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A. INTRODUCTION

IN a previous paper,! the author had shown that for a linear lattice with
p atoms in its unit cell, there are (2p — 1) frequencies for which the group
velocity of the waves traversing along the lattice vanish, and it was further
proved that any arbitrary initial disturbance ultimately settles into a super-
position of these (2p — 1) characteristic vibrations, the amplitudes of
vibrations at any instant being proportional to the square root of the time
clapsed. These results, however are not peculiar to linear lattices alone
and we have reason to believe that for periodic lattices in two and three
dimensions,* there are (8p — 2) and (24p — 3) frequencies respectively for
which the group velocity of the waves associated with them vanish, p in each
case representing the number of atoms in an unit cell of the lattice. It is
the object of the present paper to prove the above statement and extend the
results of the previous paper to the case of a rectangular lattice, which for
simplicity is assumed to consist of one particle in each of its unit cells.

1. THE CHARACTERISTIC FREQUENCIES
We shall denote the laitice distances by d, and d, and Jet tan | %
1.

The position of any particle is specified by means of the ordered pair of
integers (I, m) and the components of the displacements of the particles along
the x and y directions are denoted by x, ., and Yi,m Werestrict the inter-
action of any particle to its immediate and diagonal neighbours only and
neglect the effect of the forces caused on jt by the displacements of the more
M m.bwm Since the interacting forces are assumed to be central,
?ulm places a restriction on the magnitudes of 4, and d, and
mmplics ﬂmt (d*+ d,® is less than both 2d, and 2d,. The potential energy
of the lattice now becomes a function of three force constants o, 8, 5 and
as (x; cos A+, , sin A) is the resolved part of the displacemeniz of the
g%(l,m)dmgmediagmﬂja&ning it to the particle (/ 4- 1, m 4 1),




The Characteristic Vibrations of ‘@ Rectangular Lattice 307

we have the following expressions for the potential and kinetic energies 'of
the lattice.

2T = 1\/1'2:(5‘,,,,%r P2 B CY
Lm : ,
2V = 12 (xl, ﬂ;— .xl-{-l, ;”_)2 + BZ (yl, m - yf, ,w+1)2
. M C Lm R
+vZ(x;,, cos A + Vi S A~ X 0 CO8 X — Ve, mi Si0 A
iL,m

‘- -+ yZ (x‘l w COSA—y; sin X— i, ;. cosA+ Vi1, 1 SID A)2,

the summation extendmg over all the particles of the lattice.

When the lattice extends 1ndeﬁmtely along both sides, it is necessary
tq assume the convergence of the series (1); this, however, would be secured
in the problem which we consider since the total energy of the lattice, which
is due to an initial disturbance imparted to a finite region of the lattlce is a
cqnstant :

The equations of motion of the particles are now given by
"—'"Mj&l,m = (2xl,;n""xl+1,m"‘xlnl, m) | (2)
+ ycosA [4x;,, cO08 A — Xp5 .03 COS A — Yy .00 8in A

]
— X711 COS A+ Yy 4 g SID A — X141, pp1 COS A

- . i
+ Vi1, ma SID A — %71, -1 COS A — Yia, m SID A

~M j}l o B (zyl.m'— Yimar — ¥y, m-l):

+ 7’ sin A 4y1 m SILA — Xy 0 €COS A — Yy e SiN A
-+ X1, il cos A — Vil mya S0 A+ X000 cOS A

— Vi1, 2 SID A~ xl-l -1 COS A — J’1—1 m-1 SIN A

We shall assume wave solutlons for thesc equatlons of the type
x;, ___fie‘(cst-i-la;+mﬂz) h )

V1 o = So@h(@ + 165 + mba) : (3)
where f1 and £, are functions of the two variables and 6,
B Substxtutmg equations (3) in (2), we get
' AL (0:8) — Mo?] + f (8:6)) = 0

J1 ¥ (6,69) + f2 [$ (6:60;) — Mw?] =0, @
As

= §
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where
J(8,89) = 2a (1 — cos 6,) + 4y cos? A (1 — cos 0, cos 92)
¢ (6,6,) = 28 (1 — cos 8,) + 4y sin2 A (1 — cos 8, cos 8,). &)

and ¥ (8,0,) = 4y sin A cos A sin 6, sin 8,.

