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The observed structures in the universe are thought to
have arisen from gravitational instability acting on
small fluctuations generated in the early universe.
These spatial fluctuations are imprinted on the cosmic
microwave background radiation (CMBR) as angular
anisotropies. The physics which connects initial fluc-
tuations in the early universe to the observed aniso-
tropies is fairly well understood, since for most part it
involves linear perturbation theory. This makes CMBR
anisotropies one of the cleanest probes of the initial
fluctuations, various cosmological parameters governing
their evolution and also the geometry of the universe.
We review here in a fairly pedagogical manner the
physics of the CMBR anisotropies and explain the role
they play in probing cosmological parameters, especially
in the light of the latest observations from the WMAP
satellite.

I. Introduction

THE cosmic microwave background radiation (CMBR) is
of fundamental importance in cosmology. Its serendipitous
discovery by Penzias and Wilson', gave the first clear in-
dication of an early hot ‘Big bang’ stage on the evolution
of the universe. The subsequent verification by host of
experiments, culminating in the results of the COBE satellite
confirmed that its spectrum is very accurately Planckian’,
with a temperature 7= 2.725. This is the firmest evidence
that the universe was in thermal equilibrium at some
early stage. Indeed the observed limits on the spectral
distortions severely constrain any significant energy input
into the CMBR below z < 10" or so’.

Shortly after its discovery, it was also predicted that the
CMBR should show angular variations in its temperature,
due to photons propagating in an inhomogeneous uni-
verse®. In the standard picture, the baryonic matter in the
early universe was in a highly ionized form with radiation
strongly coupled to the baryons. As the universe expanded,
the matter cooled and atoms formed below about 3000 K.
After this epoch the photon mean free path increased to
greater than the present Hubble radius, and they could
free stream to us. These are the photons that we detect in
the CMB. They carry information both about the condi-
tions at the epoch of their last scattering, as well as processes
which affect their propagation subsequently. Fluctuations
in the early universe result in inhomogeneities on the ‘last
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scattering surface’ (LSS). These inhomogeneities should
be seen today as angular anisotropies in the temperature
of the CMB. Further, the CMB photons are influenced by
a number of gravitational and scattering effects during
their passage from the LSS to the observer. These are also
expected to generate additional CMBR anisotropies.

These CMBR anisotropies took a long time to be discov-
ered and its absence in the early observations were beginning
to prove embarrassing for theories of structure formation. It
was not until 1992 that the temperature anisotropies in
the CMBR were detected, on large angular scales, by the
Differential Microwave Radiometers (DMR) experiment
on the COBE satellite’. The fractional temperature anisotro-
pies are at the level of 10~ and ruled out some of the earlier
baryon-dominated models, and hot dark matter-dominated
models, but were quite consistent with expectations from
latter Cold Dark matter models of structure formation®’.

Since the COBE discovery a large number of experi-
ments have subsequently probed the CMBR angular ani-
sotropies over a variety of angular scales, from degrees to
arc minutes (cf. ref. 8 for a recent review). This has cul-
minated in the release of the first year all-sky data from
the Wilkinson Microwave Anisotropy Probe (WMAP) satel-
lite’. These observations, especially the ‘acoustic oscilla-
tions’ which are inferred from the anisotropy power
spectrum, have led to the confirmation of a popular ‘standard’
picture for structure formation; one where an early epoch
of inflation generated adiabatic perturbations in a spatially
flat universe. The observed anisotropy patterns also allow
cosmological parameters to be probed with considerable
precision, especially when combined with other data sets
related to the observed inhomogeneous universe'™'”. It
has therefore become imperative for the modern cosmologist
to understand the physics behind CMBR anisotropies. We
review here in a pedagogical fashion, the relevant physics
of the temperature anisotropies and also briefly mention
the polarization of the CMBR. There are a large number
of reviews”'®, and text books'”'® on this subject. The
author’s aim is to present some of these ideas in a manner
in which he, as a non-expert, understood the subject, which
may be of use to some!

II. CMB observables

The CMB is described by its brightness (or intensity) dis-
tribution. Since the spectrum of the CMB brightness, seen
along any direction on the sky n, is very close to thermal,
it suffices in most cases to give the temperature 7(n). The

CURRENT SCIENCE, VOL. 88, NO. 7, 10 APRIL 2005



SPECIAL SECTION: COSMOLOGY

temperature is very nearly uniform with fluctuations A7(n)
at the level of 107 T, after removing a dipole contribution.
It is convenient to expand the temperature anisotropies
AT(n)/T = O(n) at the observer in spherical harmonics

Om) = =-0.0) = ¥ 0,7, 0.0) (1)
Im

with a;, =(-1)"a,_,,, since the temperature is a real quan-
tity.

In the standard picture, the universe is assumed to have
evolved from density fluctuations initially described by a
Gaussian random field, and one can then take ® to be a
Gaussian random field. In this case a;,’s are also Gaussian
random variables with zero mean and a variance completely
described by their power spectrum,

(@) = CB S 2

Here we have assumed also the statistical isotropy of ®(#n)
field because of which the power spectrum is independent
of m. Theoretical predictions of CMBR anisotropy are
then compared with observations by computing the C;’s
or the correlation function C(a) = {(@(rn)O(m)), where if
we have statistical isotropy, C depends only on cos o=
n-m. From eq. (2) and the addition theorem for the spheri-
cal harmonics, we have

N " 21+1
Cla)= lz;wm @ Wi Yt = ;Cz o hieosa).

3)
(@A) =

The mean-square

7°C(0) is

temperature  anisotropy,

o 241, l(+DC
(AT =T ;c, g ~Tj S dind @)

with the last approximate equality valid for large /, and so
[(I + 1)Cy2m is a measure of the power in the temperature
anisotropies, per logarithmic interval in / space. (We will
see below that scale invariant potential perturbations generate
anisotropies, due to the Sachs—Wolfe effect®, with a con-
stant /(! + 1)C;, which provides one motivation for this
particular combination.)

Note that the CMB brightness and hence ©® is also a
function of the space-time location (x, 1) of the observer.
Here x is the conformal spatial and 1 the conformal time
co-ordinates respectively (see below). One computes the
correlation function C(a) predicted by a given theory by
taking the ensemble average of {(@(xq, Mo, #)O(Xq, Mo, M)).
For the statistically isotropic case this again only depends
on cos o = n-m. Further, the Fourier component of @, for
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every k mode, often depends on s only through k-n= IR
where k = k/|k|. One can then conveniently expand ® in a
Fourier, Legendre series as

d3k eik Xo
(2n)’ (5)
Y iy @1+ Day (ko) (k)

!

O(x.Mps) = |

For a homogeneous, isotropic, Gaussian random © field,

(ak, o) ap (s o)) = lask, N8, A(271)°8 (k —p), where
the power spectrum {|a,(k, No)|>) depends only on k = |k|.
One then gets

20+1

/
41

C@) =Y 2[R aten) Y2 2 Reosa).
!

where we have used the addition theorem
P (hn)= 4—7521/ ()Y, (k) 7
IAGS 241 - Im Im

and carried out the angular part of the integral over d’k
using the orthogonality of the Spherical harmonics. Com-
paring eq. (6) with eq. (3) we see that

G =2 [SR atking) ). ®)

We will use this equation below to calculate C;’s for
various cases. One can roughly set up a correspondence
between angular scale at the observer «, the corresponding /
value it refers to in the multipole expansion of (®% and
also the corresponding co-moving wavenumber k. One
has (0/1°) = (100/]) and !/ = kR* where R* is the comoving
angular diameter distance to the LSS and is ~10 h™' Gpe,
for a standard ACDM cosmology (see below).

We show in Figure 1 a plot of the temperature anisotropy
AT = T\JI(I+1)C,/2n and polarization anisotropy versus
l, for a standard ACDM cosmology, got by running the
publicly available code CMBFAST'. One sees a number
of features in such a plot, a flat plateau at low [ rising to
several peaks and dips, as well as a cut-off at high /. Our
aim will be to develop a physical understanding of the
various features that the figure displays. We now turn to
the formalism for computing the C/’s for any theory.

