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INTRODUCTION

THE earliest attempt to formulate the theory of clasticity on the basis of the
discrete atomic structure of matter was due to Cauchy who, assuming central
interactions between pairs of atoms of a homogencous body, deduced his
well-known relations among the elastic constants. Recent developments,
however, have shown that a central force-scheme is inadequate to describe
correctly the interatomic interactions in solids and that the Cauchy
relations! are violated by many crystals. The later theory of CGreen has
the merit of resulting directly in all the 21 independent clastic constants
which have since then been found to be innately essential for an adequaste
description of the elastic behaviour of crystals in general.

There are two principal methods for determining the values of the elastic
constants experimentally for crystals. The first is the static procedure in
which the solid is subjected to external stress and the resulting deformation
is measured. When the deformation is homogencous, the clastic constants
can be calculated from the stress-strain relations implicd in Hooke's law.
In the second one, which is the dynamic method, the velocities of propagn-
tion of specific types of waves are observed and the clastic constunts are
evaluated therefrom. Tt is essential in the latter procedure to restrict attens
tion to waves of large wavelengths and low frequencies. For, waves inside
crystals are dispersive and are of a much more general character than the
ordinary elastic waves. The validity? of the elasticity theory will thus bresk
down for stationary vibrations of high frequencies and it can be sustained
only over those regions of the frequency spectrum wherein the frequencies
of the waves vary inversely as their wavelengths, Conversely, us the long
waves of the three acoustic branches satisfy this criterion, the elastic
behaviour of crystals could be expected to be determined by these low fre-
quency vibrations involving mass movements of their lattice cells. This
enables one to wrife quantitative identities between the elastic constants
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and the force constants of the atomistic theory. In the process of com-
paning the two theories, however, it is essential beforchand to reduce the
muthematical framework of both the formulations to identical forms. Thus,
i necessiury Lo set up as many cquations in lattice theory as in the con-
tmnnn theory, with their variables possessing  identical  significance and
further to ensure that these two sets of equations  are of the same form.
When this condition is complied with, the scope and physical implications of
buth the Tormulations become identical and one can compare the two sets
of cquitions to derive relations between the parameters involved in them.

It wus shown by Born® that the macroscopic elastic properties of crys-
by could be deduced from an stomistic lattice theory in terms of a few
parameters which are the force constants of the potential CNergy expression
and the lattice constants. As this theory is based on the assumption of
centrul forces, the problem was reconsidered again by Begbice! and Born,!
using # generad force scheme. By compuaring the lattice equations of the
long aeoustic waves with the clastic wave equations, they obtained expres-
sons for the clastic constants in terms of the force-constants. But, in spite
of the use of a general force-scheme, these expressions still continue to hold
good for central force systems only, as the validity of a symmelry relation
used by them could be realised only for central interactions among the atoms,
A second set of relations for the elastic constants were later given by Kun
Huang.  Again, hisy theory also restricts the generality of the force-scheme
by introducing new compatibility conditions among the force constants.
Since the validity of these relutions can be realised strictly for central
force wystems only, the results of Kun Huang also are not in general
relisble,

bt is shown in this paper that it is possible to derive an expression for
~ the stran-energy function characterising the deformation of the lattice, from
general dynumical considerations.  This function is a quadratic in all the
g nine straan components, unlike the classical theory in which the deformation
energy is i quadratic in the six strain components only.  From the Lagrangian

obtained in this way, the varintional equations deseribing the nature of waves
traversing the crystal can be written down and these are identical with the
equations of Horn und Begbie. But since these equations are not iﬁn the sume
mathematical form as the wave-equations of the elasticity theory, it is clearly
not justifiable to identfy these two sets of equations to obtain identities between
the constants involved in them. Expressions for the elastic constants can
nevertheless be derived by comparison, as the two strain energy functions
ssume the same form for irrotational strains or for homogencous deforma-
tions, 1t is shown that the numerical values of the elastic constants calculated




198 K. S. VISWANATHAN

from the expressions obtained in this way agree well with the experimental
values for the case of diamond, whereas significant deviations from the
experimental results arise from the relations derived by comparing directly
the elastic wave equations with the lattice wave-equations of Begbie and
Born.

