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ABSTRACT

The equations of wave propagation in piezoelectric semiconductors
have been derived for a frame of reference in which the principal axes
concide with the crystallographic axes. It is shown that generally the dis-
persion relation is given by a determinant of order six but under condition
wherein the plasma modes are not excited, it could be reduced to a deter-
minant of order five, which is equivalent to the one given by Hutson
and White. The dispersion relation for hybrid waves which couple acous-
tic phonons with plasmons has beer derived and this is shown to be
given by a determinental equation of order four.

1. INTRODUCTION

THE propagation of ultrasonic waves in piezoelectric semiconductors has
been the subject of many theoretical and experimental investigations during
the last decade. The amplification of ultrasonic waves in photoconductive,
Cadmium Sulphide has been studied experimentally by Hutson, Mc Fee
and White. They have demonstrated that the application of a dc electric
field pulse could cause the interacting charge carriers to drift in the direc-
tion of wave propagation faster than the stress wave velocity, and the electric
field can feed energy to the acoustic field, thereby causing the waves to grow.

The dispersion relation for long acoustic waves travelling in a piezo
electric crystal has earlier been derived by Hutson and White. They have
found that the dispersion equation is given by a determinant of order five.
Solutions of this equation generally give hybrid waves, which couple the
elastic and electromagnetic wave fields. Of these, three solutions correspond
mainly to elastic waves, with some energy being carried by the accompanying
electric field, and the remaining two solutions transport energy as electro-
magnetic waves while a fraction of the energy is being carried out by the
accompanying clastic wave field. Generally the eclastic and the electro-
magnetic waves are coupled together and the division of energy between
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iefeyrence to the crystallographic axes. F urther. the igugt;op n<c)c izoastzi
wave propagation in crystals are corpmonly. studied th re‘elftion o0 the
crystallographic axes, with the direction cosines of the prop‘atgc Jrector
occuring as parameters. We have therefore derived the equa lons 1(1) 1 ‘the
propagation in piezoelectric crystals for a fram; of reference. mﬂ ;v ic 1th .
principal axes coincide with the grystallogx:aphlc axes. It is s ov%fn da'
generally the dispersion equation is dfetermmed by a determunant _o order
six and under certain conditions in which the plasma modes are not excxtf:d,
the dispersion equation can be reduced to a determu}ant of order five, which
is equivalent to the one given by Hutson and White.

We have also studied the interaction between longitudinal electrostatic
oscillations or plasma modes with elastic waves. The dispersion relation
for hybrid waves which couple acoustic phonons with plas_mons has bgcn
derived in section 4 and this is shown to be given by a determinental equation
of order four.

2. WAVE PROPAGATION IN PIEZOELECTRIC CRYSTALS

Let us denote by T;; and S;; the stress and strain tensors respectively.
If u,, u, and u, denote the components of the displacements at

a point
(X1, Xa, X3), the components of the strain tensor are defined by
1 (Dui L 5
Szj ""2 ’5‘)}5 i axi)- (‘)

We assume the displacements to be small so that stress and strain are related
1o each other by Hooke’s law:

Trr = GijkiSi; (2)
where Cijk; are the elastic constants and they satisfy the usual relations for

permutation of the indices,

If however the substance is piezoelectric, st
and conversely the application of
tion between the stress tensor an

Tess can produce electricity
a voltage will produce stress. The roli-
d the components of the electric vector
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introduces the third order piezoelectric tensor, which we shall denote by
éij. For a piezoelectric crystal, the stress-strain relations assume the
form

Tr1 = CijkiSij — émriEm. ©)
Further piezoelectricity modifies the relation between the electric displace-
ment and the electric vector to the form

Dfn = emnEm + e_niisij (4)
where emn is the dielectric tensor.

The electromagnetic variables are related to each other by means of
Mazxwell’s equations which, in MKS units, we write as

B
Curll E = — 35 (5 a)
CurlH =22 1 (5 5)
Div B =0. (5¢)

Besides, the electric vector E and the current density j are related by
Ohm’s law, which in its generalised form may be written as

Ji = oiE;j (6)
. where o3; is the conductivity tensor. It is generally a function of several
.+

parameters like the plasma frequency wp, the wave vector &, the ratio of the
~electron drift velocity to the sound wave velocity, etc.
Again

B = p,H ‘ (7)
where p, 1S the magnetic permeability. The equations of motion for elastic
vibrations are given by

piup 3
w2 T axg (8)

We shall assume that the elastic displacement wuj as well as the components
of the electric vector have space-time variations of the following form:

E'i. — Eie—i (wt--k.r). (9)
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Substituting (9) in (8), one gets
(Cijrikikt — pw?dy;) u; + iéjrikiE; = 0. (10)

Next, taking the curl of Maxwell’s equation (5 @) and substituting (5 5) in
it, we get.

