants in (43) along their first columns.
Thus the equation (32) is the (al)-th element of Kp — pK. Hence we can
write :

Kp — pK = 0. (45)

Thc second term in Kj (x,, x;) subtracts from the matrix B{x,, x;) =
8 (xy— x1) B (x;) the physically irrelevant terms corresponding to the action of
an electron upon itself and at the same time accounts for the exchange effect.

We can in fact express the energy of the systém in terms of the matrices
K (x;, x,) we have

W=D [p ( If,lﬂ | )

where D denotes the diagonal sum or spur.

The matrix K is a generalisation of the matrix (E + B — A) (see Frenkel,
pages 428-36) for the case when correlation is introduced into the theoretical
formalism, and reduces to the latter when correlation is neglected. It can
thus be regarded as the energy matrix for the system in analogy with the
theory of the density matrix based on the Hartree-Fock equations. The
importance of the energy matrix lies in the facility with which it enables one
to pass on to a representation in the phase space and thus to obtain a semi-
classical expression for the density of the charge cloud of the system. It is
well known that by transforming the matrix XK (x;, x;) into one {K (x;, p,)}
involving the position and momentum of the particles, one can obtain
the so-called Thomas-Fermi-Dirac equation that includes exchange effects
besides. Thus the matrix K (x;, x;) defined in (37) can be used as a con-
venient starting-point to derive the equation governing the charge cloud .of a
molecular system; the details of this transformation theory leading.to .a
correlated Thomas-Fermi charge distribution will be published separately
in a different paper. |

6. A GENERAL CORRELATION FACTOR

In the above discussion, we have chosen a correlation factor which is
a linear function of f(ri;) where r;; is the inter-electronic distance between
the i-th and j-th electrons; each term of gthus contains the co-ordinates of
two electrons only. While this type of correlation factor is the simplest
to deal with and can certainly be expected to improve the H.F. equations,
it does not take into account of the multiple correlations connecting the

e R
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positions of different electrons at the same time. A general correlation
function is either a polynomial in the (%) inter-electronic distances or a
convergent power series in them. Let us suppose that H, (= gHg) is of the

form
- Z {Z I He! (%, Xa5 - - -y xl)} C)]

o1, ol

The correlated H.F. equations in this case become

N 1 J—
i
Dt S B o 3 o G dv, . dn
1=1

J=1

. .
— 2 Arihi (x) = 0 (k=1,2,...,N). (48)
. iml

The difference between (48) and (26) conmsists only in the summation
for /; while in (26) the summation for / runs from 1 to 6, in (48), it runs from
1 to N. The integro-differential equations satisfied by the density matrices
in this case can be obtained from (31) and (32) by making the summation
for / to run from 1 to N.

7. SpeCIAL CASE

In this section, we write down the explicit form of the correlated H.F.
equations for the case of the simplest two-electron system, namely the Helium
atom. We do not propose to evaluate the energy of the system as this has
been done by several authors, but give the form of the equations (26) as this
might enable one to have some insight into the meaning of these equations.
We have here

He' = B (x) = a? {22 —“Ziz}

(2m ry

H.2 (x;, X5) = a?F (%15 X5) +.°-ﬁ [f(re), E (x) +E (x2)]

2aﬂ€ f(r12) + ﬂzf(rn) [E (xl) —+ E(xz)]f(rlz)

4 B f2 (rg) (49)

Ti2
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Equations (28) become
Het (x) Py (%) + [ He® (g, x0) ha* (x2) doxy] 3y (xy)
— [J He® (ep, xa) 2™ () () dxs] oy ()
= Eyfy (x) (50)

