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ABSTRACT

The paper deals with the structure of collisionless shocks arising
from turbulent wave-particle interactions.  The conditions under which
wave-particle interaction effects could become significant leading to
growing waves and a shock are discussed.  Using the Mott-Smith ex-
pression for the zero-order distribution functions for the ions within the
shock, the diclectric constant as well as the integral representing the
wave-particle interaction term in the Lenard-Balescu equation are evalua-
ted for a collisionless plasma.  An expression is given [or the ion distri-
bution function within the shock.

It is shown that the component of the pressure tensor perpendicular
to the direction of flow of the plasma leads to a new kind of viscosity
term arising from the interaction of the particles with the growing waves
and this provides a dissipative mechanism to account for the conversion
of the kinetic energy of the incoming plasma into the thermal energy
of the hot ionsed gas behind the shock.

I. INTRODUCTION

COLLISIONLESS shocks have attracted the attention of a number of workers
and though the subject is of recent origin, the literature on it has alrcady
become unwieldy.! ¢ A well-known example of a collision-free shock is the
bow shock produced in front of the magnetosphere by the solar wind blowing
at hypersonic speeds.  Satellite observations have confirmed that the thick-
ness of the shock front is of the order of a few hundreds of kilometres, which
is much smaller than the mean free path (~ 10" emu) in the solar plasma,
Collisionless shocks can be produced in the laboratory also in shock tubes.
The ratio of the clectron to the 1on temperature plays a signilicant role in
the formation of such shocks. Anderson ef ¢l.” have shown that shocks
are produced when the ratio Te/T; 18 increased to about 8 or 10 by cooling
the ions. Besides, these shocks could occur in a Stellerator in controlled
fusion experiments and a knowledge of the properties of these shocks could
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provide information about the instabilities that plague such experiments
and ways to suppress them.

It is now generally agreed that plasma instabilities play a vital r01<? in
determining the structure of collisionless shocks and the shock itself is a
consequence of the wave-particle interactions. When plasma waves, whlgh
arise as a result of the thermal fluctuations, become unstable, they grow in
amplitude generating a turbulent region behind the shock layer. Th'ese
waves scatter and trap the particles, and provide a mechanism for converting
the kinetic energy of the supersonic cool plasma into the thermal energy of
the hot downstream plasma. A theory of the turbulent shock waves gene-
rated by wave-particle interaction has been given by Tidman.® The present
paper is a development of this work and we provide an expression for the
distribution function for the plasma in the thin shock layer by evaluating
the integral representing the wave-particle interactions in the transport equa-
tion. When once the distribution function is known, several microscopic
properties of the plasma such as the growth rate of non-linear ion waves,
the thickness of the shock-front, the pressure tensor, etc., can be evaluated.
In Section 4, we evaluate the dispersion equation by using the Mott-Smith
function for the zero-order distribution function. Since the wave-particle
interaction converts the kinetic energy of the incoming plasma into the
thermal energy of the gas behind the shock, it is a dissipative mechanism
and one should be able to associate a coefficient of viscosity with it. Section
6 deals with the pressure tensor and the viscosity coefficient.

2. THE WAVE-PARTICLE INTERACTION

The kinetic equation for the averaged distribution function in a colli-
sionless plasma under conditions of weak turbulence is given by

Yo vie(By. YL s, - a

where Sey represents the collisions between the particles and the waves, and
is given by*

__—‘2343 a[k.'v__.v’] 3 ’
TR o e S HOLEE A

—f(®)k. A (v)} kdkdv’ (2)

* The symbols v and v’ appearing in these equations are vectors,
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In the above, e (k,w) represents the dielectric constant of the plasma.