The paper is divided into two parts. In Part I, the static method of
finding the strain energy function for a general deformation is developed
and expressions for the elastic constants are given in terms of the force
constants. Part I deals with the propagation of acoustic waves inside
crystals. '

PArRT 1. THE STATIC METHOD
1. The Deformation energy

We choose the state in which all the atoms of the crystal (assumed to
be very large compared to the dimensions of its unit cell, but still finite) are
~ at their lattice sites, as the zero configuration for the potential energy of the
lattice. The total potential energy of the crystal for small nuclear displace-
ments is then given by

2V=x3 % k‘.’i‘?f xrs Qypo . (1)
ors ypo '
where g5 denotes the displacement of the atom (r, s) from its equilibrium
- position. The equations of motion of the atoms of the cell (s) of the crystal
are given by |

— My q;xrs = 3 kvie 9ype 2
ypo
The force constants satisfy the following relations, which express the

mvariance conditions of the potential energy under pure translations.
Zkifr=0 (x,y=x,p,2) )
pa :

With the help of (3), we can rewrite (2) as ,
— My fars= f‘: k¥p? (Qypa — Qyrs) @
ypPo

The total force on the atom (7, s) in the x-direction is therefore a linear
sum of the forces due to the displacements of its neighbours, the force exerted
by the atom (p, ¢) on (r, s) being equal to 3 kv°e (9yps — Gyrs). - The force

zrs

¥
constant k%7 denotes the force on (r, s) in the x-direction due to (p, o) per
unit relative displacement of these two atoms parallel to the y-direction
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The work done by (p, o) on (7, 8) is given by
L4 (Gupe = Qyrs) Gurs (5 a

Similarly the work done by (r, 5) on (p,0) is given by
%‘;“3:? (g pra= 4 uia) Hape : (55

The sum of {(Sa) and (54 gives twice the contribution of the atoms
(r. %) and {p, ) 10 the total intrinsic energy of the crystal in a potential field
cavsed by the vibrations of the remaining atoms; it is equivalent to twice
the mutual potentinl energy Vi of this pair of atoms. Hence if A is the
volume of the unit cell, the energy of deformation (U) stored in the cell (s)

i given by
AU~ § 3y (6)

¢
or

anU 3 R (Gyea = yrs) Qurs K0T (Qym”‘h}w) Grpet (6 Q)

or pihy

the accent indicating that the term (r, 8) = (p, ¢) Is omitted in the sum-
mation of the above term.

H
ke == kg )
then {6) can be rewritlen as
ant ;}’;ﬁi kene (‘Iww - qym) (Q;x:pa - ) (8

B can cusily be verified that the sum of (6) for all values of the cell index
% 15 identical with the expression (1) for the total potential energy of the
crystal, The relation (7) will hold good for any atomic system under the
assumptions (o) that the total potential energy of the system can be expressed
as the sum of the mutual energies between pairs of atoms and (6) the mutual
encrgy between any two atoms can be expanded as a quadratic in their rela-
tive displacements.  In this case, (7) will easily follow because of the com-
mutative property of the Taylor coeflicients.

Now esch lattice point of the crystal should be in equilibrium in the
deformed state also and hence the resultant force acting on any atom vanishes.
This leads to

P k'ﬁf Qype ™ 0 (9
e
The first term in (6 ) now drops out in view of the relation (9). Also.

