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1. INTRODUCTION

THE well-known relativistic wave equation for an electron® was derived by
Dirac by factorising a second order equation into two Lnear equations. . .
It is the object of the present note to point out that the Dirac equation is
simply the eigenvalue equation of the magnitude of the momentum four-

vector, and that one can derive it by expressing the ma gnitude of the momentum
vector in terms of its four components.

The above idea enables one to generalise the Dirac equation and obtain
a relativistic equation for systems containing several electrons. Tn Section 3,
we have given the wave equation (Equation 16) for a system composed of
several particles and this is very similar in form to the Dirac equation.
Relativistic wave equations for a system of two electrons have previously
been given by Eddington,* Gaunt® and Breit® of which the one given by Breit
is the most satisfactory. By replacing the velocities v! and v of the electrons
by the spin matrices — ca’ and — ca™" in a Hamiltonian given by Darwin,*
Breit was able to obtain an approximate wave equation for two-electron
systems. It is shown in Section 4, that Equation (16) leads to the Breit
equation when it is represented in the product space of the two electrons.

2. THE MOMENTUM FOUR-VECTOR

Before proceeding further, we first state a result which was first proved
by Weyl® for a vector in a n-dimensional space and which we shall apply
presently. ,

-

(a) Lemma.—Let (x;, X3, - -+, Xn) be the co-ordinates of a vector 7

in an Eucledian space with reference to a system of orthogonal axes, and

let 7 = (%% + x,° + ... + x,)* denote the ‘ magnitude > or -“length’ of
the vector ». Then DR
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ro= #él (Vy.xy)a v (1)

where the y,’s are elements of an abstract algebra satisfying the relations
(y;z'yv + 'yv'yy.) = 28@1)

The y’s can be expressed as matrices and for the case n = 4, they are
the Dirac matrices.

(b) The Dirac Equation.—Let x;, Xy, X3 and x, (= ict) be the co-ordinates
of a world point, and similarly let D1, Do, ps and p, (= iE/c) denote the com-
ponents of the momentum four-vector. Besides x, and Pg we shall also
use the symbols x, and p, given by x, = ix, and p, = ip,. Expressed as
operators we have then p, = — i%d/ox, and p, = ind[ox,.

-)
Now the momentum four-vector P is a vector with constant magnitude
imoc where my is the rest mass of the particle. Apply now the result (1)

-3
to the vector P = (py, py, ps, po). We then get

'

A 'yipz = imoc. (2)

1

U}

If | §) is an eigenstate of the momentum four-vector, we get from (2)
the equation of an electron as

3
(z‘y4p0 + X vipi — z'moc) |4 ) = 0. (3)
-
For the y’s we now choose the following representations :—
_(—1 0y, _ (0 —iy. _ (0 —ioy\
e 01)° "= iy 0o )’ = iog 0o /)
_ O — i0'3
Ya = i 0

where I, oy, 0, and o, denote respectively the unit matrix in two dimensions
and the three Pauli matrices.

Multiplying (3) to the left by — iy, we get
(o + Z aapi + fmec) |4 = 0 @
which is the Dirac equation in its conventional form.

When the electron is moving in a field, the components of the momentum
four-vector are given by (p; + efc Aj) (1 =0, 1,2, 3) where A, Ay, A, A,




The Dirac Equation Jor Many-FElectron Systems} 37

o | 1
are the scalar and vector potentials of the field. From the relations 7 (p; +
: ' c4=1
efc Aj)? = — my,2c?, we see that the magnitude of the momentum four-
vector is equal to imyc in this case also. Thus by replacing p; by (p; + efe Aj)
in (4), we get the equation for an electron moving in field as |

{(p0 +240) + Z’ i (P +SA) + /3/1700} [4y=0. (5

The left-hand side of (2) is similar in form to the expression of the length
of a vector in terms of its direction cosines. The y’s can thus be regarded
as the representations in a matrix algebra of the direction cosines of the
momentum four-vector. We have thus

vi=-LL  or = ©
| P
where u; (i = 1, 2, 3, 4) are the components of the velocity four-vector. The

matrices 7y; thus represent the components of the velocity four-vector.

Since

o= —i(y)ry; (i=1,2,3),
we have

== %
or

Xi = — cay, O
Similarly

p=—af1-5. ®)

We thus get the well-known expressions for the components of the velocity
of the particle without calculating the commutation relations of x;, x, and
x; with the Hamiltonian.

In finding out the dynamical variables that are the classical analogues
of products (or quotients) of matrices, care should be taken to verify that
only the algebraical rules that are common to both the matrix and the ordi-
nary algebras are used. We have derived (4) by multiplying (2) by — iy 1

4
making use of the relation (y,)™' v, = 1 which is common to both algebras,
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though one could equally well derive (4) by multiplying (2) by — iy,. The
classical analogue of a; is thus — i(yy)'y; and not — iy, y;.

