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I. INTRODUCTION

A GENERALISATION of the Dirac equation for systems containing many
clectrons will find its applications in several branches of physics and will
be of use especially in calculating the relativistic effects in many electron
systems as well as in understanding precisely chemical binding and spins
in c9mp’lcx molecular systems. It was shown in an earlier paper® that by
considering a four vector whose components denote respectively the three
components of the total momentum and the total energy of a dynamical
system, one can obtain a generalisation of the Dirac equation. For a
single electron moving in a field, the magnitude of the momentum four
vector is equal to imc, m being the rest mass of the particle, and the magni-

tude can also be expressed as i‘ Yu [P, + (e/c) A,] where the s are four-
M=l

dimensional matrices satisfying the relations y,y, + v,y, = 28ur. Equating
these two expressions and making them operate on the state vector |¥),
one obtains an alternative elegant method of deriving the Dirac equation.
It therefore appears obvious that a natural generalisation of the Dirac
cquation should proceed from a consideration of the magnitude of the
total momentum four vector whose components (three momenta and the
encrgy of the system) represent quantities of utmost physical significance.
Such an cquation involves no approximation, and it was further shown
that a representation of the generalised Dirac equation in the product space
of the electrons leads to equation (1) of the present paper which is a general-
isation of the Breit equation for systems containing two electrons.,

Equation (1) is correct to terms of the order (v%/c?), and includes the
retardation effects arising from the fact that the velocity of propagation of
interactions is finite in relativity theory and is equal to the velocity of light.
The matrices « are of order 4%, and the wave function ¥ has also got 4%
components. Of these, only 2¥ components have large values, the rest
being small. For two electron systems, Breit>? has earlier obtained an
equation satisfied by the four large components, which involves the Pauli
matrices only. It is the object of the present paper to generalise Breit’s
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~duced equation for many electron systerns, and to derive an equation in
:he 2% large components of the wave equation by eliminating all the remain-
ing small components from equation (D). ‘

II. TaE WAVE EQUATION
It has been shown in a previous paper that the many electron wave

equation can be written as

( 5N 3 N
(rgu)s 37 3 winine( 3] )
| i=1 k=1 i=1

A

e‘.’. qi.n'j (_zi-r..) (aj- r. .)
—_— L L% 1] e
2c Z rij 3 F=0 M
:‘éf l;jf
where
p, =42,
¢ o’
: . h
Ple= —ijp— -

ﬂfi::=I4XI4X"'><ak><I4“- ><I4;
-1 N
Fomhikg X e X B X, (3)

. I:Smi £ange, the upper suﬂix I corresponds to the i-th electron, and
i miei of order fon pory mates of the ith electron. 1, denotes the
1) of Appendix 1 Fugt‘g’ a.nd 4. @y, a3 and B have the representations

denctes direct prod erin (3), ok and § Joccur in the #-th place and the
oLare Mot fP dUCt multlphce_ltlon. Since the direct product of two
e fgn 21' erzsP m and n Is of order mn, ol and g are of order
- ceneral compon ecnxto%y ;as con\ieI;:l;entlly L?.N components, and we denote
ssume one of the values it et © I, Iy **riy are integers which
srin states of the electré;;’z ’ 13, 021‘ 4: . -Tltiles:ezgl;ﬁc)t{iejels;gmfy the four different

If the electrons i .
, are moving i :
hen by moving in an external electric field U then A, is

.%::ZU(ri)-Zé. | (@)
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Equation (1.) was derived on the assumption that the electrons are moving
in an electpc field only; when a magnetic field is present, we have for P~:‘3
the following expression. ’ =

r P = — i+ © A Qa

b

where Ayl (k =1, 2, 3) are the components of the vector potential for the
i-th electron.

Now
3k = [xi%, HI ' (-

where

: ( 3 3 ~

: ' e A .

H=-—c¢ s Ay E E ar'Prt -+ mc E - Z
i=1 k=1 i=1

’
| E I ["'z ‘-‘g rzg) (a Vzg)]) (%)
8]

} "19 "27 g 3 |

' i<] .