III. Boltzmann equation

The distribution function for photons, f(x', pp)=f(x, p,
M), is defined by giving their number in an infinitesimal
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phase space volume, dN = f (x* pg, N)d’x*d’pg. Note that
we will use Greek letters for purely spatial co-ordinates
and Latin ones for space-time co-ordinates. We can write
dN in a co-ordinate independent way,

d4pk i ! m
dN= | ——=f(x",p;)p'dX, 28[p,p"] ©
Po —8 ’ l

where g is the determinant of the metric, dY,; = \/% Ejm
[dx’ A d¥’ A dx*]/3! is an infinitesimal spacelike hypersur-
face, p; the photon 4-momentum and the delta function
ensures that p; is a null vector. To get the simple expres-
sion for dN, one chooses a time slicing with dY; =
(\/% dx'dx*dx’, 0, 0, 0) and carries out the integral over
po retaining only the positive energy part of the delta
function. This shows explicitly that f'is a co-ordinate in-
variant scalar field. Further, in the absence of collisions,
both dN and the phase-space volume d3x“d3pﬁ would be
conserved along the photon trajectory and hence also the
phase space density f. If A is an affine parameter along
the null geodesic, we will then have df/dA =0. On the
other hand when collisions are present the distribution
function will change. This situation is generally handled
by introducing a collision term on the RHS of the CBE,
that is writing df/dA = ©(f). Further, it is generally con-
venient to use the time co-ordinate itself, say n, as the inde-
pendent parameter along the photon trajectory and write
dyf7dh = (dn/dA)(dfidn) = € (f) = (dn/dA)e( f). One then has

(¢4
d
i:aierx_aiJr&i:c(f)_ (10)
dn on dn &* dn dp,
We look at this equation in the spatially flat, perturbed
FRW universe. Its metric in the conformal-Newton gauge
is

ds* =@’ )[(1+20)dn* — (129 )(dx” +dy” +dz*)]. (11)

Here a(n) is the expansion factor and 7 is the conformal
time, related to the proper time by a(n)dn=d:. (We
adopt ¢ = 1 units.) We have assumed that a single poten-
tial ¢ describes the scalar perturbation, which holds if the
source of the perturbations is a perfect fluid with no off-
diagonal components to the energy-momentum tensor.

Since the photon 4-momentum p’ is a null vector we
have g"*p;p;=0. We choose the photon 4-momentum to
have components p;= (g% /g% p,—pn®), where we
have defined the magnitude of the spatial component of
(co-variant) momentum, p = Y., pupe. Also n is a unit vector
in the direction of the photon 3-momentum p*.

Then to linear order in the perturbed potential,

o o o
dx_:dx—/d}‘:p_:n“(przq)), (12)
dn  dn/dh p°
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The geodesic equation for the photons to the linear order
in the perturbations is

i 5,90 (13)
dn ox'

The Boltzmann equation then becomes

i:ai+(l+2¢)n“ f+2 90 o

0
—— =c(f).
dn o ox* ox* dp, v

(14)

An observer at rest in the perturbed FRW universe, has a
4-velocity u' = (I/M, 0). So the energy of the photon
measured by such an observer is £ =pu’ = p(1 + 0)/a. In
the unperturbed FRW universe, the energy simply red-
shifts with expansion with E = p/a. The distribution func-
tion for the photons, in the absence of perturbations is
then described by the Planck law,

pil__ 4
fb[T] exp(p/Ty—-1

Defining the perturbed phase space density fi(x, p, n, M) =
fx, p, n, M) —fo(p), to linear order the Boltzmann equation
becomes

(15)

Dy v, —2omvo Lo = o(p), (16)
an op

where we have replaced f by f, in the term last on the
LHS of eq. (14) and used (9fy/dpo) = (po/p)(9fs/dp) =
-n*(9f/Ip).

In the perturbed FRW universe we note that both the
perturbed trajectory and the effect of collisions (under the
Thomson scattering approximation) do not depend on the
photon energy. This motivates us to define the perturbed
phase space density in terms of a purely temperature per-
turbation 87(x, 1, n) in f,. We take

(a7

fx,p,an)=f, {m}

(Note that in such an approximation, we are also neglect-
ing the effects of any spectral distortion.) To the first order
in 87/T one can expand fin eq. (17) to get f; = —p(9f/dp)
(87/T). Again, because both the perturbed trajectory and
the effect of collisions do not depend on p, we will usu-
ally integrate over p’s. It is then useful to deal with not
the full phase space density, but just its associated frac-
tional brightness perturbation defined by

3
AP,

_ (18)
[ f,p’dp

8T
?(x,n,n).
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To appreciate better the meaning of (87/7) = i/4 let us look
at the energy momentum tensor of the photons. This is

pocppj
P

=1Jﬂp’p,26(p Pl = [ foa9)

The energy density in the perturbed FRW universe, with
metric given by eq. (11) is

p =T _(1+4¢)f 3ddef:pR(1+4({)){1+'[ii—Q}
7T
(20)

where pg = (4n/a*)[p*dpfy(p) is the radiation energy den-
sity in the absence of perturbations. Let us define iy =
[i(dQ/4m) and (87/T)o = [(ST/T)(d€x/4T), the zeroth moments
of the perturbed brightness i and temperature (87/7) res-
pectively, over the directions of the photon momenta. The
fractional perturbation to the radiation energy density is
given by

5, =P PR _ 44, =4H8—T] +¢}
Pr 0

Note that in the conformal Newton gauge the radiation
density perturbation has an additional contribution from
the perturbed potential itself (over and above the contri-
bution from the perturbed distribution function). One may
feel that this differs from the naive expectation for the ra-
diation energy density to vary as p o< 7% and hence the
‘physical’ temperature perturbation go as just (1/4)dp/p.
Since the energy of a photon seen by an observer at rest
in the perturbed FRW universe is £ =p(l + 0)/a (see
above), one can write the phase space density in the per-
turbed FRW universe, to linear order as

Ea
= f[T+8T] fb[(T+8T)(l+q))]
Ea
_fb[T+(8T+q))}

This shows that ® =387 + ¢ is indeed the ‘physical’ tem-
perature perturbation measured by an observer at rest in
the perturbed FRW universe and that ©, = [@(dQ/4rm) =
dx/4, as expected.

2D

(22)

IV. The collision term and the equation for the
perturbed brightness

We now consider the effect of collisions. The process that
we wish to take into account is the scattering between pho-
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tons and electrons. In fact to linear order it is sufficient to
consider the Thomson scattering limit of negligible en-
ergy transfer in the electron rest frame. Since the distribu-
tion function is a scalar, the effects of collision are most
simply calculated by going to the electron (or fluid) rest
frame and transferring the results to any other co-ordinate
frame. Suppose the distribution function changes by
df =df =adT in the fluid rest frame. Henceforth quanti-
ties with an ‘overbar’ will represent variables in the fluid
rest frame. Then one can write df/dn =(dt/dn)c. The
differential cross section for Thomson scattering of unpo-
larized radiation is given by

di—G—T[H (23)

Py (i)
dQ’ 4n ’

2

where o7 is the Thomson cross section and n and n’ are
the unit vectors specifying the direction of the initial and
the scattered photon momenta in the fluid rest frame. The
collision term df/dT =df /dT =¢ will have a source due
to the photons scattered into the beam from a direction
n’ and a sink due to scattering out of the beam. So we
have

e(7)=no; | %[HPZ(””)}U(M) F(E.mL 4

where the integration over dQ’ is over the directions of

In order to derive the equation satisfied by the bright-
ness perturbation, we multiply the linearized Boltzmann
eq. (16) by p3 and integrate over p to get

4T 5. _
Prd |:i+n.Vi + 8n.V({)} _d [PPape(7). (25)
dn

4 | dn

We simplify the collision term on the RHS of eq. (25), in
Appendix A. From eq. (25), eq. (A4) and eq. (AS) the
equation satisfied by i, to the leading order of the pertur-
bations, is given by

i—i— n.Vi+8n.Vo
m
. (26)
=n,pral iy +4nv +E; Y,, (n)iy, —i|.

The effect of Thomson scattering is to drive the photon
distribution such that the RHS of eq. (26) would vanish.
If the scattering cross section had been isotropic, then i
would have been driven to i, in the fluid rest frame; but
in the frame where the fluid moves there is a Doppler
shift. In addition, the anisotropy of Thomson scattering in-
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troduces the dependence on the quadrupole moment of
the brightness. The perturbed brightness equation will be
used to derive the equation for the CMBR anisotropies,
and also the dynamics for the baryon photon fluid.