2 Xk QuraGupe =~ L X k2t Qv Qyry
»w Wi o
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Hence, the deformation energy (U) of the cell (s) is given by

—4AU=X F K% 405 Gy ps » (10)

& ypa
II. The strain energy function

The displacement components gy, 9yrss 4zrs Of the atom (7, 5) under
a general deformation are given by

Gors =Kz + 2 UgE Xps (1)
[

where Xys, Yrs, Zrs are the co-ordinates of the atom (7, s) in the undeformed
state and kp=(kyr, kyr, kzp) (P=1,2, ... p) are the inner displacements
of the p interpenetrating Bravais lattices. uz .. etc., are the components
of the strain which is assumed to be linear, as the applied external stresses

to determine experimentally the elastic behaviour of a crystal generally lie

w1th1n its elastic limits.
| Substituting (11) in (10), we get

— 4AU=Z Py k’;’:g (kmp -+ Z;llm‘f ":C.PU') (kyp +g”yg} j’pa) . (12) .

&r ypo
or .
—-—2U=Z’2{p-}kxu-+22[xx V] Uz Uy7 13
op sy XYY oYY 27 Yy 2V ez vy ( )
where v
P =_;lw Po = .
{xy}j} A ;%'ld{m‘a ypa"
I | .- |
[x%, 771 =53 Z c{”a!,i:f %ps Jpr; and 14

g =% (ol + kefe

urs

‘The term involving the product of kyp ky, in (12) vanishes in view of
the relations (3).

. The inner displacements can be eliminated from (13) and the deforma-
tion energy can be expressed as a function of the strain components only.
The equations determining them are obtained by substituting (11) in (9).
They are: '

kvo e — - LY
”f;; ars yp guyy (ﬁ kyft’:S ypa) (15 a)
or . '
%,1 (a°s:t,) kt':‘ BS' ' ‘ (1 5)

L T oS DAt
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where
gy =3 kvig
['2

By denotes the quantity on the right-hand side of (154). By setting up a
correspondence between the number-pairs yp (y = x, Y,2z; p=1,2,....p)
and the numbers ' (#'=1,2, ... 3p) wheret =3 e—D+4+y &'=30¢-1
+ x] we could reduce (154) to the form (15).

The matrix (a°y) is now singular and is of rank (3p — 3). We shall
assume that the above equations are consistent and solvable. Then a
solution of (15) is given by

k=IB -+ B’ (16 a)

where k is the column matrix {ky} and B’ denotes the solution of the homo-
‘geneous equations of (15). As only the relative inner displacements of the

p lattices are of physical significance, we can assume without loss of generality

that the inner displacement of one of the atoms (say k,) is zero. In this
case {B'}= {0}

Further, if we partition (@%) in the form (]()31 gi) where C, is a matrix .
1

-1
containing (3p — 3) rows and columns, then’ I" is the matrix (Cb 8)
Hence, the inner displacements are given by

Kopr= — 2 X X uyy Fgf k’;’;’:;"'y'p'q' (16)

vP &y’ pro’t

Substituting (}6) in (13), we get

2U = Z Zdag, yj ez tyy (17
where

Aoz yg=— [X%, yJ] + (x%, ¥) (18)
and

(o5, 39) = T 5 5 0 5y TH8 Kishsts %, - (19)

A z'p o u'P Pioy

Both the bracket expressions are symmetric in the pairs xX, yy. The

symmetry (xx, yp) follows directly from the invariance conditions of the
potential energy of the lattice under rigid rotations.’

The bracket expressions [xx, yy] and (%x, yy) are deﬁned in the paperS
of Born and Kun Huang in terms of relative displacement co-ordinates.
When the relation (7) is satisfied, one can easily verify that both the forms

are identical.
Ad
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III. The elastic consiants

If we write epz=(uzz + Uzy) for X == x and ey,=t,y, then the de-
formation energy obtained from the elasticity theory is a general quadratic
in the six strain components e, @yys €2z, Cyz, €z And ey, Using Voigt’s
notation in which the indices (1, 2, 3, 4, 5, 6) replace respectively the symbols

