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ABSTRACT

The structure of strong shock waves in monatomic gases is studied
using the Fokker-Planck model to represent the particle collisions and the
Mott-Smith distribution to describe the distribution function within the
shock front. The differential equation governing the variation of the den-
sity within the shock is derived by using the variational principle. The
thickness of the shock front is evaluated numerically for various monatomic
gases for Mach numbers varying from 2 to 20, and besides, the variation of
the shock thickness with viscosity is also studied for different gases. Several
parameters of physical interest within the shock, such as density, tempera-

ture and mean velocity of flow are evaluated numerically and detailed curves
showing their variation within the shock are presented for different Mach
numbers. It is found that the temperature rises very steeply, reaches
a maximum within a distance less than half the thickness of the shock and
then diminishes slowly to attain its asymptotic downstream values. The
variation of the mean velocity is slow for weak shocks, but for higher Mach
numbers, the mean velocity diminishes steeply and reaches the down-
stream values within half the thickness of the shock.

1. INTRODUCTION

IN recent years, the study of the structure of strong shock waves has attracted
the attention of a large number of workers. The bibliography'-® on the
subject is too vast to be reviewed here but a perspective of the recent work
in the field could be obtained from the several volumes on the Advances in
Applied Mechanics. A large number of investigations on the subject have
started with the BGK model for the collision in the gas at the shock. Nara-
simha and collaboratorst have computed the profiles for the density and
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temperature distribution within the shock for a range of Mach numbers
and have also studied the development of the complete distribution function
within the shock. Besides the BGK model, the Boltzmann expression® fot
the collision integral has also served as the starting point for several investi-

gators to study the structure of strong shock waves and the flow field ncay
the shock.

An important technique that has been used abundantly in the literaturc
is the method of least errors, 3.6 in which the best expression for the distribution
function, usually a Mott-Smith Ansatz? is derived by applying the minmun;
error criterion on the distribution function. Using the Boltzmann equation
and the Mott-Smith Ansatz for the distribution function within the shock.,
Narasimha and Deshpande have obtained the best solution for the distri
bution function by minimising the total error and have plotted the profiles
for parameters of interest within the shock for a few monatomic gases.

A well-known expression for the collision integral in the Boltzmann
transport equation is the Fokker-Planck term,® but surprisingly enough,
very little work seems to have been carried out for determining the shoch
structure using this model for collision processes in gases. Both the Boltr-
mann collision integral as well as the Fokker-Planck expression are derived
from probability considerations and must be equally suitable for describiny
the thermodynamic as well as the statistical properties of the gas within the
shock front. Omne should also expect that both the expressions should be
more accurate to describe the shock structure than the simple BGK model.
A reason why the Fokker-Planck collision term was not used extensivels
in the literature is its supposed complexity but it is nevertheless a practicablivc
model for studying shock structure not only for simple monatomic gascs
but for complicated molecules where vibrational, rotational and electronic
relaxation effects are present. It is the object of the present paper to study

both analytically and numerically the structure of strong shock waves in
monatomic gases like argon using this model.

2. THE FOKKER-PLANCK TERM

The Boltzmann transport equation for a gas is given by

dQf F . (df :
37 +':',_’°Vf+ m v'uf—-— (S_Z: o (1)

where m, v and F denote respectively the mass of the atom, its thermal velo-
city and the force acting on it. As mentioned in the Introduction, various
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expressions are available for the collision operator (2 f/3f)c. 1n this paper,
we use the Fokker-Planck expression for the collision which is given by

A?‘(b[ = — Z l (f (A vi)
+3 Z e (0 v)
+Z dv; j

i<y

+0(A D2 @

Here A v; denotes the increment in the velocity as a result of collision
during a time interval A ¢. The Fokker-Planck term involves the averages
(A vi)s (A vi A v;) and to evaluate these, it is necessary to know the
distribution function ¢ (v,, v, ) which gives the probability that the velo-
city of an atom jumps to v from an initial value v, during an interval of time
t as a result of collision. For gases in which the change in momentum of
a particle due to collisions occurs stochastically, the distribution function
J 1s well known® and is given by

. 3/2
b (v, vy, 1) = [2:};—[‘1 (1 — e-gt'T)]

(v — v, e“’f”)2
X exp. )— . —0 (3
{ 2kT (1 _ —2t/7‘)} )