We shall consider in this paper shocks corresponding to a steady state,
and we shall further assume that there is no average electric field (E ) and

further that the flow is one-dimensional. In this case, equation (1) reduces
to

if .
S 3

we shall rewrite the above equation through a set of non-dimensional varia-
bles X, » by introducing two scale lengths ry and v, for the linear dimensions
of the system and thermal velocities. By means of the transformation

X = ]"0.«7&
D= 1)0'1'3
and
F ~
F@) =ED. @

)

we find that the equation (3) can be reduced to the following form after some
simplifications:

g [ o 5
—F@)k. “;(f)} dkd" )
where
= ffze;q;f‘ ’ ©)

The parameter A is normally very small, but under conditions wherein
electrostatic waves grow non-linearly and wave-particle interaction effects
become significant, it can be of the order of magnitude of unity. For example,
let us consider the typical case of the shock wave produced by the flow of
the solar wind past the magnetosphere. In this case, observations suggest
that the thickness of the shock is of the order of 1,000 km. so that we could
take ro ~ 1,000 km. We further take v, = 10% cm./sec., which corresponds
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to the thermal velocity of the electrons. Then a simple calculation shows

that for electrons
Ao = 12-83.

In view of the factor m? in the denominator,. the value of A for protons 18
much smaller, but if we take v, ~ 10 v* corresponding to the case in which
the electron temperature is much higher than the ion temperature, A; also is
of the order of unity. Thus it is clear that under certain set of conditions
which depend on the ratio (re/v,?), the parameter X is not negligible both for
electrons as well as for ions and the wave-particle interaction can be signi-

ficant under turbulent conditions.

3. THE DIELECTRIC CONSTANT

Let us denote by v; and v, the stream velocity of the ions in front of the
shock and just behind the shock. The upstream velocity v, is assumed to
be hypersonic. The shock is supposed to be a thin layer where the incom:-
ing plasma interpenetrates with the hot subsonic plasma of the downsiream
ragion. We shall choose the direction of flow of the plasma as the X-aX18
and consider the case of a normal shock. Following Tidian, we choose
the distribution function for the ions inside or near the shock layer as a
bimodal Mott-Smith function given by

o m(x) (v — )
) = v [ -]
+ (2::)23!(?%]23 €Xp. ['— ('D 2—\-]:)22)2] (7)

where V; and V, denote the thermal velocity of the protons in front of and
behind the shock. If N; and N, denote the average density of the ions in
the upstream and downstream plasma, then we have the boundary conditions

ny (+ 00) = ny(— 00) = 0; n(— o0) = Ny; #y(+ o0) = Ns.

As stated earlier we shall suppose that the electron temperaturé 18 con-
siderably higher than the ion temperature so that the electron gas is subsonic §
even in front of theshock and does not suffer appreciable velocity jump across
the shock. For future calculations, the distribution function for the electron

gas will be taken as
_ me(®) _v,

"
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where

e (— 00) = Ni; #e (4 00) = Ny; v (— 00) = vy;
Ve (-+ o0) = v,
The integral on the right-hand side of (2) involves the dielectric furction

& (k, w) in the denominator and before evaluating it, it is necessary to obtain
an expression for ¢ (k, w). This is given by

8k, w) = 1 | &”; G; + f&e‘, G, 9)
wherc
()
e Wy
GL iz fmd’l) | (10 a)
and

e
o ()

= v (10)

We shall first evaluate G;, the ion contribution to the dielectric constant.
Substituting from (7) for f; in (104), we get

Gi _._’le.(:’f.)m kz (Vg — Vgq)
v (2732 V8 kzVy — w

Qemy, 2

! :
X exp. { = 53 (02 — 022 + 0,7 + 022]} do

fg (X) ke (Vg — Vs Vg — Vg,)?
= (Zn)FV3 e  exp. [* ("“"“"‘xzv,f ; ]d”w.

(11 &

on performing the integrations with respect to vy and v,. Hence

y fexp. [‘“ (v(aé{/_:;;za)z } dm} . (11 b)

(kxVz — w)
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We now define the dispersion function Z () by means of the integral -

o

_xr? '
2=t [ oy ax a2
Then writing
o w — ka:vxa

“= Ve

one finds easily

Gi= > n vk + LavsEz ) (13)

a=1,2

The integral for G, can be evaluated similarly using the distribution function

f. for the electrons and one finds that the dielectric constant & (k, w) 1s given
by
. — 1 {“_@_2"?1 wgpaCaZ (éa) CL’2pe ; g
g(l‘: w) ]- i ‘]kz Va.2 "]l"' ""k’g'v;g ) } "}“ ]2‘2 V'e‘g éGZ (ée)

a=1,2

(14)
where w2p, and w?p are the plasma frequencies for the ions and the elec-

trons.
4. THE DISPERSION EQUATION

The dispersion equation is now given by
8k, w)=0. S SR - (15)