E {

Further Ag, Aj, As, Ay are functions of the positions of the particies or the
interelectronic distances and do not involve the momenta. Hence X ;. Ccom-
mutes with them. Agan

[xit Ps™] = SimOrks '7)
so that
[XIJ r X ak‘Pk ] = azc ()

,‘ 1 E
Hence

2 _xk"‘ o= e Cak?’ {Q‘
or

L3

Thus the matrices o' represent the velocities of the particles as in the one

electron theory.
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III. First APPROXIMATION
Let us consider the #th component of the wave equation where

t= 5 (i — 1) 45T, (1)

r=1

The #th component of

(PO 4+ g AO) ¥ is obviously

(Po + g Ao) ‘/’ili,...iw

Now B is a diagonal matrix with 4 1 along the first two diagonal elements
and — 1 along the last two diagonal elements. Thus

(B ity i
zz-;..z.:',; sy Ty =+ Biay T iwine Piroie
=z'1’"2":.’" Buiv i+ (Biyiy Bt iy
=z Bhiviyr Pty i == nifi, 40 (1)
where ¢ = 41 if i, =1 or 2, and is equal to — 1 if 7/, - 3 or 4. Thus
(me Z BPY;,, i = me (é e,.) bi i (12)

g:jenzgxlmlfm velllue of Ze, is equal to N and this happens when all the 7,
e va - 3 - - - ’ N
ues 1 or 2. Similarly when Ip f2e - Iy all assume one of the

v N
alues 3 or 4, we reach the other extreme value of 3 e. which is cqual to
r=1

— N. The sum Ze, takes the (N + 1) values N, (N—2), .-+ N depend-

ing on the values of the indices i, lgy "' in.

. orglgg i:iuii:iiwc:ss?al; use tl;e ind(iices S1> S2, *+ - &y to denote the numbers

1ty *** Iy t0 denote the numbers 3 or 4. A gener:

component of the wave function h ' seneral
as the form

2% com b Yss,...1,... 1, There are

ponents (the large components) of the type ‘/‘lll,.‘.l: with all the

indices having the val (N
g the value 3 or ¢; ( 1 ) 2¥ components of the form Yy, o 4

N
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in which on index (s,) is small and the rest are all large; and finally (11211) N

components of the form ths, ...sx With all indices small.

Now in the first approximation,

(P(, +¢ A0> ~Nrme.

We have seen that the minimum value of mec X ¢, occurs when all the i.'s
take the values 3 or 4, and this is equal to — Nmc. Thus ’

N ;
(o imrm Zr)e] o
r=1 l; e In

in the first approximation. The components $1,..1. in which all the
indices have the value 3 or 4 are therefore large. Consider now the com-
ponent (/i Ly, -+ 8y, -+ Iy) of the wave equation, in which one index cor-
responding to the r-th electron is small and the rest are all large. In this

N
case me %} €r 18 cqual to — (N — 2) me. The last term in the square bracket

ravy
in (1) is of one order higher than the rest and we shall neglect it for the time
being.  We have seen in the appendix that the effect of o' on a component
(f1s Iya = 7 8y, =+ + Iy) 18 to transform it into the component (i, i,, - -+ ., - - - i)
whose r-th index is a large one and conversely. o thus changes I, into
sr, and & into /. Thus (ax"¥)i1,...s,1..1, 15 @ large component. It can be

seen from cquation (21) that all the (III) 2N components of the type

di1,...5,...1, With only one small index are of the order (v/c). In general,
a component with m small indices is of order (v/c)™.

Now (ag™¥)1, s, tn U :,&’r) is a component which has two indices
(the i~th and the r-th ones), small and hence is of the order (v/c)2
On the contrary (ex¥),..s,..1, 1S a large component. Thus from (14) of
appendix, we see that correct to terms of the order (v/c),

{Po “t f Ay — (N—2) mc) Pllywsy el T BTN it = 0
(13)

where

(14)

gtrm‘rz XIgX e Xo X “‘Ig-
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In the above matrix product, we follow the conve-tion th:' .
of I, as well as o are numbered as 3 and 4 instead of as 1 and
done. If we set

(PO + gAO) — Nme
in equation (13) we get to a first approximation that*

lfbljl) .o r. N - - ’)mc (PTGTT’)lllg (s,—+2).-.ll\'

IV. SEecoND APPROXIMATION

Consider now the (/, /s, -+ - Sa, * ** Sp, - - - {x)-th componcn!
equation (1). In this, two suffixes 54 and sp are small and th*
large. Hence mc Xe, = — (N — 4) mc and thus