V. Integral solution for CMBR anisotropies

Consider the perturbed brightness eq. (26) in Fourier
space, in terms of the Fourier coefficients ® (k, 1, n) of the
‘physical’ temperature perturbation ® =37/7+ ¢ =i/4 + 0,
that is

P s
O(xn.m=| wel’“"@(k,n, n). 27)

Henceforth we shall denote the Fourier transform of any
quantity 4 by A, except for the velocity (v) and potential
(0) whose Fourier transforms are denoted by ¥V and @ res-
pectively. We also assume that these Fourier co-efficients
depend on n only through p = k -n, as will obtain for ex-
ample for scalar perturbations. In this case one can choose
an axis for each k mode such that i,,, =0 for m # 0 and
Yo Yom(1) iy, /10 = —@ ,Py(W)/2, where

Okm.u) =Y (=) 21+, (k) B (1) (28)
!

is the expansion of ® in a Legendre series. For scalar
perturbations, V is also parallel to the k& vector, and so
ny= (n-le )V = V. Further, it is much more convenient
to work with the equation for the combination © + &. From
the Fourier transform of eq. (26) we then have

(O+ D)+ ikl +n,0 ,a)[ O+ D] 29)

=n0,aS(kn,1)+2P,

where henceforth an over dot will denote a partial deriva-
tive, i.e. f = dfidn, for any . We have also defined the
source function

PO, |

S, ) =| Oy + @+ V- (30)

Suppose we define the differential optical depth to electron
scattering dt = n,6radn = n,6,dr. Then one can solve eq.
(29) formally as

Ok My, )+ P(kMy) =[O(,) + D, )Je ™+ Ve )

Mo . )
+ [ dne™ MM S’ )+ 2Pl
n;

(3D
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where we have defined the optical depth to electron
scattering between epochs 1 to the present 1,

Mo
T(Myn) = [ dn'n, )5 rat’),
n

(32)

and T () = dt(n, N')/dn = n.(M)cm). The first term on
the RHS of eq. (31) can be neglected by taking a small
enough initial time m;, because the exponential damping
for large optical depths. One can then simplify eq. (31) to
get at the present epoch 1,

Mo
O(k,ny, W)+ D(k,Ny) = fdTlS(km,M)g(no,n)e"k”(”O‘”)

n;
Mo .
+2'[ dn @ g~ @p=N) =T (M) (33)
n;
We have defined above the visibility function
gg.m) =t m)e” ™
(34)

Ty
= n, Mo ra) exp| - [ dn'n, )5 7a(m) |,
n

such that g(ne,mn)dn gives for every n, the probability that
the last scattering of a photon occurred in the interval (n,
M + dn). Suppose 1M, is the conformal time at the present
epoch. Then as 1 decreases from 1y, the optical depth to
electron scattering will increase and so will g. However
far back into the past when T > 1, g will be exponentially
damped. So the visibility function generally increases as
one goes into the past, attains a maximum at an ‘epoch of
last scattering’ and decreases exponentially thereafter. Its
exact behaviour of course depends on the evolution of the
free electron number density during the recombination
epoch and also on the subsequent ionization history of the
universe. If the universe went through a standard recom-
bination epoch with no significant reionization thereafter,
then the ‘surface of last scattering’ is centered at z = 1100
with a very small half width Az= 100. If on the other
hand the universe got significantly reionized at high red-
shifts, as it seems to be indicated by the WMAP observa-
tions, some fraction 1, ~ 0.17, of the photons will suffer
last scattering at later epochs.

We can calculate a,(k,n,) by taking the Legendre trans-
form of both sides of eq. (33). Note that the term ®(k,n,)
on the LHS of eq. (33), does not depend on the photon di-
rection and so does not contribute to CMBR anisotropy at
all. Using the expansion of plane-waves in terms of
spherical waves,

eikix _ Z(_i)’ 2I+1)j(0)F (W), 35)
li
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and writing [ exp(—iptkx) = id(exp(—ipkx))/d(kx), we get

Moy

[ dngom)
0

a (kanO) =

@, (3j,(kAn) + j;(kAn))

(©, + D) j, (kAN) +i¥j, (kAn) + 5 5

Mo
+'[dne_¢(”°’”)2<l> j,(kAD). (36)
0

Here j/(kx) is the spherical Bessel function, and j; denotes
a derivative with respect to the argument, An = 1-1.

Let us interpret the various terms in eq. (36). This
equation shows that anisotropies in the CMBR result from a
combination of radiation energy density perturbations 0,
and potential perturbations @ (the monopole term), on the
last scattering surface and the Doppler effect due to the
line-of-sight component of the baryon velocity V' (the dipole
term). The anisotropy of the Thomson scattering cross
section also leads to a dependence on the radiation quad-
rupole ©,. The spherical Bessel function and its deriva-
tives in front of these terms project variations in space, at
the conformal time 1 around last scattering, to the angu-
lar (or /) anisotropies at the present epoch 1. (A popular
jargon is to say that the monopole, dipole and quadrupole
at last scattering free stream to produce the higher order
multipoles today.) These spherical Bessel functions generally
peak around kAn = /. The multipoles [ are then probing
generally spatial scales with wavenumber k&~ I/An at
around last scattering. The visibility function weighs the
contribution at any conformal time mn by the probability
of last scattering from that epoch. Finally, the last term
(<i> term) shows that any variation of the potential along
the line-of-sight will also lead to CMBR anisotropies, and
is usually referred to as the integrated Sachs—Wolfe (ISW)
effect.

In the limit of a very narrow LSS at 1 = n*, for angular
scales (and I’s) such that, their associated spatial scales at
the LSS are much larger than the LSS thickness, one can
take the variation of the jis with 1 to be much slower than
that of the visibility function. In such a narrow LSS ap-
proximation, we get

& (k;Ng) = (O +P@)YN*) j, (kR*) +iV (*) j/(kR¥)

N ©,M*) Bj/(kR*) + j,(kR*))

Mo
+|ldn2® j,(kAn). (37
; ; !n Ji(kA). (37)

where R* = n¢m* is the co-moving angular diameter dis-
tance to the LSS. Note that due to the presence of € in
the last term, the range of integration is restricted to be
from about m* to the present. The presence of a finite
width of the LSS causes a contribution to the ISW effect
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from epochs just around last scattering as well, usually
referred to as the early ISW effect. Once we calculate the
photon brightness and the baryon velocities at the epochs
corresponding to last scattering, one can calculate a; using
eq. (36) and C; from eq. (8). Before considering the dyna-
mics of the baryon—photon fluid in detail, let us first use
the eq. (37) to calculate the CMBR anisotropies at large
angular scales.

VI. Sachs—Wolfe effect and large angle
anisotropies

We wish to calculate the anisotropies generated at large
angular scales (or small values of /), large enough such
that the associated spatial scales are larger than the Hub-
ble radius at the LSS (i.e. sn* < 1). For such scales one
can neglect the thickness of the LSS and calculate g, using
eq. (37). Let us also assume that the universe is spatially
flat and that it is matter dominated by the time n =n*.
The evolution of the gravitational potential ¢ is considered
in detail in the review by Mukhanov et al.* for a variety
of initial conditions and in various epochs. We will draw
upon several of their results below.