The solution of the above equation gives the wavelengths and associated
frequencies of the longitudinal electrostatic waves in the plasma. Before
proceeding with the dispersion equation using the Mott-Smith function
it will be useful to recall briefly the results of the two stream instability in z;
plasma and the nature of growing waves. It is well known that for a dis-
tribution function having the form

f=3B@=2)+8@—0)] (16)

the dispersion equation is given- by

wpz (}2 —_ t;!):! (17)

h—-—__
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where

yr_wm’ﬂﬁji‘,@ (18)

and

— k(vy — vy)
5 .

The roots of this equation are

23,2 212 :
2=l B i E)

Of these two roots, y,2 is always positive. Since we are interested in grow-
ing waves, we shall consider in detail y,%; this will be negative if

2

or if

ko 222 (20)

Thus waves whose wavelengths are greater than = (v; — vo)fwp will
be unstable and can grow in amplitude. This result will be useful to have
a qualitative picture of growing waves and to understand fully the disper-
sion equation (15), which takes into account of the thermal agitation of the
particles.

If for any real value of the wavelength of an electrostatic wave, tke
frequency o turns out to be complex, the waves are either damped or grow-
ing waves. We are interested only in the latter type of waves and for these,
the imaginary part of », which gives the growth rate of the wave, should be
positive.

Let us now write

w = wr + Tw; (21 a)
(éa = Za‘r -} iwic«,i (21 b)
Z (Lo) = Zar + iZai (21 ¢)

A3
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where

wy — KgUgq

o Wr — KgUga o _ 22 a)
Lar = \’/2 kxva (CL 1: 2) e) (‘

and

.1 (22 b)
éal - ’\//2 kxva *

Substituting these in (15), and equating the real and imaginary parts of the
equation to zero, one obtains

2 9 - ‘
b+ Z?C%\?fé + 2 ; ]EE;)—%%? (CaTzaT - wigaizai) =0 (23 a)
2 , E%);\I/)’f‘é (Zarzai -+ cuizizar) =0 (23 1))

where the summation for « runs over the indices 1, 2 and the electrons.

These are a set of simultaneous equations in &, (or wy) and ;, and
a solution of these two equations gives the growth rate of the wave as well
as the frequency w, corresponding to any wave having the wavelength /.

To solve the equations (23), it is necessary to obtain analytical expressions
for Z, and Z.

Now??
Z () =t fw "
Jox—1
- =atie P [ — erf(— i0)] (24)
and

erf (— il) = erf(wils — ily)

B T .. ,
= erf (wil;) + ronls [(1 — cos 2w; i 4y) — isin 2w;ilit,]
[o ]
+ _2_ o w»;fiz . e~
7 n?+ 4wy ;2
n=2

X Un (&, &) + ign (G, &) + « (25)
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where
fu = 2wil; — 2wl cosh nly cos 2wilily + nsinh nly sin 20348,
gn = — [2wilj cosh nly sin 2w;{;¢y + nsinh néy cosh 2w34]  (26)
and

| €] m 10718 | erf (— i0)

L)

It follows after some simplification that the real and imaginary parts
of Z ({) are given by the expressions

Zy =7t 848090 | sin 20ile < 1 — erf (wils)

e“wtﬂ z-‘t'z

= Jmang, (L — cos 2wiLily)

2 (R
;2 e-
- e"'w{ ff —————————————
™ 2 [ n? 4+ 4w;? {2 In

nsl

~0ft? ] 2
— cos 2w; (L, g—— sin 2w; 538y — - e~ it

mw;il;
[+ o]

e~ )
X Q) g o &

ney

Z; = mt e 5 | cos 2058 (1 — erf (wil)

e__ w“.! K‘s?