(PO—}—§A0 —+ mec e ~ 4mec.
\ c

Now (arx¥)i,...s....5,...1x is equal to a component which involive )
indices, namely 7, a and » and is therefore of the order (vjct
here striving for an approximation of the order (v/c)? onl-
(dme) ™ (a*¥)i,. 5,05, ...1x._Which is of the order (v/c)* can I*
Similarly

2 X
@mey™ & (ab - aT¥Y, s, syt (s J 7 . )
involves four small indices and hence is of the order (v/c)".

1 82 al q .
- T ?’)ll...sa...sb...lx (# D)

dme cr

is of the order (v/c)* and hence can be neglected. Hence the ol »

the second summation which is of the order (v/c)2 correspi:::.

case for which i, j = a, b. Thus correct to terms of the ordcer ¢ -
~ have

Po + S Ay — (N — 9 mc + E ' (@i9P 4 aPPr?)

k=1
e (2.l | (u%.rap) (:°.ran)
-+ T 3 ¥
2¢\ 7rab " ab
lllgu’ S(‘ -'Sb .

* The representaticns for o; used by Brzit are the nezative of the Pauli matricy .
will be thus a difference in sign in all terms that depend linearly on o between (i,
Brzit’s paper and the present one, when the lattsr are reduced to two electron sy&tmh
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Now
- a
(TR 2 T TP
$
. ; ("k)su { '-.'-; lﬂ ‘lllll, “ne ZQ -.-Sb “us IN
" | RSN
4
2¢ ("'k)su-i-n, L‘,(P o )l,l.,...(sw-m...lu from (15).
I LY
Thus
3
E (PN, syl
LA |
1 .
»1 (L IPa1}
2'”(. (l o ) (l) o II)IJ,.“(S‘,-}u)‘..(Sb+'.)...ln' (17 (I)
? Simalarly
L S (PP 50 et
iy i glgese g evedliane bN
| '
f .
1
_ e (Pbah) (P“oaw)l,l,...(s,,'}-u)...(sb-z-:z)...ln- (17 0)
!
f From equation (13) (Appendix) it follows that
(gt @t TN L gy Sy el
Ay d:l‘ (u‘k)suén (al)shih llllllﬂ"'i“"‘ib '”IN
‘- 1l
Y X ("Ic)suw, Ly (”l.)s,,-i-ﬁ, 1y ‘/fl,...la...lb...ln
by iy
(."‘}c”‘flbq/)l,l,...(sa-l-z)...(sbﬂ)...lu- (18)
Thus
.
i [(?u .al’ ! (a" “rab) (ag ;f@l?,,.)*) 'P"
- rab rab'; . I;l,...so..-Sn...lN
b -[( “ob (0“-".a*z)wﬁf?f’..:ﬁ,'faza)) ] (19)
Pgpan 3 - K
rab rab Ly eee 82 eee Spt2ens In
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Hence setting

Po“*"g A0=ch

in (16), we get by virtue of (17) and (19) that
)7!’11...80...81,...11\:

1
= Zmige B9 (PP o o srio i

— _82_.. ["a-abz_p_}_ (0%.7gp) (C’b"’ab)zp]
8mc* | rap rab® L Se2nsye.. In

(20)

Next the (Ify -+~ s, - -+ Iy)-th component of the wave equation correct
10 terms of the order »2%c? is given by

{Pot 7 80— (N = 2 me} .,

+ 2 , 2 , (akiPkiT)l,...sa...lN + E aptPrt¥
i %

e NV jatd | (Corgy) (Gl |
+5 E' ! =2 4 Tm}w =0. @1
J'-:‘-';a I, ...Sa...lx
Now by the application of equation (20) and of (8), (Appendix), it can be
seen that ‘

%

( S akiPkiY’>
11...$a...l:\'

NGE mlzcg (P2%) (Piol) ¥

(T @) ()

~ 8mc?

| gr] , , 22
Yig Fig® ] Lo Sgt2udy )
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Again

[a“.a-" n (a®. rgj) (ai.raj)]
ra:j rajs =11...Sa---ln

_ 1 qe%al | (0% rg) (V1)) ;i
o 2mc{ Taj T "ajs }(‘TP sP)Zi...(sa+2)...lm~ (23)