Eliminating f; and f; from equations (4) we get 1
M2t — Maw® [f(6:8,) + ¢ (6182)] + £ (8,85) ¢ (6:85) — 42 (6,05) = 0 (6)

Since from (6), « is a periodic function of 8, and 6,, we shall consider
only the values of 8, and 0, lying inside the intervals 0 < 6,<<2»; and
0< 8,<27. Alo, by a comparison of (3) with the usual form of the wave
function, we get k = I_1 /87 + b where A is the wavelength of a
wave. More than the individual waves, greater importance attaches to the
groups of waves and their velocities since it is only these physical entities
that are accessible to any observation and measurement. The group velocity -

of the waves defined by g}; will vanish when both 2% and 2% areequal to.
Zero.
We have now from (6)
dw . :
A ‘a—g—l' = KI sm 61q . (7a)

where
A=MoDMat —1(0:0) — $ (800 .
Ky = a [Mo® — ¢ (8,0)] + 2y cos 8, [Mw? — f (616,) sin? A

- — ¢ (6,6,) cos2x
+ 16y* sin? A cos? X 5in? 6, cos 4, o ] (3

dw . o "
M&,sminasimﬂaxmamasm
; ) ‘ dw '
It can therefore easily be seen that bothgg;and %;-Zvanjshfor the set

of points (0, 0) ©, =); _(w, 0) and (w,‘ 7). Excluding the point (0, 0) which
W a ﬂ:anslanon of the entxr'e lattice, we have for the frequencies
associated - remaining three points the following expressions :
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(I) Muy?==f(0, w) = 8y cosz A~
Mu,? = 4 (0, m) = 4 (B + 2y sin? )
(2) Mv? = f(7, 0) = 4 (a 4 2y cos? A)
Myg? = 6 ¢r, 0) = 8y sin? A~
(3) Mw;? = f(m, m) = 4o and
Mwy® = ¢ (m, 7) = 48. ©

It follows now from (7) that the group velocity of the waves associated

~with each of these 51x charactenstxc frequenc1es is equal to zero.

The case of a square 1att1ce is part1cular1y simple and interesting. Here
we have « = § and A = ] Z and only three.of the six frequenc1es given above
are distinct. '

2. THE EFFECT OF AN INrfIAL DISTURBANCE

We shall suppose that initially the particle at the origin receives a small
displacement whose components parallel to the axes are a and b respectively
and that all other particles are at rest.

Ge) x%,0=a58,, " (10)
Vi, m (0) = b810 8m0 and il,m (O) = J}l, m (0) =0

for all /and m. If the values of £, (r = 1, 2) corresponding tq the frequencies
+ w (s = 1, 2) are denoted by f, , and f, ,,, following Nagendra Nath,?
we obtain the general expressions for the displacements of the particles at
any time by superposing wave solutions of the type (3) for all values of 6y
and 0, lying in the interval (0, 2=). We get

Lo 2m 2w

. an J (fiz €48+ fuge™!0%) exp. 1(101 -+ m8,) db,db,

2 27T ’
g f r(fiz'e‘”"+f14e"‘””) exp. i (16, + mby) db,db,  (11)
o

0 0

2w 2w

im = '8"1"‘2 J.J (far e+ fog e7it) exp. i (16, -+ m8,) db,df,

0o 0

+ '8‘}‘;'2 f ) (fag e‘”2‘+,&;ie—'f;°it) exp. i(lﬁ.; + mby,).db,d8, (12)

? 9

2w 27
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With the help of equations (4) and the initial conditions (10), we can
express the values of £, as functions of 8, and _82. ~ We have from (11)

)