Adiabatic perturbations

Consider first adiabatic (or isentropic) perturbations, for
which 8p,/(p, + p,) is the same initially for all components.
(Here p, is the pressure of component n.) This condition
is preserved by the evolution on super Hubble scales™.
As we show below, it is also preserved in the evolution of
the tightly-coupled baryon—photon fluid. For a flat matter
dominated universe, the potential evolves as & + (6/1)0 =0,
which implies that ¢ is constant in time, ignoring the de-
caying mode®. A detailed calculation starting from an
initial potential perturbation ¢; and following the evolu-
tion of the adiabatic mode from radiation era through the
matter radiation equality gives, ¢ = (9/10) ¢;= ¢,. The
perturbed Einstein equation also gives for the matter density
perturbation®®, §,, =20 + (n*/6)V>0, and v =—(1/3nV6.
For adiabatic perturbations 8z = (4/3)5,,. So @y = 8z/4 =
8,/3 = —(2/3)0 + M/18)V?0 — —(2/3)0, for large scales,
such that 4n < 1. So the Fourier co-efficient (:)0 + & =
—(2/3)® + ® = ®/3. Further, since ¥V =—(i/3)(kn)P, this
dipole term in eq. (37) is negligible compared to the
monopole term ©,+ ®. Also because of tight coupling
and negligible thickness to the LSS there is negligible
quadrupole component to ®, for kn < 1. On super Hub-
ble scales, for adiabatic perturbations one then has

. .
a; = alsw = gq’ojz (kR*);

osv :gI%k%@o(m)% 2

R I 9 Jr (kR%). (38)
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The above C;, which describes the CMBR anisotropies on
large scales due to initially adiabatic potential perturbations,
was first derived by Sachs and Wolfe* and is referred to
as the Sachs—Wolfe effect. For a power law spectrum of
potential ~perturbations, with A = K|d(k)/(2n%) =
Ay (kg )k 1 k)™, one gets

oSV _ 24; [ 1 ]”S“ 2" AT B —n )T ((2l+n, —1)/2)
SW

9 | kgR* | T2((4—n,)/2)T((2L+5-n,)/2)
(39)

(In the above equation I'(x) is the usual gamma function.)
In theories of inflation, one obtains a nearly scale invariant
spectrum corresponding to n; = 1. For this case, one gets
a constant

1a+1cv :[ﬁ]z.

n 3 (40)

It is this constancy of (/{(/ + 1)C))/2n for scale invariant
spectra that motivates workers in the field to use this
combination to present their results. For power law spectra,
the recent WMAP results by themselves, favour a nearly
scale invariant spectral index with »n,=0.99 £0.04, but
when other large-scale structure data is added slightly
lower values of #, are favoured'’. Spergel er al.'® also explore
more complicated, running spectral index models, for fit-
ting the results from WMAP, other fine scale CMB experi-
ments and large scale structure data. A recent study
combining CMB and large-scale structure data favours a scale
invariant spectrum, with n,=0.9810.02 with dn/dInk=
0.003 +0.01"". Slightly different set of parameters are de-
rived'?, when they combine the WMAP data with the
SDSS results.

One can relate the normalization constant 4, to the sca-
lar normalization 4 used in CMBFAST and by the above
authors. Verde et al”' give A{ (ko) = (800n°/T)4°, where
T=2.725x10° pK and k, =0.002 Mpc™'. For n =1, and
adopting a value 4 = 0.9, the best fit value for WMAP
data alone, gives Ay~ 3 X 107, in agreement with the earlier
COBE results. We can also relate 4, to the normalization
of the matter power spectrum 812{ = I’ P(k)/(21%), evaluated
at k= Hy. We have 8y = (2/3)44(D\(a = 1)/Q2,)"”, where
Dy(a) is the growth factor'®. For a flat matter dominated
model one would then get 8;~2 x 10~ consistent with
earlier COBE results.

The isocurvature mode

The Sachs—Wolfe effect in theories which begin initially
with isocurvature perturbations can be computed in an
analogous manner. Suppose for example, one assumes
that the universe has two dominant components, radiation
with density pg and dark matter with density p,,. Then the
total density perturbation will be &r= (prdz + Pudn)/
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(Prt Pm)=(Or + ¥8,)/(1 +y). Here we have defined
Y = Pu/Pr = aM)a(m,,) with 1, the epoch of matter-
radiation equality. In such a model there is also an inde-
pendent ‘isocurvature’ mode, where the initial curvature
fluctuation is zero, but there are non-zero fluctuations in
the ‘entropy per particle’, S o< ng/n,, o T7/p,,. This en-
tropy fluctuation is characterized by 6 = 85/5 =30, - §,.
In terms of &; and o, we have &;= (841 +y) + yc)/
(1 + 3y/4). For such isocurvature initial conditions on super
Hubble scales, the initial value of ¢ = ¢, is preserved, and
this drives the generation of curvature or potential pertur-
bations in the radiation dominated era (see for example ref.
20). The resulting potential fluctuations freeze after mat-
ter domination on super Hubble scales, and are given by
0 = /5 with an associated density perturbation §;=-2¢ =
-26/5. Also at matter domination, with y > 1, one has
O = (4/3)(d7+ 0). So BOy=08x/4 — (1/3)(-20+5¢)=0
and Oy + ¢ = 20. Then the associated CMBR anisotropies
due to the monopole term in eq. (37) is @;= ((:) ot
D)j(kR*) = 2®j (kR*). The associated dipole and quadru-
pole can again be neglected for super horizon scales. For
the same amplitude of potential perturbations at the epoch
of last scattering, isocurvature initial conditions therefore
lead to 6 times larger temperature anisotropies on large
scales. We have considered here only a two-component
system; for several components, several independent modes
of perturbation can be obtained with a variety of associ-
ated CMBR anisotropies™.

The integrated Sachs—Wolfe effect

If the potential ¢ were to change with time after decoup-
ling, we see from eq. (37) that further anisotropies can be
generated at large angular scales. This effect is known as
the integrated Sachs—Wolfe effect, and typically arises in
open universes, or in a flat universe with dark energy/cos-
mological constant, wherein the potential decays after the
universe is dominated by curvature or dark energy res-
pectively. The gravitational potential is also traced by
other measures of large-scale structure. There has there-
fore been considerable interest in checking whether there
is a large angle cross-correlation between the temperature
anisotropies (some of which will arise due the ISW effect)
and other measures of large-scale structure, with some
tentative detections™.

The Sachs—Wolfe and the ISW effects are dominant on
scales larger than a few degrees, or [ <20 or so as sche-
matically indicated in Figure 1. In order to understand the
smaller scale anisotropies we have to study in greater detail
the baryon—photon dynamics, to which we now turn.

VII. The baryon—photon dynamics

We have already derived the equation for the perturbed
brightness for the photons. To complete the description of
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the baryon—photon system we have to also write down the
continuity and Euler equations for the Baryons in the per-
turbed FRW universe. The continuity equation for the
baryon density perturbation 85 is

d3+Vwv=30, (41)
where the term on the RHS takes account of the variation
of the spatial volume due to the perturbed potential. In
the baryon Euler equation, we include the force exerted
by the radiation on the Baryons due to y—e collisions.
This force is most simply calculated as the negative of the
rate of momentum density transfer to the photons by the
electrons. The change in the momentum density of pho-
tons per unit conformal time to linear order in the perturba-
tions is given by

3 B
= p dpdQn”e(f),
n g p° ldn ‘J

a

drf :IdBPa P" py [i] _1
coll
(42)

where (df/dn)con = ¢(f) is the change in photon momentum
density due to collisions calculated in Section IV. The
momentum transfer to the electrons will be negative of
the value calculated in eq. (42). The radiative force density
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Figure 1. Temperature and E-type polarization anisotropies versus

the multipole number, for a flat ACDM model, consistent with WMAP
and computed using CMBFAST'". The parameters are: Q,=0.046;
Q,, =027, Q,=0.73; h=0.72; n, = 0.99. Some of the effects discussed in
the text are marked in the figure, as well as the location of different
characteristic scales /o, /4 and /p. Radiation driving leads to the rise of
the temperature anisotropy above /., while Silk damping and the damp-
ing due the finite thickness of the LSS causes the amplitude to fall for
1> Ip. The forms for these envelopes are taken from ref. 32. The ISW ef-
fect is important at small /. The early ISW effect is important around /.,
and is one reason for the first peak’s shift to /; <I,. The polarization
rises as (//Ip) in the tight coupling limit, due to the small quadrupole
source, and is also damped for /> Ip. The effect of reionization is to
cause the rise of the polarization signals at low /. The figure is inspired
by a similar figure in Hu'*.
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exerted on the electrons (and hence the baryons) by the
radiation is then

4n £dQ peat (1 iy Y, ,
=——|—|nG,a iy +=2 =" 4 dpv—i |n
f;'ad a4 |: e T 4 0 10

47

znechRa[F—%v}, (43)

where F = f(dQ/4TE) in is the first moment over photon di-
rections of the fractional brightness. So the baryons feel a
force due to the radiative flux F and a drag proportional
to their velocity. The Euler equation for the baryons is then