~ rorl, (1 — cos 2wii&y)

2
2 el e
— o p—WT Sy —re e 3
- e nz l 4601',2 Ziz fn

n=l
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in 2 e Gn 2wi5i¢
— sin 2wl Ly dnwils LEL 5T

fad

5 e ‘ (28)
— = —wi-g‘i- ST 3 "o % 9 LI '
=° 2 , n® 4+ dwiPl? gn} '

n=1

The equations (23) together with the expressions (26), (27) and (28) for Zy
and Z; provide a basis for the numerical evaluation of w, and w; for any
given wavelength. They could throw light on the damping of the waves
as well as their growth rate near a shock.

Another method of solving the equations (18) is to assume that wj IS
much smaller than w,, expand Z ({) as a Taylor series {, and w;{; truncate
the series with the first two or three terms. In this way one could obtain
analytic expressions for ;. The equations determining w; and {,r Can bec
found to be given by

4>

2 E 2
[1 - E k‘;\lflaﬂ "" ]';:_\z;—:g a‘l’Z (ga’r)]

' 2 ' e "
Z ]%%[Z (‘:a?‘) 4 Za.’l'z (Ca?‘)]

-4

5. Tue Iox DISTRIBUTION FUNCTION

‘In order to evaluate the ion distribution function within the shock-
front. we write .

F(®)=Fy (%) — F, (D) (30)

and substitu.te Fy () for the distribution function on the right-hand side of
(3). Fy(2) 1s chosen to be a Mott-Smith distribution function given by (7).

It is first necessary to express this function in non-dimensional variables.
Let us now write '

Vi=awg; Vo= aw,; N, = (g‘;) and N, = (:_J{z) (31)
-\

s
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The numbers N; and N, are of the order of Mach numbers in- front of and
behind the shock. We find that

Fo (73) = 1p° f

= _J.Z_I_Q%_).., —(;)~N1)'~’/2a1" 4 _he (‘C) ~(0-N,)%2a
(2m)3 2 a® (277)3/° as® i
= ( ("3) + Gy (73) (32)

where G, and G, denote respectively the first and second terms of the above
expression. The kinetic equation determining the jon distribution function
is then given by

D l 8 ('Ux vx ) ISP Sl
bx 'U;L' a'Ux f k4x I € k ?Jokx I)}z Pdkxd dvy dvz (33)

where

P“‘"F()k \FO( ) F(~/)k bFO('L’)

= kg {F () 2L aFo( D) —F( )bFo(v)} (34)

With the expression (32) for Fy () it is easy to evaluate the quantity P as well
as the integral [Pdd,' dd,'. These are given by

- (G, (v)+Gz<v>)[Z =Nl 6, (5 )]
(G (¥) + Gy (5'))[2 (e = No) (v):R (35)

and
[Py’ db,
= kg {(%ﬁ ) G, (v) & (02) + (vx Y G, (’U) g2 (V)
+ [(?Nchgle) G o s )] 1 (D) gz (”L)

Up — Ny Uy — Ny ~ ~
+ [(v = ) _ (@ = )162 ) & (vx)} (36)
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where
1 () = gy, & O @7

In view of the presence of the factor £8* in the denominator, the integral
on the right-hand side of (5) can generally be evaluated by numerical methods
alone. However, the integral can be evaluated analytically for the case
when [ <€ 1 which is satisfied for a wide spectrum of the unstable waves.
In this case, Z ({) can be expanded as a power series and retaining the first
two terms of the series, we have

(Z () = iv/mi— 20 | | (39)
The square of the dielectric constant is then given by

' 2
) e i w2 o 2 w2 acaz
6% = [1 - 2 , Ve TR Z, V.2 ]

a=1i1,2,¢€ a

2
v 7| 3] @

where

and is a function of x inside the shock. The density varies in a thin layer
of the shock, say of thickness 8, from its upstream value to its downstream
value. A simple assumption useful for numerical computations is that the
density varies linearly with distance inside the shock. We choose our units
such that r, = 1. In this case one can write

(%) =Ny; 8,(X)=0
in the range (— oo, 0)

m @ = (1-3%)
and

fig (55) == ng
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n (0, 8)
n(X)=0; n(¥)=N
in the range (3, ). (40)