211' 2w
. :
% @ =gz [ [ bt fut fid o0, z(lfa + mbyy o, db,
] . : .
. 2ro-r R [
' 561, n (0) == 8;1; ) f{wl (.fllwf;l%) +w" (flz f‘.‘lx!)} €xXp. i (lel+ mb ) d91d02
. L4 . . . . . A A
By expandmg z fl, as a Founer series in 4 and 82 in the form
r=1 .
B =% 5 Agethrre N e 1
r=1 +oo +oo S

we get on substituting (14) in (13)

x; ,,,(0) o 5 Z.'A,,I,,Im

_'OO"‘

=1 £ ..i Ai/c Oz 8 4

=% A, where we write

2 _ -
' Iz},; - j ei(H—m)é‘)dO‘ o v p T
Hence we get by fi,=2a - ' : .o asy
re= ' e . ' ‘ B y ‘.’. ‘ i
Similarly we have 2, =2 P (16)
and 2 o, (fi, —fia) =Z o,(fo, — faa,) =0 R (17)
r=1,2 re=1, 2 .

Now we get from (4) fy 4 (46) = fi, [Me? — £(8,6,)] and hence
from (16) and (17) we have g

r=1

2ot h, tha)=2 o +f“) B A (1)
and B Lo '
z Lo (A —hed=0 PR (19)
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Solving these equations we get,
a(wa—-f) — ipb o

.f11=f13.z M ((i)aa- wla) - ) ) (20)
fu=fuu=* %?i:_fig $b.

and two similar expressions for f5; and f;,.

With these values for f;; and fi, equation (17) can now be
rewritten as |

s aw

Xp = g;lﬁ f f faz (et + e—«mj et 00:+mi2) g, do, : ©(21)
o 0

2% 27

+ g-}riffﬁz (e""‘t + e ‘Wlt)e‘(lol;f“ma" dﬁldﬂz
o 0 Con - ' '

The asymptotic value of the above integral for large values of ¢ can be

obtained by means of an extension of Kelvin’s method of stationary phases
for double integrals. We shall consider the integral |
. I= fA f% ) exp.ifw(x,3) t+ Ix+myldedy, (A)
where f(x, y) is integrable in A and ¢ is large compared to / and m (i.e.)
t=0(*+ m?. We shall assume that the region of integration contains
only- one stationary point of o (x, y) at (x5¥,)- - When the region of integra-
tion contains several stationary points of w (x, »), it can be split up into
subregions such that w (x, y) has only one stationary point in-each of these
subregions. Since the exponent in the integrand is a very rapidly fluctuating
function when ¢ is large, the most important contribution to the integral
arises only from a region in the neighbourhood of (x,y,) at which w (x, y) is
_stationary. We have, if x — x,= £ and y — Yo =, -for small values of
¢ and 7

w (X, ) = w (x;,yo) + § (aé2+ 2hén 4 bqﬁ), where a, h, b are the values of
2w 2w 2w ", : .
ST 5wy 357 at the point (x,y,). Hence (A) can be written as

) , , . ‘ +4o+m0 i1 (at2-+2hn + by
r L s : : e
T ~f(x,y,) exp. i [w (xoy,,) t + Ixy+my,] ff e2

o

d.

- (22)

e
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We transform the variables ¢, » to a new set of variables o and p given by

the limits for ¢ and p can be taken to be -+ oo without any appreciable . error
Hence if ab > A2 and a > 0 (22) becomes

‘ +oo
I 7 (‘Zé Oyo}zz)% EXp l [Cl) (Xoyo) t+lxo+my0]fe— il Y dafe—’ﬂ/z‘ dp

2 . ,
- IT(_ZBL(—X—U}JI%)} exp. 1w (xpy) 1 + lxo + my, + 7"/2)‘

If (ab — h?) is negative, then we have

2
I~ (;;{ (x"z l‘g exp. i [w (x,3,) ¢ + Ixy + my,]. - (23)
In a similar way, the value of the integral I, = _[ f,y)exp.i[—w (x, y)t-
4+ Ix + my] dx dy for large values of ¢ is given by

=S e[ emu b - 3] @9

where «,; takes the values 1 or 0 according as ah = A2,

Turning to the integral (21) we note that when 6, and 6, take any of the
values
0, m); (m, 0) and (m, =), we have

Su (6:0) = a; fou(0,0) =5
J12 (6,85 = f5 (6,8,) = 0.