: 4
palv = v]=—ppVo-Vpy +"90TpRa[F_§V}, 44)

where = (da/dn)/a and pp is the baryon pressure. Equa-
tions (26), (41) and (44) together with an equation of state for
the baryon gas form the basic set of equations for the
baryon—photon system. These equations can be solved to
a good approximation in the tight coupling limit, where we
consider scales of the perturbations much larger than the
photon mean-free path. This approximation is likely to be
very accurate, before the recombination epoch, when matter
is mostly in an ionized form. Note that the co-moving
photon mean free path L, = (n.67a)" grows to about Mpc
scales just before the decoupling epoch. So the approxima-
tion kL, <€ 1 (which corresponds to the limit /= AR* <
R*/L,~ 10%), should hold quite accurately for most scales
of interests probed by CMBR anisotropies. One can then
solve for the brightness perturbation iteratively. For this
we first rewrite eq. (26) as

y .
i:i0+’2ml—02m+4n.v—zyB—T’]Jrn.vwsn.vq)}. (45)

(The repeated m index is assumed to be summed over.)
We can now write down the solution by iteration in powers
of L,. We get

oY
(O = 4 2o gy (46)
10
b a0 oi® 0
i =i®_r a—+n.Vz’()+8n-V({) : (47)
M

Here /¥ and (") are iterative solutions to eq. (45) giving i
to the zeroth and first order in Ly, respectively. (We will
later consider iteration up to the second order when deriving
Silk damping.)

Consider to begin with the effects of the baryon—photon
tight coupling to the first nontrivial order given by i),
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Taking the zeroth moment of eq. (47), that is averaging
both sides of eq. (47) over the all directions of the photon
momentum, we get

. di, 4
o =io—L, {ﬁ+§v.v}, (48)

where we have used the fact that f(dQ/47:)n,-nj = (1/3)3;.
Using ©g = ip/4 + ¢, we then have

a&+lv-v=({;.
a3

(49)
This implies that the fractional perturbation to the photon
number density dng/ny =30, satisfies the same equation
as dp. So initially adiabatic perturbations in the baryons
with 8z = 30, = (3/4)8z maintain this relation in the ra-
diation era.

The first moment, (that is multiplying eq. (47) by n and
integrating over the directions of photon momenta) gives

4

F== 4

Vip 4. 8

The radiative force experienced by the baryons is then

_Prlp t oy | Yo, 4,8
frad—ly[F 34 pj{3+3v+3v¢}. (51)

So the Euler equation for the baryons, after substituting
By = iy/4 + 0, becomes

4 7.
[pB"‘ng}V"‘pB v

40
__|:pB+§pR:|V¢_V[pB+pRT0]' (52)

We see therefore that in the tight coupling limit, the effect
of Thomson scattering by radiation, to the leading order,
is to add to the baryon Euler equation: (i) a radiation
pressure gradient term with pr.q = pr4@o/3 = pd,/3, (ii) an
extra inertia due to the radiation by adding a mass density
(4pg/3), to the inertial term in the LHS of eq. (52) and to
the gravitational force term on the RHS. When the radia-
tion energy density and pressure dominate over that of
matter, the baryon photon fluid, in the tight coupling
limit, behaves as though its mass density is (pg + pr) and
its pressure pg = pr/3 is due to radiation. The ratio of the
inertia due to baryons and that due to radiation is given
by R = 3ps/4pr =~ 0.6(,4*/0.02)(z/10°)". So baryon iner-
tia cannot be neglected. (On the other hand, the fluid pres-
sure can be neglected compared to the radiation pressure,

1076

since the thermal speed in the fluid is much smaller than
c/3).

On taking the time derivative of the continuity equa-
tion (eq. (49)), substituting for v from the Euler equation
(eq. (52)), and taking its Fourier transform, we get

26 2 . ;
® _ K o R

31+R) 3 1+R

24 " A
06 , R 90 ®. (53)
om? 1+R on
We see that the baryon photon fluid can undergo acoustic
oscillations, driven by the potential, and with an effective
sound speed ¢, =1/43(1+R). If the baryon inertia were
subdominant, with R — 0, ¢, > 1/ \/g , which is the sound
speed for a highly relativistic fluid. The baryon inertia
leads to a reduction of ¢, from this extreme relativistic
value. The oscillator equation (eq. (53)) can also be cast
in a more suggestive form (cf. eq. 16 of ref. 14,

o ,00 ; i ® Py

20 2P|, g o KR 2 d (g (s
o an 3 dn

We will use the solution of the oscillator equation (eq.

(53)) to discuss the imprint of the acoustic waves on C.

VIII. Acoustic peaks

The acoustic oscillations of the baryon—photon fluid lead
to a rich structure of peaks and troughs in the CMB ani-
sotropy power spectrum, on sub-degree angular scales (or
[>100). To understand their basic features, let us look at
an approximate solution of the oscillator equation (eq.
(53)). To begin with, let us neglect the slow variation of
R with time, compared to the oscillation frequency fkc;.
Then we can rewrite eq. (53) as

0% (0, + D) 9%d

+E2CH (O + D) =k IR +2—. (55
P (®, +P) pw (55)

Also consider first modes which enter the Hubble radius
in the matter dominated era, for which (3°®)/on’ = 0.
Then the solution of eq. (55) is

@0 +® = A(k)cos kr,(n)+ B(k)sinkr,(n) — RP, (56)

where (M) = [7dn’/{/3(1+R) is called the ‘sound hori-
zon’. Note the sine and cosine oscillations will persist in
the full solution but will have a slow damping due to a
variable R. The —R® term is the particular solution of the
inhomogeneous equation. The effect of a non-zero R
(called ‘baryon loading’) is to change the sound speed c;
and also shift the zero point of the oscillations of the
monopole ((:)0 + @). One needs to specify initial condi-
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tions to fix A(k) and B(k) in eq. (56). Note that as 1 — 0,
for adiabatic or curvature perturbations, we already showed
in Section VI that ©,+® — &/3. This fixes A(k) =
(®/3)(1 + 3R). Also in the tight coupling limit, we have
from eq. (49), ikV' =-0©/dn. Using this relation, and
noting from Section VI that for adiabatic initial conditions
V— 0 as kn — 0, fixes B(k) = 0. Imposing these initial
conditions we have for modes which enter in the matter
dominated era,

~ P
0, + <I>:?(1+3R)coskrs —R®;

300 _ 1+3R

Ty
kom JA+R)

where we have again neglected the time variation of &
and R.

sin kr.

iV = 50

(57)

Radiation driving

For modes which enter the Hubble radius during the ra-
diation dominated era, one cannot neglect the variation in
the gravitational potential ®. The comoving wavenumber
keg, corresponding to the Hubble radius at matter-radiation
equality, is ko, = Hz)(1 + zo)) = 2Qu Hy 2,,)"%,  and
modes with k> k., enter the Hubble radius in the radia-
tion dominated era. During radiation domination, for the
fluid which has an equation of state p = p/3, as would ob-
tain for the tightly coupled baryon—photon fluid, the Ein-
stein equations give ® + (4/m)d + (K/3)® =0 (dots as
before denote derivatives with respect to conformal time)>’.
The solution for ‘adiabatic’ initial condition is

Pkn) = 3 Z[sinom —on cosen |P; (k), (58)
(on)

where ®=k/+/3 = ke, is the frequency of the acoustic
waves and ®,(k) the initial potential perturbation on super
horizon scales. (Note that during radiation domination
Cy = 1/«/5 .) One sees that at early times on super horizon
scales, with kn <€ 1, & — &, whereas once a mode enters
the Hubble radius, the potential decays with time, going
asymptotically as  ®(kn) — —(3coson)®,/(en)*  for
km > 1. This decay of @ causes extra driving of the
acoustic oscillations for such modes. We can estimate the
effect of this extra driving by directly solving for the as-
sociated density perturbation 8z = dpg/pg using the Ein-
stein equations (cf. ref. 20); 4nGa’dpg=-kK'd-3 @
-3 ®, and 3 *=8nGa’py. For kn < 1 one gets &g —
—2®,, giving an initial value for the monopole ((:) ot P)=
Op/4 + ® — ®;/2. On the other hand, after a mode enters
the Hubble radius, one has asymptotically, 8z — —(2k'n%/3)
D(k, n) = 6D,(k) cos(kem) for kn > 1. So a mode which
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enters the Hubble radius early in the radiation dominated
era has acoustic oscillations with

O, +P—> 0, :8R/4:%<I>i(k)coskcsn. (59)

The amplitude of the oscillation is therefore enhanced
relative to a mode entering in the matter dominated era,
by a factor (3®,/2)/(®y/3) =5, where we have used &, =
(9/10)®;. This enhancement is referred to in the literature
as ‘radiation driving’>*>. The factor of 5 derived above
gets modified to about 4, if we include the neutrino com-
ponent™. Tt is also valid only in the asymptotic limit of
very small scales and ignores the damping effect to be
discussed below. Further, the modes which are seen as the
first few peaks in the C; spectrum have k = k,, larger than
unity only by a modest factor, and so the enhancement is
smaller. Nevertheless, the rise from the Sachs—Wolfe pla-
teau of the C; versus [ curve as [ increases from a few 10’s
to above 100 or so, as displayed in Figure 1, is dominated
by this radiation driving effect.