Thus substituting (22) and (23) in (21) we get

(2mc 4~ f) B gendy T P\, ... csat2r s E ("iPi)

iska
| . e? (o%.o
X [ e B @lo) ¥ — ooy {725
(0%.ria) (*.7iq) ] e E ' oo
+ rig® }?’ Ty Sgr2una I dmc*® - { Faj
+ (“a-fgzl_(;f _1’9_7)} TP, . eiztn =0 o
raj
where we have written
P, + EAO = Nmc + f. (25)
Hence we have
‘/’l,l,...sa...ln = — (@mc + ) (Fagf)l,...(s,ﬁz) el (26)

where

Fq = [:(P %oy + ZI (Po) {4}7’}202 (P'a?) (P%®)

oo (T (erig) C.ra))}

Tia ia
o2 Z’ {o.a.o.j + Calon) (cr7.r_aj_}} (Ua’pj):l, (27)

— )
4dmce? tig Yaj

7




270 : K. S. VISWANATHAN

Finally on making use of (18) and (23), we find that the (I, /- Iy)-th
component of the wave equation is given by

[( Py + ;Ao - ch) P E (%P (2me - [y Fo¥

L2 il i) (ad i -y
1€ Z’("_'_"_ + (?,,:_"12_?_(;?__ ?’,3)) ?4111’ , (6P (o7PY)

2c . Fij Fij
25 .
¢ (ool (0‘ "zj)(cj ¥ij) | .
B Gt )" - 0. (28)

Equation (28) does not involve any small components and is thus the
reduced equation in the large components that we are seeking. It is,
however, not in its simplest form since it involves products of the spin
matrices. Though the spin matrices have representations of order 2%, it
is easy to see that the components of the spin of any electron satisfy the
same commutation rules as those associated with the Pauli matrices; the
spin matrices corresponding to the different particles of course commuic
with each other. Again in simplifying equation (28), the following results,
which represent a small change in indices of the equations (46), (47) of Breit’s
paper. can be made use of:

If

X;s = at.ol . (‘7 Fij) (‘73 "w)
i = 7 -
L] w

then

Xt = 6 — 43 07) ) (ot. rw)(o' rw)
J rw

(29 a)

g’n%c-:s [(P*0*) (Pla’) X;5 + (Plo?) Xij (Ple?) + (Plo?) X;; (Pioh)

+ X;; (Ple?) (Plo)]

2m2c3[r1f1 (PPY) + 2 , _5_ , (ot — x1d) (et — xy9) PktPIQ]

-
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e . - '
+ W (PZO'Z) (P"’G]) Xij)

e2. - - - -
- (271';23) (Prig™) X Plo® + (Piris?) x PLo. (295)
Again
1 a .« s
sz (P%%) Qme + ) (Piol)? (PUot)

_ 1 -
= gmags )" (BY”. (29 ¢)

T - . -

‘lthe second terrp in the right-hand side of the (29 &) contains singularities

~F rij = 0, and its 'behav1our at this point needs to be investigated carefuily
or example making use of the relation B

(ax) (bo) = (ab) + i(aXb) .o,

we havé
Ch BN (DI (rebad) pot
(877’1263) (Pa) (P o ) (UG ) I'«ij

2 s . . . . . i
(PP (L — o) — 1 BB (6 =)

+ (Plad) (Pioh)} rig™.

In view of the presence of the factor (e%/8m3c®), we can pegiect (e <) Ay i1
Pi in the above term and write P; = — i#v; Further. 7;=— 7. &
far as the effect of these operators on ri ™" is concerned, and thus (P-Pir ™

((Pia?) (Pro-) X;: atthe sngula

= — 4mh2d (ryj). The behaviour of the term
Sucher and Foley, and by maxing use or

38N>

point has been investigated by
their result, we can write

((Pio?) Pof) Xy = H,,.” |

3T i i
Ce g i
TG ER O

3 (airij) (a”ry_} S
rigt

— o {;7173 (o) —
(P j;
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where the dash indicates that in evaluating the first term one should exclude
a small sphere surrounding the vector r;. If E represents the energy of

the system, and V = A,, then

e E 4+ eV
P0+ EAO: - i
and hence
— Nme2 ,
f=P0+§A0——ch=(E+evc me?) (25 o)
We have finally

Z’ (0%P%) (2mc + f) (#9P)

N

“a| 3@+ 2 3 |

=1 i=1

N
1 (E + eV — Nmc2) e __ leh i pi
" 4mPc? Z { c (P9 c Pt
ek i ;o .
— =€ .P‘.a‘} (30)

where

H' =curl A and &i= — gradiV.