and a similar equation for electron 2 which may be obtained from the above
by interchanging the indices 1 and 2. In the above we have chosen a dia-
gonal representation for the matrix (A;), and E, and E, denote the diagonal
elements. Hc' denotes the kinctic energy operator of the clctron 1 plus
its potential energy in the field of the nuclei. The second term in the brac-
ket gives the average of the operator He* (x;, x5) for all positions of the electron
2 and the third term gives the exchange effects. Since He? (x4, x,) contains
a term o®F (x;, x,), the part of it containing the factor o* can be interpreted
as the potential energy of el:ctron 1 moving in the average electric field of
electron 2. The terms afB [f(ry), E(xy) + E (x,)] give the influence of
correlation on the kinetic energies of the electrons. The term [of [ f (ry)
o® (x2) dx,] E (xy) especially shows that the kinetic energy of electron 1
is not independent of the motion of the clectron 2, but is correlated with it.
Since correlation reduces the chances of two clectrons coming close to each
other, it also reduces the fluctuations in the kinetic energies of the electrons
and thus tends to make the distributions of the kinetic energies rather uni-
form. If we take f(ryp) = ry, then of [ f(rs)/rn i (x2) dxy = aB.2 and
therefore the Hamiltonian for the electron 1 contains a constant term. By
transferring this term to the right-hand side, the latter becomes (e, — afe?) iy
and thus the influence of the corrclation factor is to reduce the energy of
the system. Since f(ry,) is an increasing function of ry,, the effect of the
term B2e%f 2 (ryy)/rye in He?® (x4, X,) will be to increase the average inter-electro-
nic distance and consequently to diminish the energy of the system.

8. NON-STATIONARY SYSTEMS

There are several problems of physical and chemical importance that
depend for their solution on the time-dependent Schroedinger equation

(2 +52)x =0 | (51)

In this section, we consider such non-stationary systems and find out the

orbitals ¥ (x, £) that make the function @ = g¥, where ¥ is given by
A2
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(3 @), the ¢ best’ approximation for the equation (51). These orbitals are
given by the variational principle

' h 2 . 52

or

5 f w* (He — i1G ;t) Wdr = (52 a)
where

G = g*

1 2 v . . 1 2 v’ N
= a® + i'f G(l:/) -} 31 G (lajs K
) 1%} ’ itk

1211
G (i,)) = 2a8f (rij) + B 2 (rij);
G (G, j, k)= 28* [f(rig‘) {(fCry) + S rud) | ./'("jk)./'("ik)}];
G (G, j, k. =282 { f (rsj) [ (ri)> 4 f(rie) /' (rs0) + £ ra) f(redy. (54)

We shall now evaluate the variation in (52 «) in two steps: first find out the
variation of J, = [ ¥* H.Wdr and secondly calculate the variation of

L= [ ceilan (55)
(a) First consider
8Y; = [SW* H Wdr + [ SWHW™ dr. (56)

Now | ¥* H, Wdr is given by (22) and [ 8¥* H.Wdr can be obtained
from this by varying only the primed quantities (or the quantitics with an
aesterisk) without varying iy, ¥, ..., ¥n. We shall denote variations of
this type by 8*. Similarly [ W H¥* dr can be obtained by replacing the
I”s in (22) by their complex conjugates and varying only the functions
P fe, o I IT*(xy'xy o.oxy' Xy ... x) ([==1,2,...,6). As men-
tioned earlier we follow the convention - that the operators He! and dfdr
operate only on the unprimed quantities and that after these operations have

been performed one should put x;’ = x; (/i = 1,2, ..., N) and ' == r in
the integrals.
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Since by (8 a) the Is are functions of p'ij, we have
8* P(.xl'x“)" P xl’ { .xl v xl)

_ A (x)" oy LX) 5% oy
Z 'y Y

i

¥ N
l 7 1

T 1
where py; 45 is the co-factor of p'y; in p'y.
Now

JOW* H VW dr

]
=8 X [Hel(xy oo x) Ty o x|y o x)dxy . dxg

HE-E3
4 1, ‘ l N
= xé] FHe (N oo xp) ‘?, DANSIET { 2 8 yn* (xi') e (xj)}
Wil P LD Roas
X dx, ... dx
¢

i
_ E ’ llszcl (X ... X))

Raw
¥

N
1 X 2 P11 2 8 yhic™* (x.") e (1x3)
ham)

js1

L 3 s N
£ ) D eu D omah. 6y

dany Jwy

Now the terms corresponding to the cases 7 = 2, 3, ..., [ can all be obtained i
from the first term of the above bracket by means of the cyclic permutations
(xy, xg); (vy, x5 ..« (v xp) of the integration variables and thus the sums
corresponding to the cases ¢ - 2,3, ..., [ are all identical with the sum cor-
responding to the case i = 1. Thus i
JOW* HoW dr

[}] l
- E (- mf He! Gy ... x1)
H N
X z 2 Pu g Sre (X)) e (x) b dxy .. de (59) ]
ki g

jm=1
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A similar expression follows for [ 8¥H,¥* dr in which the variation acts

on the unasterisked quantities alone. Thus

= J=1 K=,
X {He! (% - . x0) p1; 1t (g) dxy - .. dxy}
4+ [ dPH.V* dr.