2 p)
Curl Curl E = — pq %2 -+ S—taE) . (1D

For wave propagation, this equation transforms into
-> -> >
k X (k X E) = — yyw?® (@E -+ &S) (12)
where the dyadic « is defined by
ic
a4 = € + ‘a;
and

(€S)i = % i8imn (umkn + Unkm)- (13)

The components of the vector equation (12) can be written as

B9 (eus + eus) kjui + (eiks — KByt + poway) E; =0, (14)

. > >
Since k¥ X E =k X E;, we may also write (12) as
k3E_L = l"'l)wg (aE -+ €_S) (15)
-)
By taking the scalar product of this equation with k, we find that

(«E -+ &S)-k = 0. (16)

The equation (10) and (14) constitute a set of six equations in the six
variables u;, us, 4, Es, E; E;. By eliminating these variables from the
equations, we get the determinental equation of order six given in Table I.
This equation gives the dispersion equation for waves that are a mixture of
elastic, electromagnetic and electrostatic oscillations.

At this stage, we may point out that the equations (10) and (12) can
alternatively be derived from the following Lagrangian density:

L =1 pU2? — 1 CijkiSxiSij + BT éS + 1 Et eE— L H-B +j-A.

The various terms in this expression can be Interpreted physically. The
first two terms give the Langragian for the elastic vibrations. The term
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E+eS gives the interaction energy between the elatic modes and the electro-
magnetic field, which are coupled through the third order piezoelectric
tensor. The last three terms give the Lagrangian density for the electro-
magnetic field, when currents are present in the system.

One can verify that the equations (10) and (12) follow directly from the
Euler equations given by

> . _5_7 _ oL
aza(aUl/az) x5 a(aUz/axj) U;

2 aL
A (bAl/af) T Z 2%, (BAz/bx Yy T (18)

COUPLING BETWEEN ACOUSTIC AND ELECTROMAGNETIC WAVES

We shall consider in this section the interaction between the acoustic
wave and electromagnetic waves brought through the piezoelectric coupling
tensor. We shall assume that wave propagation takes place in the direction
of the wave vector k. The waves observed in the photoconductive Cad-
mium Sulphide by Hutson ef a/. are of this kind and the dispersion equation
for such hybrid waves can be obtained by eliminating the longitudinal com-
ponent of the electrical veclor from the equations of motion. We shall
find it convenient to express the components of the electrical vector in a
co-ordinate frame S’ having axes along e,’, e,’, e,” such that e, coincides
with the direction of the wave vector k. The old frame of reference S, which
is generally related to the crystallographic axes, will be retained for express-
ing the components of the elastic displacement u. Let E,’, E,’, E;’, denote

—.}
the components of E in the frame S’; it is clear than that E," and E, are

>
the transverse components of E. Let the transformation law between (E,’,
E,, E;) and (E,E.E;) be given by

E,’ 4 An A Ay, E,
Ey = Azr Ags Ay E. . (19)
E;’ Ay Agy Agg E;

We shall denote the components of the matrix « = (¢ + io/w) in the
new frame §’ by «'sj.
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Obviously
a,ij == Aik“klAlj (20)
where A is the transpose of A.

Since the piezoelectric constants are dependent linearly on the com-
ponents of the electric displacement, they transform linearly with respect
to the above transformation. Hence

ikl = Aijéjkl. (21)

In this the component i corresponding to the electric vector alone has been
transformed.

From the equation (16), it now follows:
;P ] ’ ’ ros ~
By = - {(@uEy + a'3Ey) + &'smnSmn}- | (22)

We shall assume that o'y 7= 0.

Since agy = 0 gives the dispersion equation for the propagation of
plasma waves in the dielectric, this condition implies that plasma oscillations
are not excited or are filtered out.

Now

iktkiEs = egriki (A™)iE;
(Ajitixt) kiEj’
= ZjkikiEq (23)

Il

r f ~ (1.’ ~
= kiE, (e'lkz-— 2 e 3kl)
@ g3

14

14 ~7 24 -~
+ KiEs (e okl d‘r@ elakl)

33

- N
— 18 stcrky € smn (Kmitin + Kntim)
’ -
G 33

(24)

Thus substituting (24) in (10) and rearranging the terms we get:

¥ skerkrkme mi
Ui [Cijklkjkl—”Pw23ki+ sherrm m‘]
@ 33
’ !

. ~ 1 G 31~/ : r f %~ o ~7
+ ikiEy ( 2 — ;:; e 3k1> + #kiE, (e 2kl — — ¢ 3kl)

%53
= O!
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Again on substituting (22)

’ ' 2
| - O §g> ~, ' Oi3 « k ’
l [e'imn — —— € 3mn] kn”m + (a ic — 7 Qgs— 79 8z's Es =0
@ gg¢ @ 33 Fow

(i,S=1,2). (26)
By giving i the values 1 and 2, we get two equations in u, E,” and E,’.