3. SYSTEM OF MANY ELECTRONS

We have seen that the Dirac equation can be derived by expressing the

- -
magunitude of the four-vector P + ¢/c A in terms of its components. Now
e 1
P; -+ - A; ) = mocu; (i=1,2,3,4)

MaXi
\/1“?2'

where 1, iy, ¥s, 4, ave the components of the velocity four-vector.
natural way to generalise the Dirac equation for a system of particles would
be to consider a four-vector whose components are respectively Zmgcuy;
(i=1,2,3, 4, or 0) where the sum is to be taken over all the particles of
the system. W/e shall denote the corapenents of this vector by (Py + ¢/c Ay),
(P, + elc Ay, (Py -+ efc A;) and (Py + e/c Ay).

Now in ihe special theory of relativity the components of the total

momentum are given by?

P;= — i—j‘ TikddSi -+ 2 mgeu;, (10)

where Tjk.. are the components of the energy-momentum tensor. In three-
dimensional form, we can write for the total momentum of field plus charges

5 ;
f S dV+Zp (10 a)
and for the energy ‘
JWdAdv + 2 &8, (10 b)
where '
¢
S = 4—17 ExH

is the Poynting vector and

W = o (B2 + HY)
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is the density of the field energy. For a system of charges, the electrostatic
energy (U), apart from the self-energy terms, is equal to

U=f‘WdV= E'ej*—ﬁﬁ.
FaB
We thus sec that the quantities
e
- Z,' (A09 A19 AZ& A‘})
stand respectively for the energy-momentum of the field.

->
Let us denote the magnitude of i;—{— efcA by iP’. P’ is equal to
2 mgic only as a first approximation. We have in fact

2 3 n . 2
— P2 = _ (2 (Z‘ma: + X ( > mixik) , (11)
i k=1 i=1
where
Pl
’ni = 01‘vi2
— =
Thus
—P2t=— (Z‘ m? + 2 2 mzm3>
- A<J
+ (Z m;2v;2 4 2 'Z,’ mimjvi-vj)
' i ,
or
P2—5 mi2C2 (1 _ ___) + 22m1m3c2 (1 Yi* v]) (12)
Now

Vi Vs
mym;e? (1 — 252
]
mmmoyc

Ve )

2
~ Myimgic® (1 + %%—) (13)
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where

Vij = (V'l — Vj). | (14)
Substituting (13) in (12), we get

.2
P2~ Zmy2c? + 2 X mgimy;c? (1 + %})
= (2myc)t + 2 MoifMgjV35.
Thus a second approximation for P’ is given by

.2
» 2 Myt V45 (15)
P~ mye +38 o
ig of T 2 2 MoiC

Applying now the results of Section 1 to the vector P -+ elc A, we get the
equation for the system of electrons as

{(Po+§Ao)+ Z'ak (Pk+§Ak)+BP'}l¢r> =0. (9

4. REPRESENTATION IN THE PRODUCT SPACE AND
THE BREIT EQUATION

Equation (16) describes the system as a whole and can be considered
to be the equation of motion for the centre of inertia of the system. Since
we are operating in a four-dimensional space, the matrices ar, and B are all
four-dimensional. They refer to the entire-system of electrons and do not
contain any labels of the individual particles. In practice, however, one
needs equations that bring in explicitly the positions and spins of the individual
electrons of the system. We shall see presently that Equation (16) can be
transformed into one that contains explicit reference to the spins of the
electrons if it is represented in the product space of the electrons.

Since the y’s represent the direction cosines of the momentum four-
vector, their classical analogues are given by

:Z;: miXik
and
2 imyce
'}"4=( I-Plz ) (170)
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Thus we have

) 3 mise:
ag = — i (ygtyr = — 7’;%%
and
; p'2
P = — oo (17 5)

Thus we have

3

Z af (Pk + gAk) + BP

k=1

-z 2mp'cm)2 —p

k=1 i

et

c;’mi
= — E mic = — ¢ E m"iv
,i \/(1_?%,
. n ——'———“2 fad
= — z;moic\/l‘-%%”% Z;miviz (18)

correct to terms of the order of v;4/c®,

Alternatively, one can get (I8) without using the idea of direction
cosines at all. From (16) we have

{Z‘ak(Pk“}*gAk)"*‘ﬁP'}l $) = — (Po—}—ng)(:/:)

and by definition,

_(P0+EAD)= — Z‘mic;

this leads now to the right-hand of (18).
For an electron moving in a field, we have

mv———P—l—gA
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where P is the momentum conjugate to the position of the particle and A
is the vector potential of the field. Thus we have

Z - Z v * (Pi‘+ £ A7) (19)

The term e/c Z'v; - A? gives the interaction energy of the charges with
the magnetic field produced by the motion of the electrons.