For large values of ¢, the above function tends to a Maxwellian distri-
bution, and its time dependence is significant for values of ¢ of the order
of the frictional parameter ~. This is again related to the coeflicient of vis-

cosity and is given by

:1 _ 6man ‘ @

where a is the radius of the atom, m its mass and » is the coefficient of visco-
sity. Evaluating the averages using the distribution function (3), we find

that
(Av) =] Avi(vy,v,0)d(A V)

(A i A i) = a® 85 + bib; | O
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‘where
g = KT (1 — e?/m) (7 a)
m
and
by = v (1 — e¥7). (7 b)

Since  is small, we shall set t = A ¢ and evaluate by passing on to the
limit when A t—0. Later, we shall consider the case when this approxi-
mation is not made, and 4t is taken to be some characteristic time for the
problem, i.e., collision interval or the time taken for a molecule 1 the up-
stream gas to pass through a distance of the order of the shock thickness.
If we pass on to the limit when A7—0, we obtain the well-known formula

(Ef — Bdivfu+ g Aof (8)
ot / coll
where,
| BKT
-

q= &)

3. THE SHOCK STRUCTURE

We shall consider the steady one-dimensional flow of a gas through a
plane shock layer. In a frame of reference fixed with respect to the shock,
the Boltzmann equation reduces to

vxd fo. ) =Bdvfn+q LS |
=G (v./) (10)

Here G (v,f) represents the collision term. We denote by (1, 1y, Ty,
1) and (ny, u,, T,, ps) respectively the density, mean velocity of flow, tempe-
rature and pressure in front of and behind the shock. The distribution
function is a function of x at or near the shock, and attains the free stream

values far away from the shock on either side and the boundary conditions
are

f(w,— o) =F1(v) ; f(v, + 00) =F;(v) 1)

wherf._:v F denotes the equilibrium Maxwellian distribution. The subscripts
1 and 2 refer in general to the far upstream and downstream sides of the shock.

o e TR T T
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For the distribution function f, within the shock, we assume a Mott-
Smith function and write

Jo(0, %) =[1 =y ()] Fy (v) + y (x) F (v) - (12)

where
Fio) = () e, - pio —wli= 1,2 (13)

where the parameters n;, u; and B; denote respectively the number density,
gas velocity and the inverse square of the most probable thermal speed for
the distribution.

The density function y (x) in (12) is unknown for the present and we
determine it by the method of minimum errors following Narasimha and
Deshpande.® We define the residual and total errors by means of the equa-
tions

¢(2.%) =124~ G (0, f) B
and
E(x)= ] e (v,x)dp (15)

where the integration extends over the whole of the velocity space. We
further write

J= | E(x)dx (16)

where the integration extends over the thickness of the shock. J then gives
the total error. A simple calculation now shows that :

G (v, /o)) =3BSfo +Bv Vo fo | |
47 DoFy @)+ 472 Ao Fa (9 (1)
where for the sake of convenience we write .
n=l—y@]; =y | (18)
Further - A :
E(x)= [ dy {y"* vz* (F, — F))* + [38 (nFy + v2Fy)
+ Bv-Vo nEF: + 7:F0) + 97 AvFy + 4 72 AoF,)?
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— 2vay’ (Fa— Fy) [38 (viFy + yaFs) + BV
X (yiF1 - y2F2) + ¢y Aw Fi + qya Ao Fal} (19)
—Py* 4y (Ty +U) + Qs> + Ry + 0)

where the coefficients P, Q, R, S, T and U can easily be written as integrals
by comparison of (19) with (20). For example,

P= [ vz (F,— Fy)?dn» (21)
Writing ,

Ty + U =2Z

Q?*+Ry+S=Y (22)

we can rewrite (20) as
E@v.x)=Py>+2Zy' +Y (23)

where P, Z and Y are functions of y and hence of x. The integrals occur-
ringin P, Z and Y can be evaluated by direct integration. These can in fact
be expressed as a sum of certain simple integrals, whose values are tabulated

in Appendix I. After heavy algebraic work, we find that P, Y and Z are
given by the following expressions:

P = | vg?(F, — F)?dy

- ["1 g:r)m {431 T } T ne (2 2)312 {4;32 - }

—2m (B2)” gy {5 + PR} ] o9

where

BiB2 5
BCET AN

It is to be noted that P is independent of x. Next

Z =n? (%) - = By 4 20 3By — 649B:171) + 3“1.(297181 — Bvi)]