Equations (25) and (26) constitute a set of five equations in the five
variables u;, Uy, us, B’ and E;'. On eliminating them, we get the deter-
minental equation given in Table II. This equation determines the frequency
of propagation for any given wave vector k. As this is an equation of the
fifth degree in «? it has five roots. Of these, three are of acoustic nature
and the remaining two describe electromagnetic waves, but generally these
are coupled to each other. As the matrix « is complex, the elements of the
equation in Table II are in general complex and besides this equation is
not symmetric. Hence the roots are not generally real but are necessarily
complex. The waves are hence attenuated. If however (vg/s)>1 one
obtains growing waves.

We may mention that the condition a'y; 7= 0 is necessary in order to
obtain hybrid waves that couple elastic and electromagnetic modes only,
This condition implies that longitudinal oscillations are not excited. In
order to effectively filter out the plasma oscillations, it is also necessary that
a3y is as large as possible. The equation in Table I can alternatively be
obtained by elementary determinental operations. Let O denote the
operator, given by

i 2
0O = ey k* . k? iejs
=\l = T g T [ 2 — 2 . 16
Mo™ Ky

where r; denotes the i-th row of the determinant. The operator does not
alter the value of the determinant in Table I, since it eftects only transposition
of the rows. The first five rows of the determinant contain zero as the last
element. Expanding now the determinant along the last column, we obtain

agpDs =0

where D; denotes the determinant given in Table II. Since ase 7 0, the
dispersion equation governing hybrid waves that couple elastic and electro-
magnetic modes is given by D; =0, |
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4. INTERACTION BETWEEN ACOUSTIC MODES AND PLASMA OSCILLATIONS

We shall next eliminate the transverse components of the electric vector
from equations (10), (15) and (16). We would then be obtaining four equa-
tions in the elastic displacement # and the longitudinal component of the
electric vector. As the displacement of the electric vector and the direction
of propagation of the wave become the same, these equations should des-
cribe the coupling between the plasma modes and sound waves. The com-
ponents of the equation (15) along the axes ¢, and e,’, which are perpendi-
cular to the direction of propagation, are given by

(“Z{—“ — a 11) E;" — o'Ey’ = a'i3Ey - e'1mnSmn (27 a)
Mot
—enB #(]:{;7'3 o a’zz) Ey' = o¢/nE;" + BamnSmn (27 b)

where the components of (7S); are given by (13) and in particular
Smn = "lji (Umkn + upk m)- (28)
We shall now denote the matrix in the left hand side by B so that

k2 ,
Bij = —— 81 — &jj (29)

P
and we shall further set y = gL (30)
Then if determinant | 8|40, we have
Ey' = v11 (¢15Es” + €mnSmn) + 12 (@'5sEs" + Z2mnSmn)
Eo' = ya1 (0'33Es" 4 8" 1mnSmn) + 20 (@235 + €’2mnSmn) (31)

ie.,
E, = by + bystts + bystiy + by 4Fs.
If we substitute these in equation (16), we get
iuikj {835 + €'1ij (¢/yryan + @'aays) + 2'213' (@371 + o397 92)]
+ Es' [0'33 + o'y (e'g1711 -+ @'32y21) + @' (¢'ap910
+ a'gaye2)] = 0. (32)
Again
I ikikiE;
= ie'jikiEy’
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= ieye1kiEy’ + I8 11k [Ey (y11a'ss + V190 53)
+ Smn (¥1:8"1mn - Vl‘zé'zmn)] + ie'yiky) [E,’ (’)’21“'13
+ v22@'25) + Sin (V2@ 1mn + 7228 2mn)]
= IE3'ky [(élskl + ekt (yio'y + V120 53)
+ okl (Y1213 + ya20'53)] — ”iklkj [&"1k1 (Vuz’u'j + '}/Jv‘.’.é’ﬂi?‘)
+ €'ak1 (7’212’"1@' + ')’235,2729')]- (33)

On substituting this in equation (10), we get
3 [Ciikikiky — pw®Br; — kiky {8161 (yin€'1ij + 7128 915)
-+ z"zkl (?'21el1i9' -+ szf”m')}] -+ iEs'kl [E’akl -+ 'é'ﬂcl (711‘1’13

-+ V12a’23) + &'ok1 (Vzla'm -+ '}’22“23')] =0. (34)

The condition for the validity of the dispersion equation is that | 8| = 0,
which implies that electromagnetic waves are not propagated in the serm-

conductor, under these conditions.

Equations (34) and (32) constitute a set of four equations in the four
variables uy, us, vy and E;, and eliminating these from them, we obtain
the determinental equation given in Table III.  These equations involve
only the component of the electric vector along the wave vector and for this
reason, the waves should represent plasma oscillations. The equation (35)
gives the dispersion relation for hybrid waves, which are a mixture of
elastic vibrations and plasma oscillations. As the elements of the
matrix in Table III are complex and the matrix is not symmetric, the roots
of this equation are generally complex and the waves should either be grow-

ing or decaying.
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