Now the potentials arising from the motion of a charge e have been
worked out in Landau and Lifshitz? and these are given by

f_e. . V(- ma '
¢ =< A= = (20 a)
where r is the distance of the charge from the field point and » = ¢jr. When
there are several charges we must sum over all the charges. Thus the potentials
acting at the position of charge 1 due to the motions of charges 2, 3, ---_n
are given by

"= €
¢ j=2 rlj
and
A= E'{Lﬁ-_iz‘ca_”_fw - 20
i=2 |

Let us suppose that our system consists of # electrons moving in a static

electric field V (¥) (the field of the nuclei). We can write the potential energy
of the system as _, -

U=—e@.—_...e§¢i

i=3

where

=V -1 Y"e

b rij
i

The factor § in the above expression for ¢; is introduced to take care that
the interaction energy between two electrons is not counted twice. The
energy is thus expressible as the sum of » different terms, each term standing
for the energy density of a particle. Consider now $. We have

¢
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1 e .
961 = V (i" ]) - i): E s

i

this can be interpreted as the potential at the field point of electron 1 due
to the static field V (r) and the fields of (n — 1) moving charges, each having
a charge of — /2. 'Thus the vector potential A* that arises as a consequence
of the motion of electrons 2,3, ..., n can be obtained by multiplying (20 5)
by — 4. We have

1 e |
¢ =V (r) — 5 ;,;‘g s
R

In general we have

Ale — o E P Ivi ot vy - myg) mig]

467'715

3

Substituting (21) in (19) we get
S mp = 3 vi+ P

_ Qg’; 2 Tvi vi+ (vi a i;‘lij) (v - mij)] 22)
i

i<f

Substituting (22) in (18) we get

3

Z ak (Pk —l—% Ak) + BP’

k=1

e? E' Vi'Vj‘ (Vi - Fig) (vi - rig)
+26‘3 - [ Fij + : rif ' (23)

13

We have seen that the velocity of the electron is related to the spin matrices
by means of the relations

V= — ¢aq
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and

vz
ﬁ:——Vl-—&—g.

Let us therefore introduce a set of matrices o' and B' by means of the
relations

y; = — cal

and

" 1 _ o
B=—a1-%. 4

A representation for the matrices o’ and B in the product space of the elec
trons can be obtained by adopting the following rule®: Iftwo physical systems
a and b are compounded to form a total system ¢, then the system space
H of ¢ is R X G where R is the system space of @ and G of 5. In the system
¢ obtained by composition, a Hermitean form A XI, is associated with a
quantity a of a and I, X B with $ of b where A and B are the forms associated
with ¢, g in R, G respectively, and I, and I, are the unit forms in R and G,

In the product space, therefore, the matrices o' and B are given by

o = IXIxI...XaxI...xI
and

8 =IxIXI...xgxI...xL (25)

In the above, the product contains z terms, and «and p occur in the i-th
place; further the X denotes direct product multiplication. Substituting
(25), (24) and (23) in (16), we get the equation for the system as

Yrot SA0)+ Z Z’ arlPit + m;c z 8)

k=1

. P e (ol o pis

¥is
i !
i<ji i<

For ’fhe case n =2, the above equation reduces to the well-known Brei
equation,
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SUMMARY

It is shown that the Dirac equation for an electron moving in a field
can be derived by expressing the magnitude of the momentum four-vector
in terms of its components. By considering a four-vector whose components
denote the total momentum and energy of the particles, a relativistic equation
for a system of several electrons has been derived. A representation of
this equation has been made in the product space of the electrons and it is
shown that for the special case of a system containing two electrons, it leads
to the well-known Breit equation.
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1. INTRODUCTION

SINCE 1955, the Computer Section of the Tata Institute of Fundamental
Research has been engaged in the development and construction of a large-
scale electronic digital computer for doing scientific computations. As a
preliminary to this, a pilot digital calculator was designed and completed in
September 1956 and was kept in operation for about a year.! The design
of the full-scale machine was started early in 1957 and its final assembly
completed in February 1959. Unfortunately, owing to the lack of air-condi-
tioning facilities, the work had to be suspended till almost the end of 1959.
The actual testing was begun in mid-November 1959 with an auxiliary air-
conditioning system and the computer was commissioned for routine work
in the third week of February 1960. This paper describes briefly the main
features of the system and engineering design of this digital computer. In a
companion paper, some aspects of the circuitry will be dealt with.

The T.LF.R. computer is a parallel, binary, asynchronous machine.
It is controlled by a stored programme of single-address instructions and has
a fast access ferrite-core memory consisting of 1,024 locations. The input
to the computer is by means of a punched paper tape (5-hole commercial
teletype tape) and the output can be either printed out directly or punched
on a paper tape again,

Both in the system and engineering design, the principal emphasis has
been on reliability of operation and ease in maintenance. With this in view,
the logical circuit types have been kept to the minimum consistent with
flexibility and the wired circuits were put through a rigid acceptance test
to check their performance under extreme operating conditions. For rapid
fault localization and servicing, a large part of the computer has been assembled
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