——-n22 BB 3/2

21_7) [— Byaus + 21, (3Bys — 69Bsy2)

+ 3y Cgyefe — Bya)] + 2mmy (BE2)™" -2

A
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{13Ba (v — v) + o Byya (@ — ) — o By (o — )
+ 4ysBs® ag (a — ug)® — 4y:8,% go. (¢ — u,®)
, 1
— 6qa (ysfs — y1B1)] (181‘—!—]6’2)3’2 + [— 2BBays (20 — Up)
+ 2BB1y1 (2o — 1) + 8¢ {y2fe® (a — uy) — y1fi % (@ — up)}]

- 2_(/3‘1“:%78;75“3 + [~ 2aB (Bay2 — Biy1) -+ dgo (v — 3’1/812)]

3
X 3 E @)
where i
(;BJ% -+ /3,2_7{,2

- B: + B2 29

and |
0 == ﬁ:@fzﬁg (ul - u2)2- : | | (27)

Finally

Y 2 ( 1 32 2 2 2 15 2 2 3 2
=m2(52) [97* (B — 2819)* + 7 Caraby — B)* + B
‘ : 9’ 2 32
+ 97,2 1 (B — 2839) s — A1+ ma* (32)
[9% (B — 2B29)* + 4 (24’)’232 — B)? + B:% 1 + 9y,® ny?

< (B — 2Boa) Qayae — B) | + me [ - B | €

(B, + B)
[18y1ys (B — 2B19) (B — 2B2q) + 8B1B82 (24711 — B) RqyB: — B)
23 s
s 6 e + g e W (0= w?

. P Ra — uy — w3)* | (a—uy)(a—u,)
s [1 +8(;31 +l32)] T 28 + B T (ﬁ11+ B
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5.(1-'—- 2 8‘t1-"" 1)
— BB1Battz (29 1y1 — B) {(16(1 + ,8112)) T (,3(1 + ﬂl:)

+ 8 (a — uy)? (a — Uz)} — BBBatty QqBays — B)

(5 (a— ul_) &@ET. uz) a— ) (a — 1 1
X {m) (B + By +8( 1) ( 11])’

+ 882 B, Bauytis {(a = uy) (& — uy) + i(ﬁlll ‘32)}

+ 127,82 (B — 29B1) 2gBay: — B) { 2 (B, 3“]_ 8.) + (@ “2)2}

— 1281815y, (B — 2B14) (a— ug) — 12BButyyy (B — 2B.q) (o~ uy)

: , 3 : N
. + 127,68, (B — 2B:9) gy — B) {2(,81 + By) A (@ - ”l)d} ] )
| (28)

The expressions for T, U, Q, R and S may similarly be lound, but for
lack of space, we do not reproduce them here.

The “best’ value of y can be obtained by minimising the local error E,
by regarding it as a function of the variables y and 5" and using then the
theory of maxima and minima. ¥ can alternatively be obtained from the
calculus of vaiiations by minimizing the total error

J= JEMdx= [ E(y,y, ) dv

by regarding J as a functional of y and 4". Both the methods lead (o the

identical set of equations. For example, differentiating (20) with respect
to y and ', we get

-33,—,=2P)f +Ty+U=0 (29)
or

4 z*‘—*j'p"-)- (30)

)E , L

5;=Ty +2Qy + R =0 (31)
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or

' 2 R
y = — (__QLT:*‘___) . (32)
By differentiating (30) with respect to x and substituting for y’ frem

(32) one gets
2Py” =2Qy + R. (33)

| Equation (33) is the differential equation satisfied by the density function
and should be solved for y along with the boundary conditicns

y(— o00) =0 and y(+ ) =1. (34)

One can verify that the Euler equation for the variational principle
8J =0 (35)
also leads to an identical differential equation.
It was found during our calculations that a slight rearrangement of

equation (33), as obtained by using the form (23) instead of (20) facilitates
the numerical computations substantially.

We have now

33=5 [ E(y,y,0dx=35 f (Py*+2Zy +Y)dx=0.