Note that due to the decay of the potential &, the baryon
loading term R® in eq. (57) is absent for modes which
enter the Hubble radius well into radiation domination; so
if one does see the effect of baryon loading in the C/s at
higher /, this would be a firm evidence for the importance
of a dark matter component in the universe (see below).

Silk damping

So far we have ignored the effects of departures from tight
coupling. This departure introduces viscosity and heat con-
duction effects, and associated damping of the acoustic
oscillations on small scales, worked out by Silk®. To calcu-
late Silk damping effects, one needs to go the second order
in L,. We give a detailed derivation, starting from the Boltz-
mann equation in Appendix B. In this derivation we neglect
the anisotropy of the Thomson scattering, and also the effects
of 0. (The scales for which damping is important, enter in
the radiation era, and so ¢ decays as explained above.)
For plane wave solutions of the form,

n n
v=Vexp|ik-x+[Tdn’ | © =6 exp| ik-x+[Tdn’ |

(60)
we derive the dispersion relation
2
inikcs——Lyz[Reri(lJrR)}. (61)
6(1+R) 5

To the first order in L., the baryon—photon acoustic waves
suffer a damping, with the damping rate being larger for
larger k or smaller wavelengths. This damping effect’®, is
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referred to in the literature as Silk damping, (if one takes into
account the anisotropy of the Thomson scattering one gets
16/15 instead of 4/5 in the last factor above27). Silk damping
introduces an exponential damping factor exp — (k/kp) into
the sine and cosine terms of eq. (57), where the damping scale
kp is determined by,

b

62
6(1+R)* (62)

n
K :fdn’ [R2+%(1+R)}.
0

(Also since modes with k> kp, for which Silk damping
becomes important, enter in the radiation dominated era
and their potential & has already decayed significantly;
so the R® term for such modes is not important.) Since R
grows to at most ~ 0.5 by decoupling, the Silk damping
scale kp' ~ [‘r]”‘LY(T]”‘)]”2 by the last scattering epoch, or
the geometric mean of the comoving photon mean free
path and the Hubble scale at last scattering.

Putting it all together

We can now put all the above ideas together to explicitly
write C; incorporating the baryon—photon oscillations. For
scales much larger than the thickness of the LSS it suffices
to use eq. (37) for o, substituting the tight coupling expres-
sions in eq. (57), for 6 ¢ + ® and iV. (The quadrupole term
has negligible effect in the limit of tight coupling.) The
resulting g, is substituted into eq. (8) to compute C;. Then
we have for the anisotropy power spectrum,

2 pdk (@, )
C]Z_J‘_i
T’k

5 {{E(k)(1+3R) cos kn =3 R} j(KR*) +

[E(k)ﬁ (1+3R) ©3)

TR sin kn ]j[(kR*)l
Note that eq. (57) only describes accurately modes which
enter in the matter dominated era. For modes which enter
the Hubble radius during radiation domination, one has to
take account of the k dependent enhancement due to radiation
driving. Also for large & we have to take account of Silk
damping. These effects can only be accurately incorpo-
rated in a numerical solution for C;. However many of the
physical effects governing the properties of the acoustic
peaks can be illustrated without such a detailed solution,
keeping in mind that the co-efficients of the oscillatory
terms will have an extra & dependence due to radiation
driving and Silk damping. The fudge factor £(k) has been
incorporated into eq. (63) to remind ourselves of the existence
of these effects.

It is also important to recall that j(kR*) is a function
sharply peaked at kR* ~ /. So for any given /, the k integral
is dominated by modes which satisfy k£~ [/R*. On the other
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hand, the function jj(x) is not as strongly peaked as j(x) and
has also a much smaller amplitude compared to j; (see, for
example, refs 24, 28). So the contribution from the Doppler
term (which contains ji(kR*)), is subdominant compared
to the term depending on the temperature and potential
(which contains j(kR*)). We can now use eq. (63) to under-
stand various features in the C; spectrum.

e The CMBR power spectrum, or C; has a series of peaks
whenever the monopole term is maximum, that is when
cos(krt) ==x1, where r¥ = r(n*) is the sound horizon at
last scattering. This obtains for kr(n*) = nx, where n is
an integer; or for /~kR* =nl,, where we define [, =
T(R*/r(Nn*)). These acoustic peaks were a clear theo-
retical prediction from the early seventies®~’; they used
to be called Doppler peaks, but note that the Doppler
term is subdominant compared to the temperature and
potential contribution to C;. The peak structure for a
standard ACDM model is shown in Figure 1.

¢ The location of the first peak depends sensitively on the
initial conditions, (isocurvature or adiabatic) and also
most importantly on the curvature of the universe. The
current observations favour a flat universe. For a flat
geometry, the location of the first peak can be used to
measure the age of the universe.

e For isocurvature initial conditions the monopole term
would have sin(kr%), which would be maximum at &% =
(2m + /2, where m =0, 1, 2... The peak at kr¥ = 7/2
is generally hidden. The first prominent peak for
isocurvature initial condition is at k7% = 37/2, and so oc-
curs at larger / than for adiabatic perturbations; present ob-
servations favour adiabatic initial conditions.

¢ Almost independent of the initial conditions the spacing
between the peaks is ~ /,.

¢ Due to a non zero baryon density, that is a non zero R, the
peaks are larger when cos(kr?) is negative, since in this
case, the cosine term and the —3R term in eq. (63) add.
Due to this effect of ‘baryon loading’, the odd peaks,
with n =1, 3, ... have larger amplitudes than the even
peaks withn=2,4,...

e The radiation driving effect, as we explained earlier
causes the C; curve to rise above the Sachs—Wolfe signal
for / values corresponding to the acoustic peaks (cf. Figure
1). Note also that the R® term would be absent, if the
scale corresponding to a given peak enters during ra-
diation domination, such that the potential & has de-
cayed by the epoch n*. Indeed the observed existence of a
3rd peak almost comparable in height to the 2nd is an
indication of the importance of (dark) matter in the
universe.

e Silk damping cuts of the C; spectrum exponentially
beyond [~ kpR* ~ 1500 (cf. Figure 1). There is also
damping of the C; spectrum due to the finite thickness
of the last scattering surface. The scales for both damping
are similar. The decline in C; due to both effects has been
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parametrized by a exp[—(!/lp)"P] factor, where Ip = kpR*,
and mp ~ 1.2 (refs 31, 32).

We also mention some of the other consequences of the
varying gravitational potential, for the C; spectrum.

e The effects of a varying gravitational potential lead to the
ISW effect as mentioned earlier. This can operate both
after last scattering and during the period of recombina-
tion. In a universe which is at present dominated by
dark energy, the potential associated with sub horizon
scales decay after dark energy domination. The resulting
increase in C; leads to the upturn for [ < 10, from the
Sachs—Wolfe plateau seen in Figure 1.

e There is also an early ISW effect for modes which en-
ter the Hubble radius in the radiation dominated era.
However due to the ¢ * factor multiplying & in eq. (36),
this contributes to C; only for those modes whose poten-
tial’s decay just before last scattering. The early ISW
causes an increase in C; for such modes.

e The early ISW effect partly fills in the rise to the first
peak and leads to a shift in the location of the first
acoustic peak to a lower [/ <[, (ref. 15). Also for modes

with k> k,,, entering the Hubble radius in the radiation

era, the decaying potential leads to a difference between
the exact solution to eq. (53) from the approximate so-
lution given by eq. (56). This leads to a further shift in

the location of the acoustic peaks, to lower / (refs 18,

31). Finally, j7(x) has a peak at slightly smaller / than

[ =x. All these effects lead to a shift of the peak location

to an / value lower than / = nl,, by ~25% or so, which

can only be calibrated by numerical solution®' (see below).