Substituting the equations (29) to (30) in (28) and solving for (E - eV —
Nmc?), we get after some simplification that

[(E - ch— Ninc?) B (2;1_\&) Z (PH2 L (8}7}@) iy

| N
eh - o . o
B (4Tnc2) 2, (e'H) — 8,;:,’203) 2 (P &t + £ix Pt ol
4=1 i
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Z {(Zmucs) [rishl (PiPs) + Z (xji — X;°) (xki — x5

v P.ip.s | [ €°R° ot.o° atris) (65¢;
e Pg Py ] 4],)25?3) [( 3 3( zs)( zs))

—F @) 8 (9] + + (sps) (P x PS.of

. 4
+ Py X PtoS] — 1621c3) Xzis}:l ¥ — Q. (31)

In this equation the bracket () indicates that the operators operate only
within the ().

V. THe REDUCED EQUATION IN THE LARGE COMPONENTS

Equation (31) is what one obtains on reducing the wave equation (1)
to its large components. In his investigations on the relativistic wave
equation for two electron systems, Breit (1932) has discussed in detail the
validity of the term (e%/16mc®) X2, (the last term in 31) which involves
neither the momentum operator nor the Planck’s constant. He came to
the conclusion that the Breit equation yields results consistent with field
theory for energy calculations provided the last term in it is taken into account
to the first order by perturbation theory working with sixteen components.
Such a calculation will lead to all the terms in (31) excepting the last sum
involving the terms (e*/16mc®) X;;)%. Since the arguments of Breit on the
validity of this sum are quite general and are not restricted to two-electron
systems only, we shall not repeat them here and shall content ourselves
with stating that the correct wave equation is the one obtained by leaving
out the sum (e*/16mc?) ¥ X;;2 in equation (31). If we set € = E — Nmc?,

ij . R
then e denotes the observable energy of the system, as its rest energy is equal
to Nmc2 Thus the wave equation for many electron systems is given by

{E G+ <V + () Z ®Y
- () 3 om | (i) 3 # <
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~ (i) >, (Vi Ps'ai]“ (o) 2 P8

3
N

-nrie®
S —-—;‘-:-— 7 i i < -3
2m?c el | 18 ™
e T 1 (s 3 (@Tig) (@°ris)
- W) Z, Pl GO A 0
1<
~ ¥ (o0 8 (ris)]} ¥ =0. | (32)

The first three terms in the above equation constitute the Schriodinger equa-
tion for many electron systems. The fourth and fifth terms give respectively
the relativistic variation of mass with velocity and the interaction energy
between the spins and the magnetic field acting on them. The sixth term
in the square bracket gives the well-known spin-orbit coupling energy. The

term
e?h :

ey (Viris™) X PS.of
can be in_terpreted as the energy of interaction of the spin of the i-th
giggmm with the angular momentum of the s-th electron about the line
loining these w0 particles. The seventh term is imaginary and does not
lend 1f1self easily to physical interpretation. It is characteristic of Dirac
theory. and can also be written as

ieh _—
2 ' i,
oy &P,

and the expectation values of both the expressions will be equal as pointed
iz;e !?‘ JB)ethedaz{d( Sa)dpe.tl?r. This term also involves singularities of the
Ype 2dri) and o(ry). The last two terms give respectively th i '
- - - e - )
and the spin-spin interactions. P 7 orbit-orbit

We can replace P; by its — i . i i
i v; in all terms of the equation (32) excepi-
g the term — 2 (P2 2m) and thisz term has the value ¢ ]

!’ig 5 e 3 . e2 .
am Vi~ o AP — 55 (ab]

.
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One may notice that when there is no external magnetic field, the

symmetry of the eqt}ation (31) is the same as that of the potential field V.
and the wave function ¥ also will thus exhibit this symmetry.