Also at these points,
. 2 2
Moy 5% = wf.,,, Mo, 2% = 28 He=12
Yiw,

and 30,00, 02 = 0.

Hence if wy > u;, and wy > v,, applying the results (23) and (24) to
the integral (21) we get

o = 2a [(— 1™ cos ut n (= DMsinwt | (—1)%" w, cos wyt M
hm 7t (W}z"' u:!z)i 5] L (w12_ ul.z)}
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Similarly,

Vi

_ 2 [(-— 1)+ sin uyt T (— 1)cos vt | (— 1) wy cOs wyt ]
~owt Va (Wo? — vp2)h Vs (Wa— vp%)2

Two similar expressions can be derived if the initial conditions are
slightly modified. If we have initially x, (0) = Y,m©Q) =0 and %, (0)
= 818,05 i, (0) = v8; 8, for all / and m, we get by an exactly similar
procedure the following expressions for the displacements of the particles

from their equilibrium positions. .
a x, U= 1D)"sinut | (— 1)/ cos vt | (— 1)+ sin wyt an
Lm™ it ‘-”1 (wi2— u, Ot NG Uy (wy® — u At ]
_2v [(——- D™cosuyt | (=1 sinve | (— 1)*”sin wzf]
‘ Vom=zf | UV va (Wo? — vpB)t vy (We® — vyt

When initially, a displacement combined with a small velocity is im-
parted to the particle at the origin, then the components of the displace-
ments along the x- and y-directions are given by the sum of the x and y
components of the displacements in (I) and (II); this result follows from the
principle of superposition.

3. PHYSICAL INTERPRETATIONS

The expressions (I) and (II) clearly indicate that the movements of the
particles tend asymptotically to a superposition of the six characteristic
vibrations of the lattice, with a slowly diminishing amplitude which varies
inversely as the time elapsed. It is interesting to note that the x-compo-
nents of the displacements of the particles depend only on three of these
modes which may be pictured as the movements of, (1) the y-lines moving
normally against each other, (2) the x-lines moving tangentially in opposite
directions, and (3) as the oscillations of the diagonal lines against each other
along the x-axis. Similarly, the y-components of the displacements of the
particles depend on.three different modes of vibrations which are the tan-
gential oscillation of the y-lines, the normal oscillation of the x-lines against
each other and the movements of the diagonal lines along the y-axis, the
frequencies of vibrations of both the diagonal lines being the same.

The decay of the vibrations according to the law ¢! can be understood
physically also. Since the initial disturbance is progressively transmitted
to all the atoms around the origin, the amplitudes of the particles in the
region where their movements are represented by (I) should vary approxi-
mately as the inverse square root of the area of this region and hence are
inversely proportional to the time elapsed from the instant of the initia]
disturbance.
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All these results were arrived at under the assumption that the-ldttice
is unbounded. If however, we confine our observations to a time-interval
which is large compared to the individual periods of the eigen-vibrations,
but still small in comparison with the time taken by the fastest wave to
reach the boundary, the above restriction can be removed and the results
of the preceding sections can be seen to hold good for a finite lattice also,
provided its dimensions are very large compared to that of its unit cells.

My sincere thanks are due to Professor Sir C. V. Raman, F.R.S., N.L.,
for the valuable suggestions and encouragement he gave, during the course
of this work. :

SUMMARY

For a rectangular lattice with one particle in each unit cell, it is shown
that the group velocity of the waves vanishes for the six characteristic fre-
quencies and that the state of movements of the particles arising out of an
initial disturbance tends to a superposition of these six characteristic vibra-
tions of the lattice. These six frequencies would reduce to three for a square
lattice on account of its symmetry; in all these two cases however, the
amplitudes of vibrations of the particles vary inversely as the time elapsed
from the instant of the initial disturbance. The physical interpretation
of these results and their applicability to the case.of a finite lattice are dis-

cussed.
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