(xx, yy, zz, yz, zx, xy), the energy density could be written in either of these
two forms.®

2Uiy=3 % Crs €p €g

r 8

= X2 Cxz, yp xi €y ' ‘ (20)
aF  yy
where the summation in the second expression is over the six different pa_il‘s
given above for the indices x%. The elastic constants satisfy the following
symmetry relations

Cos, yi= Cus, Jy = O3z, y7= Cyi, vz @n

The expression (17) can be written in the form (20), if the coefficients dyz, yy
also satisfy the symmetry conditions (21) (i.e.) if

Az, ys = dzz, 5y = dzz, yy =dyp, 22 2

The coefficient d..z, yp 1s no doubt invariant under an interchange of the
patrs (xX) and (yp), but its value is definitely altered under any interchange
of either x and % or y and y. Further, any assumption of the symmetry
conditions (22) would introduce new relations among the force constants,
which will lead directly to a central force-scheme, thereby spoiling the gene-
rality of the force system with which we have started. Hence, when all the
nine strain components are linearly independent functions of x, y and z
as in the case of heterogeneous deformations, the deformation energy is a
general quadratic in all the nine strain components Upz (¥, X=0X, y, z) and
not in the six components ez....only.

For a homogeneous deformation, the strain components ..z, etc., are
independent of the space co-ordinates x, y, z of any point and are constants
throughout the volume of the crystal. In this case, the strain can be ana-
lysed into a pure strain, followed by a rotation about an axis. By a suitable
choice of the co-ordinate axes, it is possible to make the rotational part of
the deformation vanish and the strain matrix will consequently become sym-
metric. The relations® wpz=wuz, (x, i=2x, ¥, z) are satisfied for all homo-
geneous deformations and irrotational strains. In both these cases, the
expression (17) reduces to the form of the strain energy function of the
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clasticity theory and one can therefore compare the coefficients of exir Cyi
i both these expressions to obtain relations between the elastic and force
constants of the crystal.  The expressions for the elastic constants are there-
fore given by

Craopy o ldre gy b di, gy b dix, jy t dzg, 5yl (23)
H Svmmerry

The displacement components ¢y, ¢y, ¢2 of & vector r=(x, y, z) under
any small deformation are given by

gy o Xtigpyorg  Ur (24)
where U is the matrix () of the strain components and x, y, z are the
components of v in the unstrained state.

Let the co-ordinate axes be chunged to a new set of axes according to
the transformation law

r' N (25)
Then the deformation w the new frame of reference is represented by
g U where {7 SUISH (26)

Let 8 now be a symmetry operation of the crystal transforming any
vontiguration of the crystal into another one observationally indistinguishable
from 11, The potentinl energy should be covariant under all the operations
of the symuetry proup of the erystal,  Henee,

U M dey qutar By
#F wy

4 + o 2 4 .
X3 gy, g W Wy

Wi gw

3 ] s ] y M T s : .
o ‘i,r.r‘ ull Sy 5;1&' Sj.s' bm Wy et (27)
#6 wy < BD

where we write 5 8 L
Prom the above, 11 follows

Moy e X Md v g 180 S SiE Sty + Sk Syt Siz Syn! (28)
#4 ¥y
‘These relations reduce the number of independent constants in (17)

considerably
L%



204 : K. S. VISWANATHAN

PART 2. TrHE DyNaMIC METHOD
I. The velocity of the long acoustic waves

Long waves associated with the three acoustic branches are propagated
without any damping or dispersion inside the crystal. It was shown in an
earlier paper® that the frequencies (say oy, w,, wjg) corresponding to long
waves of these three branches tend to zero and that their wave and group

velocities become identical in the limit. But the expression for %" for these

three toots given there as (— s"5/2s9 Ot is an error. We here derive
a cubic equation whose roots give the values of the limiting velocities of the
acoustic waves travelling in any direction of the crystal.