The kinetic equation for the ions is now given by

J' )N 2D

= = — A
F=F, +F, f ST (D 55— N )dxdkl 41)
., 0
where N and D are given respectively by (4) and (5) of Appendix I. The
integration with respect to kz can be performed very easily and the evalua-
tion is given in Appendix I. One finds that the distribution function
within the shock front is given by

F=F0+Flz—xf(11—12)€?x “2)
where

b e )

L= 2N (08 0 [ s, T G

-1 (kx? + ay) (ay + v1) (kx® + a1)
X tan VB — a,® i (By — 12, (kgt + 20,k + ,31):l )

N, D, @, and B, are given by the equations (4), (5), (7) ar.d (8) respectively
of Appendix I. The above integral gives the ion distribution function and
can be evaluated numerically. The integral form is however very con-
venient for studying several properties of the plasma within the shock which
involve a knowledge of the distribution function such as the charge separa-
tion and the electric field at the shock boundary and the coefficient of vis-
cosity arising from the turbulent wave-particle interactiors.

6. VISCOSITY

When the distribution function is Maxwellian, pressure is a scalar for
an ordinary gas, but when collisions are taken into account, pressure Las
generally six components and is a tensor, By treating the ¢ollision term in the
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Boltzmann equation as a perturbation and expanding the distribution
function as a series by the Chapman-Enskog method, the dissipative terms in
the pressure tensor involving the coefficient of viscosity make their appear-
ance. The coefficient of viscosity is obviously dependent on the collision
frequency. Another context wherein an anisotropic pressure is encountered
is a collisionless plasma embedded in a strong magnetic field. Here the
finite Larmor Radius corrections to the distribution function introduce a
new kind of viscosity known as the gyroviscosity, but this is not dissipative.
In the present problem, since the flow across the shock is reduced from
supersonic to subsonic velocities, there should be a dissipative mechanism
which converts the ordered kinetic energy of flow into thermal energy, and
4 different kind of viscosity should be anticipated which depends purely
on wave-particle interactions. We shall calculate in this section the correc-
tions to the pressure arising from the wave-particle interactions.

The components of the pressure tensor are now given by
P = M [ (9 — Np)2/di
Pyy =M [ (D — Ny) 0y fdv
Ppy =M [ (Dp — Ny) Dz f dv
Pyy=Pp=M]J o2 fdo=M][ "2 fdv
Pyz = M [ Db, f do. (45)

In the shock layer, the distribution function is given by

f=Iu+h (46)

where f; is the correction arising from the wave-particle interaction. As
is well known, the contribution of the Maxwellian term in the distribution
function to the pressure tensor leads to the scalar term and we shall there-
fore calculate the contribution arising from the correction term f;, to the
various components of the pressure. 1’

e (i na s [ 2N -

2

e i v A A S 41

5 g et T

j
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The tern.l involving dN/3%, can be integrated by parts with respect to ¥,
and the integrand vanishes at the limit for Px. Hence

R

_ny = — )\Mvo‘z f P-4 Q (Dy — NO] 51/ [{530 E/l—'é — (71_2 'i ~
R . 1 2 i
%
(N N, SN _a l *
(5‘“12 - a_;z)} Gy (v) & (v2) + {’l’x a2 Gt '
NV') N -~ a~ o~ ~ ~
(2= 28} G (9 21 (o) | dBadtByd e 47)
2 1

The integration with respect to %, can be carried out immediately and one
can see that it leads to zero because of the symmetry in the range (— oo, oo).
Hence :

By the same argument, one can show that

Pyz = Py, = 0. (49)

We shall next evaluate the diagonal elements of the pressure tensor. We
have

Pre = p + Py
where

me(l) —_ ’002 f ("l“)x - N1)2 Fd'ﬁ- (50)

This integral has been evaluated in Appendix I and one finds that
Py = 0. (51 a)

Thus, we find
By symmetry, we have

Pyy = Pz
= p+ Py
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where

Pyt = v? [ B2 Fdf

9 J ~ ~ 5 d~ - o~
S f d5 f 5y (I — L) 5 d5ydi (52)
This integral has been evaluated in Appendix II and does not vanish, Thus
we have
Pz =P Yy
_ o My » () n (X)) (4 @
PN, fax (B2 - 3)
(Ll 1 ,
(G = 2) @ + P/ =P
N;, N\, )
~(Gi-@)Qutry—pal (53)

where Py, Pp" and Qp are defined in Appendix 1I. Thus we find that the
components of the pressure perpendicular to the direction of fluid flow is

given by

Pyy=p (%) (54)
where

= Mi\}ioz NIN?