VI. THE SPIN STATES

If the wave function ¥ is normalised so that [¥*¥d- =1 where
dr == dx; -+ dxy denotes an element of volume in the configuration space
zm@ ¥* is the transpose of ¥, then ¥*¥dr can be interpretea as the prob-
ability of finding the electrons 1, 2 --- N in the volume elements dx,. dxs,
dxy respectively. In particular, ¥2;;...; denotes the probability of finding
all the electrons with parallel spins and of finding the electrons 1, 2 --- 13
respectively in the volume elements dx,, --- dxy. Similarly (Z4%,,..10)
where the summation covers all the components for which m out éf" "ﬁ;e
N numbers /; have the value 3 and the rest the value 4, denotes the prob-
ability of finding m electrons with spins quantised along the positive direction
of the z-axis and the remaining (N — m) electrons with spins quantised in
the opposite direction. The number of terms in the above summation is
obviously

(1;) - (N --N;iz)z ml

Thus the number of terms contained in the probability distributions of
finding N, (N — 1) --- O electrons having the positive spin are given by
the different terms of the binomial expansion (1 + 1)¥. If N is even, obviously
the term having the greatest value corresponds to the case for which
m = (N/2) or to the case wherein each electron finds its spin compensated
by another electron of the opposite spin. It must however be borne in mind
that in an approximation that ignores terms of the order (v?/c?), the wave
function is an eigenfunction of S* and S, and thus the components which
correspond to the solution of the Schrodinger equation will have the largest
values: the other components can be expected to have the order of magni-
tude of the relativistic corrections.

Now to satisfy the Pauli Exclusion Principle, the wave function should
be anti-symmetric with respect to an interchange of any two electrons.
From (32) we see that the Hamiltonian remains invariant under any permu-
tation of the space co-ordinates as well as the spin co-ordinates. Thus
Pauli’s Exclusion Principle will be satisfied if the components of ¥ satisfy

the following relations :

lbl;-- ulionn l-n ZN

== ‘l‘z,...z....z , -
Gj=1 2N (33)
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If /. = I; or in other words if the spins of t‘he i~th an_d .the J-th elect-rons ar§
Lheisame, the function ¥1,..1;... il is ant1~s-yn}metrlc in the co-ordinates of
these two electrons. Thus the Exclusion Principle demands tl}at the com-
ponents should be anti-symmetric with respect to the co-ordmat?s of all
electrons that have the same spin, while they can behave as a mixture of
svmmetric and anti-symmetric functions as far as intercl}allge of elc_fsctrons
with opposite spins are concerned. In both cases equations (33) give the
conditions which Pauli’s Exclusion Principle demands on the components
of the wave function. As an example, the Heitler-London theory for the
hvdrogen molecule corresponds to the case for which the two anti-sym-
nietrig components ¥, and @, are identically equal to zero while 3, and
4. are taken as symmetric functions satisfying the relation iy, (1, 2) =

— by (2, D

The author’s grateful thanks are due to Dr. P. Nilkantan, Director,
National Aeronautical Laboratory, for his keen interest in this work and

encouragement.

SUMMARY

The paper deals with the reduction of the generalised Dirac equation
for a system containing N electrons to its 2¥ large components. The wave
equation for many electron systems has been derived in its Schrédinger-Pauli
form, and this includes higher order relativistic effects such as the mass
change of the particles with their velocities, the spin-orbit, the orbit-orbit
and the spin-spin interactions. A few remarks are made on the physical
interpretation of the components of the wave function and the relations
which they should obey in order to satisfy the Pauli Exclusion Principle.
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APPENDIX

‘ If .(xl, Xgy * xm) are components of a vector r in a vector space R of
dlmensmn‘ m, and similarly if (y,, Y2 *** ynp) denote the components of a
vector 7 m a vector space G of dimension n, then the direct product of
R ><.G 1s of dimensions mn and is associated with the transformation pro-
perties of the vector z = rx»n whose components ate given by z; = z; =
XiVig (L =1, 2, --- mn). With the linear correspondences A in R and B
: S,
in G: x'v = Zapixi; Vie= 3 bewy

i & '
ts associated the linear correspondence C = AxB in the product space:
XpY' = 5 aii brerexi vic
ik
or .
7'y = 2 vz vl = awibe (A)

if we associate the numbers / and 7 with the pairs (k) and (i'k’). For the
sake of definiteriess, we arrange the components x;yy in such a way that a
component x;yi precedes another component Xy if i < i’, and when
i==i" if k< k'. The same convention will be adopted to evaluate the
direct product of N matrices also. Thus a component #; ; .. ;. of the
wave function will precede another component Wiids..in if & < Ji, and when