Differentiating the equation (10, I

s zpp—t =0 (29)

t=0

six times with respect to a, one obtains by Leibnitz’s theorem

I m

E 5 (7) 05 D (e = (30)

t=0 g=0

where we write m=6. With the help of equation (1) of Appendix I the
above equation becomes

3p

22 (7) O™ a,, 6 — 20), wp-tr—g (31)

- I=Q p=0 r=g

where (n)y=n(mn—1)... m—r4+1 and (n), =0 if m > n.

Now s3p, S3p_s, S3p_» are equal to the sums of products of the roots of
(29) taken respectively 3p,(3p — 1), (3p — 2) times and therefore are Z€10
for a=0. By direct differentiation of these expressions, it can be verified
that the first non-vanishing derivatives of these three coefficients for a=0
are s3) w, 5% _ (o and 83— © Tespectively, as the derivatives of lesser orders
of Syp, S3p_1, and S3p_s are expressible as sums of terms, each containing
at least one factor wy, (k= 1, 2, 3) or products and squares of them. Again,
as the terms in the left-hand side of (31) are continuous functions of the
variable @, the limit for a=0 could be obtained by writing wp=0;
S 0 =00 =0, 1, 2... 5 s e =0( =0, 1, 2, 3)and 5O Lo =0
for i=0, 1. In proceeding to the limit, we note that all terms excepting
those for which r=s=(6p—2t) 3p—t=0, 1, 2, 3) on the L.H.S. of
(31) contain either powers of wy or (n),_@ with m > n or derivatives of S3p,
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Sy :;nd Sy ¢ With respect to @ of order less than 6, 4 and 2 respectively.
Equating the sum of these four terms to zero, we obtain

?20 f.’u _V’J % 3(’() a;yﬁ } 30 “Q}’ { aa R 0 (32)
where

Gy X a8 P gy Sy gy sihwy and
(tlw *
B .
: da)
ow  ea, then » denotes the square of the limiting group velocity of
the avoustic waves in the direction of the vector e, dy is independent of ¢
and 18 the same for all directions, but dy, 4y and ay are clearly functions of

the vevtor e, The roots of (32) therefore give the three possible velocities
of strind waves of thermal origin travelling in the direction ¢ of the crystal.

For the actual numerical evaluation of the coefficients of the various
pawers of 3 in (32), we observe that the elements of the matrix® A == (agre)
vt be expanded as & power series in a as they involve only sine and cosine

2 [
) " av .
terms,  Henee a,, ay, ¢ are equal to the cocflicients of ff,,f, and 61 In the

Macluurin expansion of sy, 4. Sap 1 8nd sy, Tespectively.
H. Wave propagation in crystaly

The equations determining the velocities and direction of vibration of
the elustic waves in terms of their direction of propagation can be obtained
from the variational equations derived from Hamilton’s principle. The total
kimetie energy of the body is given by

IT [plid b it i) dV (33)

wmd the work done by the external forces for a small displacement is
exprossed by

f’-;Wg RA f n (T_,~ 31{,«) dV | .;f f (Tm:" 8“3‘) ds (34)

Here T, Ty, T.  are the body forees per unit volume acting on the element
4 4 !l - R g i - p i g ¥

IV oand T (Tias Tige Tisd (8 a0 p, 2) are the surface tractions

acting on the surface clement o8, We shall assume that all the nine strain

AT S - . . '

‘f{{ (v, x x, p,2) are linearly independent functions

ko

of the spuce co-ordinates x, y, z and further take the relation (7) to be true.

The potential energy of deformation is given by (17) so that we have,

viponents i
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5[Vt -8 fdfUaV
te fo

- f | f ).,‘(\‘;‘U Buizs )dV | dr (35)
We have now from Hamilton's principle
3T —V)dt + [3Wydt= 0 (36)

The Euler variational equations cun be set up in the usual way und these
are expressed by

- T aT s
0 b\;xx = pT,. ,,§ ,m 2 :"y I :’: 37
.y 0 N - +}
e+, (‘*um) & x, )
together with the equations
L U ,
= ;;@ cos(y, ») (38)

determining the state of motion at the surface of the body. A set of fung-
tions (uy, uy, up) satisfying the equations (37) and (38) represent the possible
components of vibration of the clements of the elastic bhody.