2n ' (55)

Now

1 1 d [v,2

a: a2 A (&—1-5) ~ e (v-l—z) (56)
and

Nl N, N d

—p T g = A =1 A~ — 2 XY

ai=ai= oG~ £ (5% B

Zhere A...] denotes the‘ varigtion of the quantity inside the bracket
across the shock. In our units, & is of the order of magnitude of unity. To

E—
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find out the order of magnitude of the terms involving the viscosity », it will
be useful to consider the integrand i (53) or Py, /d¥ which is given by

‘Il)NU f\h/l U”: ONIN'J )Il (;) 111‘: (‘\) V’l V“:
dX Rt NN, ) (\": vx)

‘ , I roy°
) ) > ¢ )
{((‘l! l(! l l)f/f\t(\'":",)

__ O R AL
Qi PP (V)] (58)

The two terms involving the derivative of X are proportional to dT/dS and
dM.d%, where T is the temperature and M s the Mach number of the flow,
and thus the expression resembles the conventional expression for the pres-
sure tensor mnvolving the cocflicient of thermal conductivity and viscosity.
We hope to give numerical results for the ron distribution function, the shock
thickness as well as the pressure tensor in a later paper. I is clear that
wave-particle interaction introduces a new type of viscosity and could provide
a dissipative mechanism that transforms the kinetie energy of the streaming
plasma into the thermal energy of the hot tonised gas behind the shock.
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APPENDIX 1

The integral (42) for the distribution function may be written as

Fe— (@G-8 M
Ve
where
. 1 N dky
L=Jp Yo ) -
and
_ { N 2D dky 3
2 D2 3%, kg )
wﬁhere

BT e

N={to(d —zn) — (52— f—g—z)} Gy (5) g2 (%)

o (ga—an) — (G2~ D)} @ & G @

and

— ‘Uz'pl "-Uz'pz 2 w2p1C1 w pz§2 l
D“{1+k2vlﬂ+k2V22“E§ ' )i

2 g 2 2
We shall first evaluate I,.

Since dN/3D, 1S independent of kx., we have

. f N J‘ Koy ©
1 D’U*L kmaD B'T)x k$4 + 2Cclkx2 + Bl

H

where

)

w2 2
-5 - 9 ®




Tzu‘bu/@n/ Shock Wuves in a Collision- Free P/cz.s'/;za 137
Obviously,

The lower limit for k, is zero in the above integral. This can be integrated
immediately as it is in the standard form. One gets

‘ I dN [ k + «

I, = , tan! .-.&;_;_J . 9

tT2 M’Jc(ﬁl — o‘1 2)* an VB — af ®)
Next

L, =N f DU")“ (//\x

e 49 ol | @wipals dkgky (ky® _}_’_1)_
4\ ...N'vu( V 3 ] VZJ ) (k 4 _I_ 2001/(13 “| Bl (10)

where

@il | @¥palo) r0ip 2
Vl-)' T 2“) V,® sz)'

Y1 = — Q4 -+ 4 wplgl }__wrngz) (11)
\A
After simplification, one finds that
— w_‘fp_él w p,go dt (21‘ — 2'}/1)
L v (O 00 SN0 e 02

where
t = _]Fx?'.

The above integral is again in the standard form and on integrating it, we
find that '

o @by "-”19542) [____J N
I, = 4/2 N, ( V 3 T % kgt Dagkp? I A1)

(“1 -+ 1) tan—1 /\Jc 8 a4y

T (/31_‘ 1)?/) \/[31‘““1

(“Li,?’gl_(k'c + @)
L R A o o e (13)
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APPENDIX 11
We have
an’: =p _1_ wa(l) (1)

where
Pxx(l) — 1}02 f (7‘3x -_— N—l)2 Fd’l?