Here Z and Y are functions of y. We have then

Fp=2Py+Z; Fy=vy2,+Y, (36)
and
.(g_c F, = 2Py +Z =2Py +Zy'. (37)

Hence the Euler differential equation becomes

2Py =Y., (38)
This equation can be integrated at once. Multiplying both sides by ¢’ and
integrating, we get

Py2=Y + C (39)

where C is an integration constant whose value can be determined from the
boundary conditions ahead of the shock.
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The thickness of the shock is now given by

5 = f dx = f (Y:Ec)* dy. (40)

4. NUMERICAL CALCULATIONS AND DISCUSSION OF RESUITS

Numerical calculations were made for different Mach numbers varying
from 2 to 20 for the thickness of the shock front, the function y (), the varia-
tion of the density n (x), the mean velocity i (x) and the temperature T (x7)
within the shock front for argon. These were ¢valuated from the following
definition for these parameters:

n =My + neys, =mn + y (ne — ny) (41)
- niu
i = f vf(n,x)dy === (42)

p(x) =nkT (x) = | v*>f(n, x) dv

1 -
= E niyili +—£—; E nyyi (u — @0)? (43)

<

where m is the mass of the atom in the gas.

The differential equation satisfied by y involves the parameter 8, which
is proportional to the coefficient of viscosity. Since viscosity changes with
temperature, B is a function of temperature and we chose thc power law

8= B()TS

with S = 1 for the calculations. This choice was made essentially for the
sirpplicity that it brings into the calculations but we have made some i)reli~
minary computations with the value S == 0-816, which is the accepted value
for argon. The parameters #,, T, and M, downstream of the shock were
calculated using the Rankine-Hugoniot relations. When 1ihe power law
for B and the Rankine-Hugoniot equations were substituted in, equation (39)
the differential equation for y assumes a form T

d
a"}; = f(y, X) | (44)
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where

f= (Y_",}"C

and is a long expression. This equation was programmed for a Ferranti-
Sirius digital computer and integrated directly. The curves given in Fig. 1
plot the variation of the density with respect to the distance which is
given by the formula (41), for the Mach numbers M = 3,5 and 10 res-
pectively. The distance is measured in units of the upstream mean free
path 2, and the curves were plotted for the thin layer within the shock.
The curves steadily increase from their upstream values to their down-
stream values as determined by the jump conditions. The increase is
steeper for stronger shocks represented by higher Mach numbers and takes
place within a few mean free paths.

ARGON
oSy A< *rz
0-4}
. M~ 10
~
'Q 0.3F M=5
>
[ 3
o2+t 4 M3
O\ F
. ! . .
1 1/.__'
0 ! 2 3 4 45

SHOCK THICKNESS/ X,

Fig. 1. Variation of n Vs. Shock Thickness.

The equation (40) for the thickness of the shock was integrated by
Simpson’s rule using the Ferranti-Sirius digital computer and the thickness
of the shock was evaluated for Argon, Neon, Helium, Xenon, Krypton, for
Mach numbers 2 to 20. Some typical values obtained from the output of
the computer are tabulated in Table I. One may notice that the shock
thickness generally decreases with strength. -

In Figs. 2,3 and 4, we have plotted n — n;/n, — n; against distance
within the shock. The nature of the variation of the density as shown by
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TABLE 1
Shock Thickness/A;
Mach No. Helium Argon Xenon Krypton Neon
p=200x10-¢ p=210x10-% p=234x10-° p=253x10"%  p=317-9x10%
poise poise poise poise poise
2-0 1-8807995 3-8402297 19-99091 7-470854 118-94582
3-0 1-3989681 4-1824679 16-768553 7-6210040 123-20981
5-0 1-0700610 3-2400536 7-878238 4-1874116 1 10-60044
6-0 0-91495048 2-6452942 5-884421 3-2298241 95-06452
8-0 0-64277760 1-791395 3-902652 2-1090419 67-279300
10-0 0-45829669 1-2803399 2-813898 1-502969 50-27856
12-0 0-36511886 0-9612694 21397391 1-1605656 36-042861
20-0 0-13828939 0-4118914 1-0208368 0-50310960 15-275327

Bk amaE I cra e L

these curves is similar to the experimental curves given by Schultz, Grunow
and Frohn® and others though we have not made a comparison, as the para-
meters in our calculations are not entirely the same as those used by these

authors.

t- O
0-9¢
o8t
o-7ThH
0-6
0-3
0-4
0-3
o2t
o1t

n—n

LS

L |

o)

i 2 3 q 4-4
SHOCK THICKNESS/ P

FIG. 2.. Shock Profile at M = 3 (Argon)
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Fii. 3. Shock Profile at M - § (Argon).
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SHOCK THICKNESS/ ),
Fig. 4. Shock Profile at M = 10 (Argon).