If we assume plane wave solutions for the above cquations of the form

Uy = A% elwt-a.n {39y
then substitution of (39) in (37) leads to [for the case (T, T, T, )
pr? AT = 22' daz, yp ez e AV (40}

Writing A= (A%, AV, A?) and Dyyo X dag, yy vity, we cian rewrite
3y

the above equations as (D - pv?) A== 0. The matrix DD (D) ix symme-
tric and hence its eigenvalues are real. If they are distinet, the corres
ponding eigenvectors are mutually orthogonal. Hence the  vibrtion
directions of the three wavefronts moving in any direction are mutuaily
perpendicular to each other, but they may be obliquely inclined o their
direction of propagation.

Equations (40) are the Begbie-Born equations for the long acoustic
waves of the crystal. Born and Begbie held the relations (22) to be true,
gven for a general force system and derived the expressions czg, yiy ~ dx, yiy
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for the elastic constants. Clearly, their contention is untenable, as the
Cauchy relations can be shown to be a direct consequence of the relations
(22) for crystals with a centre of symmetry. For such crystals, the round
brackets in (18) vanish® and so drz, yg= = [xX, 7]. In view of the inter-
changeability of x and y or % and 7 in the square brackets, we have now
from (22)

dex, yy=Adyz, zy="dzy, xy, - -
and

d:cm, yz— dxz: Yx = dzx: xy

The Cauchy relations are now a matter for mere verification. Hence the
expressions of Begbie and Born for the elastic constants are not valid for a
general force-scheme and are true for central force systems only. A second
attempt to derive expressions for the elastic constants by a comparison of
(40) with the elastic wave equations was made of Kun Huang, but he could
do so only after the explicit introduction of certain additional conditions
like [xx, yy]= [Xx, Py], etc., which he interpreted as the conditions for the
vanishing of the initial stresses in an infinite lattice. That such additional
conditions had to be imposed is not surprising, for equations (40) involve 45
independent constants whereas the equations of the elasticity theory contain
only 21 constants. Further, the equations (40) are derived from a potential
function containing the rotational components of the strain also, while the
equations of the elasticity theory are derived from a potential involving the
six strain components only and hence these two cannot generally be reduced
to the same form. As mentioned earlier, any assumption of new relations—
other than those supplied by the invariance conditions of the potential energy
under translations and rigid rotations—has no theoretical justification.
So, the expressions given by Kun Huang for the elastic constants are also

not reliable and correct.

The equations (40) fail to hold good for the case upz = uzy (x, X=X, y, 2).
In this case, the deformation energy is a function of the six strain components
only and the equations obtained by the variational method are identical with
the equations of the elasticity theory. The latter can always be used to find
the velocities of any disturbance generated inside the crystal, provided the
stresses produced by the wave-fronts are uniform throughout its volume and
their wavelengths are large compared to the dimensions of the unit cell.
As longitudinal waves are strictly irrotational, their velocities can be deduced
from the elastic wave equations only. The vibration directions and veloci-
ties of quasi-torsional waves, on the other hand, are determined by the
equations (40).

A6
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[TI1. The elastic constanis of diamond

The elastic constants and vibration spectrum of dummond has recently
been a subject of numerous myvestipntions by variows authors® %8 We
here briefly sketch the application of the preceding sections to the evaluation
of the elastic constants of diwmond.  For the notation used and other details,
the reader is referred to the papers of Krishnamurt and Ramanathun ® '

The symmetry operations which we use to reduce (17) o its simplest
form are:

(a) S,: a rotation by 2:; about the hne v 3 o
(b) Sy: a reflection in the plane v - 1.