Note that we can use both the location and the relative
heights of the acoustic peaks as a sensitive probe of the
cosmological parameters, an issue to which we now turn.

Acoustic peaks and cosmological parameters

The cosmological parameters which have been constrained
include the curvature of the universe or the total energy
density Q, the baryon density o, = Q,4°, dark matter density
©, = Q,h” (which is predominantly thought to be cold dark
matter), and the slope of the primordial power spectrum
n,. We outline some of these ideas, following mainly Hu et
al*" and the post WMAP analysis of Page et al.”.

The location of the acoustic peaks. For the flat matter
dominated universe, the conformal time 1) oc g oc (1 + )%,
If we neglect the effect of baryons, ¢, = l/ﬁ and
rr=m*/43. Also R* =1y —n*, and so the acoustic scale
L= 3T (Mo — M¥M* = B3 a(Me/m*) = 172(z%/10%)'%. We
therefore expect the first acoustic peak around this value.
It is however important to also take account of the radia-
tion and baryon densities before decoupling. Radiation
density increases the expansion rate and the baryon density
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decreases the sound speed and so r¥ gets altered (cf. eq.
[2] in (ref. 33)).

1 ]n«/1+R*+«/R*+r*R*

JR* 1+/r*R*

Here 7%= prM*)V/pn(M*) = 0.3(0,/0.14) ' (z*/10%). Also
for a universe with non-zero curvature, in determining the
mapping between [ and £, it is necessary to replace the
comoving angular diameter distance dy=R* =1p-n*
corresponding to a flat universe, by d, applicable to a

general cosmology. This is given by'"*,

Mpc. (64)

6000

Jo,

Here Qj is the ratio of the dark energy to the critical energy
density, and w the dark energy equation of state parameter
(w=-1 for the cosmological constant). For a flat ACDM
cosmology with Q;=0.73 and Q;=1 one gets d ~ 0.89.
Using [, = nd ,/r%, we see that the ®,, dependence cancels
out and

—1/2
d *
1, =" Az172d[z—3] X
10

.
T

_ [+In(1-Q, )voss ]1+1A14(1+w)

dy= ~0.76
Qg—gv)

d Mpc; d

.(65)

—1
{ 1 1n1/1+R*+1/R*+r*R*} _ 66)

VR* 1++r*R*

Note that for a flat universe ignoring the effect of baryons and
radiation, one then gets [, ~ 172, as before. But with w,=
0.02, w, =0.14, even for a flat universe, /, ~ 300 and so
is much larger. We note from eqs (65) and (66) that the
acoustic scale is most sensitive to the value of Qg, the to-
tal density parameter.

Further, the location of the first peak is shifted from /,
because of the effects of potential decay (as described
above), which becomes important for modes with k > ke,
entering the Hubble radius during the radiation era. The
comoving wavenumber k.q corresponds to [ =l = keqdy,
where”*

0.14 67

1/2
2 172 @,

log =(Q2Q,Hizy) "dy z164d[ ] )

One needs to work out the exact shift numerically; For a scale

invariant model, with n,=1 and ,=0.02, Hu et al.’!

give [, = L,(n — ), where y ~0.267(%/0.3)", and for better

accuracy one replaces 0.267 with 0.24 for /; and 0.35 for /.
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For example, for a flat ACDM cosmology with w, = 0.02,
0, =0.14, Qr=1, w=-1, and taking account of the phase
shift, the first peak is predicted to be located at /; = 220.
For the WMAP data, the measured value of the /=
220.1 £ 0.8. So the data is indeed consistent with such a
flat universe. (The peaks also get affected mildly by the
tilt in the power spectrum from n, = 1.)

However one should caution that /; alone does not deter-
mine the geometry; one needs some idea of Q,, and Q,
which can be got from the full WMAP data. There still
remains potential degeneracies® *°, whereby the peak lo-
cation can be left unchanged by simultaneous variation in
Q,, — h space and Q,, — Q, space. If one imposes &> 0.5
as seems very reasonable, one infers 0.98 < Q< 1.08
(95% confidence level)'’. For the HST Key project meas-
urement of /1, as a prior, one gets Qy=1.02+ 0.02. The
observations strongly favour a flat universe. Also from the
inferred values of ®, and ®, from the full data, one gets
an acoustic scale [, ~ 300. If one assumes a flat universe,
it turns out that the position of the first peak is directly cor-
related with the age of the universe. The WMAP data
gives t, = 13.6 = 2 yr for the ACDM model'’.

Finally, the whole C; spectrum is damped strongly beyond
the scale /p = kpR*. Numerically, we have from Hu et al.

lDz

5/4
2240d z* 0.247~0.11
[(L+ 792 — ()22 (103 ] W, 0, (68)

For the ACDM model with WMAP parameters, one gets /5, ~
1470. The damping scale shows a much stronger depend-
ence on ), and the redshift z* compared to /,. The small
angular scale experiments like the Cosmic Background
Imager (CBI)*’ do find evidence for such a damping.

Peak heights. The heights of the different peaks can also
be used to infer cosmological parameters. We define the
height of the first peak as’, H, = (AT,/ATy)’, that
giving its amplitude relative to the power at /= 10. (For
the WMAP data the height of the first peak is AT, =
74.7 £ 0.5 pK). H, increases if (a) , decreases (because
radiation driving is more effective a lower matter density),
(b) if w, increases (due to the baryon loading), (c) if one has
a lower Q, or higher Q; (because then the integrated
Sachs—Wolfe effect is smaller which decreases AT)g). Fur-
ther, H, can decrease if one has a contribution from tensor
fluctuations (tensors will contribute to Sachs—Wolfe effect
but not to acoustic oscillations). Since H; depends on
several effects, there is no simple fitting formula; around
ACDM Hu et al.*! have given a crude formula for its varia-
tion with various parameters.

The height of the second peak is defined relative to the
first, as H, = (AT),/T},)". This ratio is insensitive to reionization
or to the overall amplitude of the power spectrum since
these scale both peaks by the same amount. The dependence
on M, is also weak because radiation driving roughly affects
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both peaks similarly. /1, is most sensitive to the baryon
density ®,, since baryon loading increases the first peak
relative to the second. It is also sensitive to any tilt in the
spectrum, away from n, = 1.

From fitting to a grid of spectra using CMBFAST", one
has™

H, =0.0260;%7%(2.42) ' x

(69)
exp[~0.476 In(25.50, +1.84w,,)?].
A, _ o 8840, — 06722 1 0,030 2%m (70)
H, Wy ,,

For the WMAP data, H, =0.426 = 0.015. For a fixed o,
the first two terms of eq. (70) quantifies the degeneracy in
the w; — n; plane.

The height of the third peak increases as ®, increases
(baryon loading). The ratio H; = (AT},/ATy,)” is most sensitive
to n, or any departures from scale invariance, because of
the long / baseline. Hu ef al.’’ give

2.170%59(3.6)"!

Hy = a . (7))
[1+ (@, /0.044)2][1+1.63(1l— w0y / 0.07 D, ]

Ay _ _ 03040 Av,

77, = 1:280n, —0.39 5 10,46 R (72)

These dependencies are accurate to few percent levels for
variation around the WMAP inferred parameters®. WMAP
does not yet clearly measure the third peak, but from pre-
vious compilations37, Page et al. estimate H;=0.42 + 0.08.
Note that if n, is fixed, @, is well constrained by H, and then
,, from H;. For more details we refer the reader to ref. 33.
We show in Figure 2, a set of C; versus [ curves, generated
using CMBFAST, which illustrate the sensitivity of the
CMBR to the cosmological parameters discussed above.