(b) Next we have

8Jy = J‘GS'{’* —wwd'r — {G&V 2 d.

Now
s [ Gwe 2L g
Z f BW* Cay, 1) 22 D) g
4
-+ sx L f(}(x X)) Pl+1d d
/! . 1 l Jq .. xl“Fl
=2
4' (N —{
— J— l »
.}-Z Sy [) S*J GQxy oo ) Quuydxy ...
=2
where
P11 P1o v v ven.. .. Piliy
P21 Posg « - oL, Palt
Ql—;-] S T
pll pl:?, ........ pu“
bp'z;1,1 :‘}P:l-u,l 0
N
== E b
- f&ﬁk*(x " V}k;}\a’ Dy + 1y + 1,

(60)

(61

deHw

(62)

(63)

(64)
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where 1, and ¢, denote respectiveiy the second and third terms in the above
expression. We shall first consider 7, We have

tz_.Zl'S*fG(xl x) “+1dx,. . dxge,
;—_le—!fG(xl x1)~8 Pl A%y ... dxyy
Z far:
1y dx, .. abq+1
{Z’ Z Pl Z’ Bi* (x1) (xg)} 65

=1 j=1
Now the integrals of the sums corresponding to the cases i=2,3,...,/
are all identical with the integral for the case i = l. Further let us inter-

change the integration variables x, and xy,, in the sum correspondmg to
the case i =1+ 1. Then we get

1.‘2::—-Z-l-l—!f[lG(xl...xz)—I-G(xz...xz,H]

1=2

Z 8 Pre* (%) — i IH dll - dX1y (66)

where

i ¢k (xla t) l/"k (Xg, t) ces ¢k (xl+11 t)
| Pa p'as e Plali ) (67)

----------------------------

/ 14 !
LP L, P 41,2 coe Pl U,

Next
(N~—/-) G(x1 x1)

fy = P —

{Z’ Z Quasi ( Z Sic* () (x,))

i=1 i=1

£ ) Qg (Z B ) ?‘b’“ (ﬁ))} )

=1

1=2
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Now
Quiz; 14, § = Pla; i, §- (69)

Interchange as before the variables x,; and x; in the sccond term in the
bracket of the above integral. Then we get

Iy = Z (N = l- l)f Z Sibrc* () dxy ... dxyy
{IG (2 ... x1) Z Quia; 1 Y (xg)

+ G (% ... X14y) Z Plr: 1j ° (ﬁkc (M)} (70)
" (¢) Thirdly the orbitals #; (x) satisfy the orthonormality conditions
[ e* () i (xy) dey = 0 @y

or

Nei [ Src™® (xr) i (1) dxy + Apeq [ ic™ (1) Oiby (x1) doey = 0
(k=12 ...,N) (72)

where Ay; are arbitrary constants.

Subtracting (72) from & (J, — i# J,) which is given by (60), (64), (66) and
(70) and equating to zero the coefficients of the variations 8f* (xy), we get

l
X f Hel(x, ... xp) E P 1j i (X5) dxy .. dx

=1

Rl
_ mZ i fU6E . W+ Gl x)

BP l+1 dx2 deH
o Z (N—— L= 1)
=2
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X f {IG (% ... xy) E‘ Qg 5 ¥ (x5) . -

i=1

. .
b .
+G (.. x1) Z’ PL; 15 ¢kat(x’)} dx, ... dxpy

i=1

- Z Nt i () L ®

and a similar equation for the complex conjugate of iy (x).