(¢) Sy: a rotation by Z ahout & line purallel to the s-axn through the

point (j, fi, i) followed by another retation throuph T oubout an axis

through the same point parallel to the v-axis,

The matrix U~ (uxz) transforms under these three operations nte

“u Y, i# ye “u_r
(d@) 01" == 8§08, = Upy Mz Uz,

uyu “ulg; uuz \

(B) Oy == 8gUIS¢H == Moy My Wi {411

(e) Uy'=8y0084 - Ugy Mz M,
TUpy  Hrr Mps
We have used in the above the matrix forms for §,, S, and &, given in
Smith’s paper.”!

By setting up a correspondence between the symbols vy, yy, 22, ¥2,

zy, 2X, X2, Xy, yx) and the numbers (1, 2, 3, 4, 5, ... 9), we can con-
veniently write the constants dx; 4 in the form di; with two indices only.
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From (41) we obtain with the help of (27) the following relations:
dy=dyp=dsy; dp=dp=dy; di=dp=dq.

dyy=dss=dss=dpy=dg;=d,. All other constants in (17) are zero. Thus
for cubic crystals of the Oy, class, the number of independent constants in
(17) is four.

The values of the above constants expressed in terms of the force con-
stants are given by ‘

_ (Q +8U + 2a +95)

dp= da:nc. XL d

_(R+4W —68+ 1)
d

dya= d:cac, yy = (42)

Q +32) d’

3.2
dgg=dyz, yz=— }I(Q +4S +4U + 10 + 9) +c—11' = E!(—)zﬁ 32;?,)

Hence from (23) the expressions for the elastic constants are:

' AW — 68 -+ R+28—3y)2 1
d45=dyz,zy=—(R+ Wd 'B+y)+( + 26 Y) X

cu=4dy;
C12=dys;
Caa=13%(dgy + dys); ‘ _ (43)

= — 1 Q+R+4(S+U+ W)+ 100+ 5+ y— 68

R + 28 — 3y)
d(Q+32)

+

which are identical with the expressions of Krishnamurti.

To arrive at an estimate of the discrepancies in the values of the elastic
constants calculated by the two different procedures, we shall next express
the elastic-force constant relations by comparing the lattice wave-equations
(40) with the elastic wave equations. The former are given by

pv3AT = A% {dy 2 +dy, (m® + 1)} +(dye +dys) (AVIm +A%ln) (44)

and two similar equations obtained by cyclic permutation of the letters x, y, z
and I, m, n. Comparing (44) with the equation

pURAT=AT {eulitey (n + 19} + (cu + ¢4 (A¥Im + Aln) (45)
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we obtain*
€y =dyy;

Cro=dyy + dys — dyy {46}
JQEASHAULI0a D) 2R AW 6 i
e (

These expressions are different from those of (43). The expression for
¢11 1s the same in both the cases. The numerical values of the foree constunts
were obtained by Ramanathan from spectroscopic data, If these salues
are substituted in (43) and (46), we get the following numerical vulues for
the elastic constants of diamond, calculated by the two different procedures.

€3 =9-6X10"2(9-6x10'2); ¢)y= 3-9 % 1O (149 = 1(1%);
€= 42X 10 (5-39 % 10*%) dynes/cm. *

The elastic constants of diamond were determined experimentally by
Bhagavantam and Bhimasenachar who get the following values:

e =9-5x10"%; ¢)3=23-9%x10"*; ¢,, 43 < 10" dynes,em,

While the expressions of Krishnamurli show a very good fit with the
experimental data of Bhagavantam and Bhimasenachar, the values valculated
from (46) show significant divergences from these results,

Finally, the author wishes to express his deep gratitude to Professor
Sir C. V. Raman, FR.S., N.L, for his inspiring guidance and valuable
criticisms during the course of this work.