Figures 5 and 6 plot the variations of the mean velocity U and the
temperature as defined by the parameter (T — T,/T, — T;) within the shock
front. It can be scen that the variation in the mean velocity is slow for weak
shocks, but as the Mach number increases, the mean velocity of flow dimini-
shes steeply and rcaches its downstream values within half the thickness
of the shock. The curves for the temperature variation are very interesting. 5
They show that the temperature variation is very steep, has a maximum :
which occurs at a distance of less than half the thickness of the shock and

g e
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then diminishes slowly to attain its asymptotic downstream values. They
also show that the maximum temperature of the gas is reached within the
shock and the value behind the shock as given by the Rankine-Hugoniot
equations is much smaller than this. This is an important fact emerging
from our studies using the Fokker-Planck model and it is worthwhile to

conduct experiments to verify this kind of behaviour of the temperature
within the shock front.

2-6
2.4}

20
1-81¢

ARGON

|
T, ter b4 TR

4 M =10
* q.2t

10

=4

t-0

M=5
o-8r \\\L:fﬂ =3
0-6t
04
0-2¢+

1
W

SHOCK THICKNESS/ 2

FiG. 5. Variation of 4 ¥s. Shock Thickness.

Since the differential equation for y depends on the coefficient of visco-
sity it is possible to study the dependence of the shock structure on the co-
efficient of viscosity or in other words, to find out how the thickness and
other related parameters vary for different gases having almost the same
atomic radius. The shock thickness was calculated, for five-different gases,
namely, Helium, Argon, Xenon, Krypton and Neon. The plot of & with
respect to the coefficient of viscosity is given in Fig. 7 for a range of Mach
numbers. The calculations were made for the case wherein the upstream
value of the temperature of all the gases is reduced to the room temperature
and for Mach number varying from 5 to 20. It can be seen that within the
range of viscosity values calculated, the shock thickness increases first. The
curves become steeper for smaller Mach numbers and in fact they become
so steep for Mach numbers less than five that they could not be repro-
duced in the same figure on the same scale. It will be again worthwhile to
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Fic. 6. Variation of Temperature Vs. Shock Thickness.
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FiG, 7. Variation of Shock Thickness Vs. Viscosity.
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study experimentally the variation of the shock thickness with viscosity co-

efficient to verify the nature of the variation as predicted by the theoreti-
cal curves or Table I.
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APPENDIX

312
(1) I, —1fFfdv~n1 W)

2
@ L% = f (vy® + v Fil dy = 37 ;1:1:2 Wk

(3) I, = [ [49 B, y; (vx — u)? — 2BByvx (vy — w)]? Fy2 dv
3 312 2. 2
=7 n® (%17) (2q yip: — B)? + nlzﬁ_\/glﬁ:f/}z
P
4 I,» = f ('%2 + v.?) F2dy = anx/glﬂ.alz

(5) I = [ [44 Bi* vy (ve — 1)* — 2BByvz (Ve — u)] FiPdy

_(2q 72/3\:/; B, (%;)3’2

6) IV = [ (vy*+v) [49 8% » (Vp—1)? —2BB;vx (Va—uy)| Fy? dy

(24 Byi — B) n? B,
8 2 o2

(7 Ko = [ FiFpdv
By T,

In what follows a is defined as

Q= ﬂ1u1 + ﬁzuz
B+ B

) Li® = | (vz — ) e P Or02 doy

=@ w[g 5]
©) La® = J (vg — ) exp. [— (8 -+ o) (vz — @)*) v
+(a— ]

~Jeimlem
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(10) Ly,

(11) Ly,
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= [ (vg — ) (Vg — ) € Pl B Vi (g,
A [ (@) )
PRI LTI SR
= [ (vy — 111)2 (Vg — Uz) ¢ WP (V) (fyy

(“‘Mlll) ; ‘ .

((L — Uy) T
(Bi-1 )

\/(31 + 8. ) 2(ByH-Bo
= [ (vx — ul)‘l (Vg — 1) B B (0 007 (fy
!

'\/(51 + 3y 14 (px Ba)® : 2 (B3,

) (e
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