In the above equation, the Lagrangian multipliers A; are functions of
time; further when correlation is neglected, (21) reduces to the time-dependent
H.F. equations as can. be seen by putting o =1 and g = 0.
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SUMMARY

The paper deals with a study of correlation effects in many-electron
systems. Coulomb correlation is introduced into the theory by multiplying
the Slater determinant formed from the one-electron orbitals by a correlation
factor which is a symmetric and increasing function of the inter-electronic
distances. The integro-differential equations satisfied by the best one-
electron orbitals have then been deduced for non-stationary systems. From
the extended Hart-ee-Fock equations given by Lowdin, the integro-differ-
ential equations satisfied by the density matrices have been derived. An
expression for the energy-matrix of the system which is helpful in deriving
a correlated Thomas-Fermi charge distribution, has also been given.
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APPENDIX I

We shall here evaluate

N
Tl=£NL!—f G(x1x2 xz) dex de .

and prove the relation (9) of Section 2. We have

o) o,

dx, ...
{ E, E’ PN;ij “3 -+ E 2 Px; z] } (2)
=1 i=1 iz=k41 J=
= T, + T, (say) (3)

where T, denotes the summation of i from 1 to 6 and T, denotes the sum

of terms for i=1+1 to N. Since G (x;, ..., x) is a symmetric function

of xy, ..., X1, the integrals of the sums corresponding to the terms /i = 2, 3,
.., | are all identical with the sum for the case i = 1. Thus

G Z
f IG(x; ... x)) PN; 1 3;;;1 dx; ... dxy. 4)

Again the integrals corresPOHding to the cases j == l + 2,1 1 N are

seen by the transpositions of the 1ntegrat1on varlables (xz.H, xm) (.xm, X1i)
"ev oy (X149, Xx). Further when j < (I + 2),

Jon;aj dxtyg . . dxy = N—-D! Plia; 13- )
Thus '

=1 IG(x...x)
T1 l! dx1 " dxl.H_

J=3

2 , Plit;aj _Mg + N -1 Pli1: 1142 P:b(’l-m} . (6)
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We shall next consider T,.

By means of the transpositions (x14; X142) - . . (x4, xN) of the integration
variables, one can sce that the integrals correspondmg to the cases i =/ 42
to N are all identical with the value of the integral for i =1+ 1. Thus

_f?il+1
4 Y
(7)
)
)
Z_NT(N”/)IG(AL \L)
14
0 141, .
PN { E PN; Litj p;;m +(N—=1=1)
j=1
. h)
X PN; L, L Pl%;, }dh ... dxy )

which follows again by the same argument of permutation of integration
variables used above. Integrating the first term in the above with respect
to the variables x., to xy and the sccond term with respect to the variables
X1g tO Xy one gets

T s [ G(xl cee .X:L)
2-"-” dxl...(lxhl

Ity
{(N WI)ZM”J;JQ “""+(N-—1-~1)

J=1

0 ’L A9 1.
X Plyoy Lra,bie M ' dklm} . o 9)

Let us now consider the second term of the above expression and denote it
by T,®. Expanding the determinant piyy; 14,142 along its last column, inte-
grating with respect to the co-ordinate of the electron (/ 4- 1) and changing
the integration variable xi, into Xy in the resulting integral, one gets

T = — (..N:“"I'T' DfG(n- x1) dxy ... dxiy
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D 20 141, 14
X {lplﬂ; 1l+ Pb1tl+1 -+ d l-g1t L1 P'l+1; l+2, l-{-]} - (10)

From (9), (10) and (6), we get on summing T; and T, and grouping together
like terms that

Cr1+T2)—'l‘f]G(x1-“ x1)

I+1
x ( 2' Pz+1,1a bt )dx coe dXryy
=1

G(xy ... XD
+ l' dx; -.. dx14a

E ' "1 s
{(N l) P T+1; U4, 7~ “5:;] J

a 7
+ P la; 1, ,ﬂ%-.l;l_tl} (1D

or

1
=7-!fG(xl e X)) dXy .. dXpgg

A 3 e

1
+N—-I—-1) 2 r Pl+1; 1+1 j Pﬁ-%-’-’} . (12)
j=1

On writing tpe summations in the above term in a determinental form, we
get the relation (9) of Section 2.

dp'
Pli1; L41,] ""Ph:l !