SUMMARY

The static method of obtaining the strain cnergy function of a crystul
has been developed for the case where the potential encrgy of the entire
lattice is a general quadratic in the nuclear displacements of the atoms of
the crystal. It is shown that for heterogencous strains, the deformution
energy of the crystal is a quadratic in all the nine Strain components, For
small homogeneous deformations, the strain energy function reduces to the
f.orm of the corresponding function in the clasticity theory. The wave equa-
tions obtained from this energy function by the variational procedure are

_ * These' expres.sions for diamond based on the dynamic method were obtumed by Mr. I3
Knshn-amurtl and independently by Dr. J. Callaway, R, C. A. Laborntories, I’rinwm:. M3
lam indebted to Mr. D. Krishnamurti for pointing out the discrepancies in the expressions
arising out of these two theoretical procedures and for the general discussions on the subjoct.
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'APPENDIX 1

Lemma.—If o is a continuous function of the variable with continuous
derivatives with respect to @ of order upto N in (¢, B) and D denotes the

operator (Ed&), then D= 5 a,,, (g‘f.u)r in (&, B) (n <N) 0
where : | |
i r= 2 o D >0 @
G, 0= Opo;
n=ar, + ayy + ... + agrg and
r=a& + ay+ ... -+ ag; the summation in (2) is over all the

partitions of » into r non-zero integral parts.

Proof —D;, D, ... D, being r mutually commuting operators, we
first define the symbol (D,PD,P: ... D,P) w as equivalent to the scalar
expression (D,P:0) (DyP:w) ... (D,P"w). With this convention, consider

.. .1 , 1 n!
the multinomial expansion 7 (D14-Dy+... +D)w = 71 2111! RN
(Dy™Mw) ... (D) where f ns=n. ay rcannow easily seen to be the
R 8=1
expression obtained by writing D, =D,=........ = D, =D in the sum of all

the terms of the above expansion which arise from « partition of # into
non-zero integral parts. We have now for n=1 and n— 2,

dw d
D—uz‘a“X% and

2
Di=(D%) ;£ + D)L,

Evidently D™ is of order # in (3%) and hence can be expressed by a series

of the form (1). Again, by differentiating (1) with respect to ¢ and comparing
the result with : :

ntl r
D+l — Za'n+1,'r (%)) s

r=1
we obtain

d
Gmsa,r=Gm, ra (Eg) + da;ah ’ )
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If therefore (3) can be proved on the assumption that (2) is valid for
all values of » upto m, then the lemma will easily follow by induction as it is
true for n=1 and n=2.

By definition @m.y,ris the sum of all the terms involving the products

of all the r operators in the expression
(Dy--Dy+... +D,) ;17 (D, + Dy + ... + D)™ 0
if in the final result D is substituted in the place of all the D;’s. Such terms
arise in two ways. (@) They could for example be obtained by multiplying
D; with the terms containing (» — 1) factors in the expansion of rl' (D, +D,
+ ... +Dj3+Djyy + ... D)™w and as i takes r values, the sum of
all such terms reduces to @, r_, g%’ when in the final result we write D;=D.
(b) They can arise by multiplying the first (linear) term in (4) with the terms
involving the products of all the D;’s in the expansion of (é Di mw. Taking

1
a typical term k& (D,P"Dy?* ... D,?)w where k= 17'%“1' arising out of this
!

partition of m into r factors, the result of multiplying this term with ( ):" D;
’ qe=1

is evidently k ¥ (DP'w)... (DPH w) ... (D,Prew) (5)
i=1

As the expression obtained by Writihg Di=D(@{=1,2, ...7) in (5) is the

differential coefficient of k (DP'w) ... (DP.w), the sum of all the terms

under consideration is clearly ‘%ﬂ . This establishes the result (3) and
consequently the lemma by induction:

. dw\"

In particular, we note that ay, n::(a—a-) .