— — vy f a3 f Tz — )™ (1, — 1) as. 2)
X
Here
I~P3~N;; I, = QN 3 a)
where
— 1 n—t (k:x: + a'l) -
P =™ VE —a 35
) w p1§1 . @Zpalo) 1 _
Q = v (52 + ) [ gl 2k D
: a; -+ k
T IS(l i._—a );;)3/2 tan~ i'—/%:iil‘) |
- (21 + 71) (kg + 9y)
SCermias e B (3 <)
Substituting these in (2), we get
Px:z:(l) — A’ng f f(’ua: - N1)2 P AN QN) ds (4)

where N is given in Appendix 1.

Integrating the term involving P aN/2d, by partsin the above integral

and noting that the integrand vanishes at the limits of integration for ¥
we get

Papp® = Avozf ds f N [ Q+P(1— %:)}
+ (Be— 28, + 01 ;P | a5zdtyaz,

= Ty + T, (say) )




Lrbulent Shock Waves inoa Collision=Free Plusma (39

where

I r‘m‘,'-'-J dr ’ ‘Q . (l T:J,“‘>) [g T’x( l.. l,)
J .0 L ay” a,*
N N., Co - _ e
(” : y :)} Gy () ga(Fe) 1 a similar lcrm] AV gdvgdvy
1 M .

(6)

and T, is the integral with the second term involving oP; 0, in the integrand.
Entegrating with respect 1o the variables ¢y and &, we gel

~
£

. l\. s » . '\' “ ‘M . - 2
T, .{,” dx (X)) v [() . b (l I:IL..
..,Tf . (II‘I'A' . ' * .“‘I:u .

l ( N, N:) 4
7 P a,” o,” {

—
-~
*
)
.
~.
~

> ( | l ) (NJ N, | ¢ jan, 2br,ic) 7
I . " ; . (7)
d.t ot ant at))
where
I 1 Nl N Nla N(:: . N:g::
‘1 o " : ,) " ' : : (. ° ; Lo (8)
o dy® TPt e a® aa® :

Obviously 1, 0, because the terms in the curly bracket cancel in pairs.
By the same argument, we have

Ty - 0
thus

Pyt O
Next consider

Poy . MBSE T ooyt Felv

v . . hi
/7 Mf’”n /\ ‘ (/.\' ’ '(7”“([1 l-))f.ll

IR ARY

: ) (L)
Pt Pyy
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where
~ " Doy2 N ~
Py = — Mgt M [ d% [ (P 55 — QN)ds.

Integrating the first term by parts, we get

. (92N P g5 de.ds
Pyy® = Mav,* f ax f % [Q Ry bva, ?”3;] dbaddydz. (1)

Substituting for N and integrating with respect to %y and ¥, we get

MA'U 2 ~ ~ ~ a as
P =52 [ d¥imm ] (2 - 2)

a,
f(zvx DP P {~ 1 1 )
= — % )3{Vxl=— — —3
WMye  Vx a,* s
— (,N_l. —_ _._2_)} e-% @v,-2bv +c) (12)
a* a®

where @, b, and ¢ have already been defined.

Let

Pp = [ D" Pe-% (avz’-2bv,40) AD g
Qn = f Dl Qe“Ji (av ’-2bv,+C) dd g

P, = f B _DR, e~k (@b, ~2bD 1c) dé“)'x- (13)
My
These integrals have a singularity at v, = 0 for negative values of n. But
from equation (3) it can be seen that Sgy = 0 for ¥, = 0 and a special treat-
ment is necessary to evaluate f at this point. For negative values of n, the
integrals should be evaluated excluding a small interval containing the origin.
But from the physical point of view, the case ¥, = 0 is not important as it
occurs with negligible probability. Substituting now (13) in (12), we get

MG € 0y G
W — 2::" fdx 1y (%) ny (X) (g} o gﬁ)

X[ a?: & )(Q0+P0 "“P—l)— Nl____l\l_z)

a»?

Pyy

“ (Q—l ‘i— Py — P—z)] ) (14)