O =13 fp=ja; - iy=ji then ¢y, ;. precedes ;. . if i < Jin.
The matrices ap and B are given by
0 ol 1, 0
A == ("k ’ B = (0 _ I2) - (1)

where oy, o,, o, are the Pauli matrices and I, is the unit matrix of order 2.
Further for the Pauli matrices, we choose the usual representations

0 | 0 —i 1 0
7y = (1 o)? %2 = (i o)’ 78 = (o *1) (2)
Now if A = (aij;) and B = (by;) are two square matrices of order . and
n respectively, then the direct product can be represented as the partitioned

matrix

auB a12B te almB
ang a22B "t asz

AXB = «iiuii i, 3)
aymB am:B e AmmB
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Further the direct product of i unit matrices of order four is a unit matrix
of order 4. Hence from (3, section II) and (3), we see that ap® is given
by a partitioned matrix of order 4i-1; we have

a' o ---0
/0 czki -+ 0
b= | ' @

In the above, each element is a matrix of order 4¥-i+1 apd ;b is given by
the matrix

o X IN’.,) (5)

i

where N; = 4% and Ly, is a unit matrix of order 4%t Similarly Bt is given
by the following partitioned diagonal matrix of order 4i-1

B0 -0
/o bi---o\
= / (6)

where
I, 0 0 0
. 0 In. O 0
bt = BxIy, = i . 7
i \0 0 —Iy O @)
0 0 0 —Iy
Now
ar” =1, X I;X "+ Xapx --- l,

From a generalisation of the equations (A) to N vectors, we see that

U . . —
(ak gf)‘hig-..‘bx - . ’2_ ,(14){,]55,1' .t (a'k)?:y'ir’ > .. (14)inim'¢i;'-- in

21 «nsipg

= Z O (digs 0 i Wiy i

71 ey

= X (4ii,; Pigiseis..in. (&)
Ir
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The‘ same result could be proved with the aid of the matrix for ai” given
by (4) but this is more tedious. i

If A;, A,, -+ Ay and By, B, -+ By are matrices of the same order
(Ax A, (BxB, = ABXA;B,
Hence applying the above result to one more matrix, we get

= ABXA1B1XA2B2
Thus (AXA; - XAyx) (BxB;x -+ By) =ABXAB;x --- «ABx. (10
Thus we find that

. then
)]

TS =T, X Iy X =+ X ap X -+ XayX - I (11)

Again we find that the matrices ay" satisfy the commutation rules
ar’ay” + ajTar” = 20k, (12)

From (11) we find that

(@t iipie = 2 Wi~ (i (@i - Ui

el

7 1...2};
= 3 &4 (adig, o (@igy T Bk Ui
iy win
=2Z2Z (@i, i (@0igty” Wigdaunsdy’ iy i (13)
i i

0 o
Now ay is of the form (O‘k C(’)k) and thus if i, =1 or 2, we have (ak)ii =0

for iy’ = 1 or 2 and it is equal to (ox)i,i,-2 for i.=3 or 4. Similarly when
ir=3 or 4, we have (ak)i3, = (01)i,-mi, If ir = 1 or2, and s eq}lal 10 Zero
if i, = 3 or 4. Thus from (8) we see that the effect of o7 on ¥ 1s 10 trans-
form a component (iy, o **- iy -+ Iy) into another component (iy. s " "
iy’ +-- Iy) whose r-th index is large if i, is small and vice versa. h:} o'ther
words, if i, is large (having the value 3 or 4) then o transforms It into
4 small one and conversely « transforms a component whose r-th index is
small into a component whose r-th index is large.

If now we follow the convention that the row and column _'mdices oi"
the two-dimensional Pauli matrices be denoted by the numbers 3 and 4
instead of by 1 and 2, then it follows from (8) that

(a1 P lans, e = 2 (3i)sde Pl dyerdyone I

4
= J (U'k)(s,+2>l, Pl lpeds
;=3

14
= (U kﬂp)lll, e (SyH2 aoe I (

,___—_