Other sources of CMB anisotropies

So far we have concentrated on the primary temperature
anisotropies generated at the LSS; a number of effects
can generate additional anisotropies after recombination,
generally referred to as ‘secondary anisotropies’. We do not
discuss these in detail; for an extensive review see ref. 14.
Of the gravitational secondaries, we have already discussed
the ISW effect arising from the changing gravitational poten-
tial. This effect is also important if there are tensor metric
perturbations, say due to stochastic gravitational waves
generated during inflation™. Another important gravita-
tional secondary arises due to gravitational lensing (cf. ref.
14 and references therein). Scattering effects due to free
electrons along the line of sight can also produce a number
of effects. The electrons can arise in collapsed objects
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Sensitivity of the temperature anisotropy to changes in various parameters, about the standard

ACDM model of Figure 1. The black (dark) line is always the standard ACDM model. a, Sensitivity to
matter/lambda densities for flat models. The three plots with decreasing peak amplitudes result from in-
creasing £, to 0.5 and 1, keeping total Qr= 1. b, Effect of total curvature on peak location is illustrated.
The plot with the smallest / value for the first peak has Q,, = 0.448, , = 0.73, while that with the largest
is for an open universe, with £, =0.27 and Q, = 0. ¢, Sensitivity to the baryon density. For the three
plots with decreasing first peak amplitudes, one has Q, = 0.092, 0.046 and 0.023 respectively. d, Sensi-
tivity to the CDM density parameter. This is 0.112. 0.224 and 0.448 for the three plots, where the first

peak progressively shifts to lower / values.

like clusters or due to re-ionization of the universe. We
discuss the effects of re-ionization later below. The scat-
tering of the CMB due to the ionized electrons in clusters
of galaxies was first discussed by Sunyaev and Zeldovich
(SZ)™. The SZ effect generates power below the damping
tail in the C; spectrum, at a level which depends on the
normalization of the density power spectrum, Gs. (Here
Gy is the RMS density contrast when the density field is
smoothed over a ‘top hat’ sphere of radius 8 h™' Mpc.)
Recently a significant excess power was detected by the
CBI experimenl40, at small angular scales (/> 2000) at a
level of ~ 355 (uK)®. This can arise from the SZ effect, but
requires a somewhat large 63~ 1 (cf. ref. 41), larger than
values previously assumed. Alternatively the CBI result may
point to new physics; it has been suggested for example
that primordial magnetic fields can be a significant contributor
to the power at large / (refs 42, 43). Primordial tangled
magnetic fields generate vortical (Alfvén wave mode) pertur-
bations which lead to temperature anisotropies due to the
Doppler effect. They also survive Silk damping on much
smaller scales compared to the scalar modes™*. The test
of whether the CBI excess is indeed produced by the SZ
effect, will come from the spectral dependence of the excess
power (if it is due to the SZ effect, there should be such a
spectral dependence), and measurements of polarization
on these small angular scales (see below). There are several
other interesting gravitational and scattering secondaries
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which can generate temperature anisotropies, and we refer
the interested reader to the excellent review in ref. 14.

IX. Polarization of the CMBR

The origin of CMB polarization

It was realized quite soon after the discovery of the CMB
that it can get polarized*. Polarization of the CMBR arises
due to Thomson scattering of the photons and the electrons,
basically because the Thomson cross-section is polarization
dependent. We used in earlier sections the cross-section
relevant for unpolarized light, ignoring the small effects of
polarization on the temperature evolution. Scattering of radia-
tion which is isotropic or even one which has a dipole
asymmetry is however not capable of producing polariza-
tion. The incoming radiation needs to have a quadrupole
anisotropy. The general features of CMBR polarization
are discussed in detail in some excellent reviews* ", Note
that in the tight coupling limit, the radiation field is isotropic
in the fluid rest frame, and can have at most a dipole aniso-
tropy in the frame in which the fluid moves. The quadrupole
anisotropy is zero. However to the next order, departures
from tight coupling, due to a finite photon mean free path,
in the presence of velocity gradients, can generate a small
quadrupole anisotropy.

1081



SPECIAL SECTION: COSMOLOGY

A qualitative argument is as follows'®: The ‘last scattering
electron (say O at x;) sees radiation from the last but one
scattering’ electron (P), roughly a photon mean free path
(Ly) away, say at a location x = x, + Lyi. Here n is the direc-
tion from O to P. The velocity of the baryon—photon fluid
at P is v/(x) = v/xo) + Ly;0,0/(x,). Due to the Doppler shift,
the temperature seen by O is 87 (xp, #)/T ~ n,[v,(x) — v(x0)] =
Lynndv/(x,). This is quadratic in # and so corresponds to
a quadrupole anisotropy as seen by the last scattering
electron. The Thomson scattering of this quadrupole aniso-
tropy can lead to polarization of the CMBR. The frac-
tional polarization anisotropy generated is Ap ~ kL, V.

One complication is that L, grows rapidly as photons
and baryons decouple during recombination. An approximate
estimate of its effect, would be to weigh the polarization
amplitude derived above, with the probability of last scat-
tering at a given epoch described by the visibility function.
Note that the visibility function goes as te™, where T=
1/L,. So during the tight coupling evolution, the L, factor
cancels out and after the weighting one gets instead Ap~
kdn*V, where dn* is the width of the LSS. So the effective
photon mean free path generating quadrupole anisotropy
and hence polarization of the CMB becomes n*, the
average distance photons travel between their last and last
but one scattering, during decoupling. Such an estimate is
verified in a more careful calculation®.

Describing CMBR polarization

There is another complication that has to be handled when
dealing with polarization, the fact that polarization is not
a scalar quantity. It is conventional to describe polarization
in terms of the Stokes parameters, 7, O, U and V, where [/
is the total intensity, whose perturbed version was called i
above, and discussed extensively in earlier sections. For a
quasi-monochromatic wave, propagating in the z-direction,
we can describe the electric field at any point in space as
E, = a(t)cos[myt — 0,()] and E, = a,(f) cos[wyt — 0,(r)],
where the amplitudes «,, a, and the phases 0,, 0, vary
slowly in time, compared to o;'. The stokes parameters
are defined as the time averages: /= (a2) + (aﬁ), 0={ady -
{ap), U={2a,a,cos(8, - 0,)), V= (2a,a,sin(6, - 8,)). Unpo-
larized light has O = U=V = 0. The parameters Q and U
describe linear polarization, while V' describes circular
polarization. At the zeroth order the CMB is unpolarized
and its small polarization is expected to arise as explained
above due to Thomson scattering. This does not produce
circular polarization and so one can set V' = 0.

Note that under a rotation of the x and y axis through an
angle y, the parameters / and V are invariant but (Q £ iU)" =
eii"’(Q 1t iU). So Q £ iU transform as a spin 2 Tensor under
rotation of the co-ordinate axis. The standard spherical
harmonics do not provide the appropriate basis for its
Fourier expansion on the sky. One then adopts the follow-

ing approach to this problem™'; construct scalars under rota-
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tion from QiU by using spin-lowering (") and spin-
raising (07) operators, and then make a standard Y, ex-
pansion. Or alternatively construct tensor (‘spin’ weighted)
spherical harmonics, 4,7}, by operating on the Y},,’s twice
with spin-raising or lowering operators, and then expand

(Q+iU) =) ai 1 () (73)
Im

in this basis. Alternatively a4, ;, can also be thought of as
the Y}, expansion co-efficients of the spin zero quantities,
(0)*(Q +1iU) and (8M)2(Q — iU) respectively, apart from
an / dependent normalization factor. The explicit expres-
sions for the raising and lowering operators, the spin
weighted harmonics, and the expansions in terms of these
are given in ref. 50. For example we can write,

a+2
(—2)!

i3 = [ Q2 Y ()NQ Hi U () = {

[aor;, mi@") ©+iv)m. (74)

Since ai,;, are expansion co-efficients of scalar quantities
under rotation, they can be used to characterize the polariza-
tion on the sky in an ‘invariant’ manner. More convenient is
to use the linear combinations, ag , = —(@2m + a_2m)/2 and
Agyim = (@21 — A_2m)/2 (refs 50, 52), and the associated real
space polarization fields; E(n) = Y, ag,mYim(n) and B(n) =
Y g Yim(n). The E and B fields specify the polarization
field (Q and U) completely, are invariant under rotation
(just like the temperature ®(n)) and have definite parity.
Under a parity transformation, E remains invariant while
B changes sign™. The convenience of the E—B split comes
from the fact that scalar perturbations do not produce any
B type polarization. An alternative way of thinking about
the F and B split is that they are the gradient and curl type
components of the polarization tensor’'. More details of
these fascinating but somewhat complicated ideas can be got
from the two seminal papers on the subject’®”".

In order to describe the statistics of CMBR anisotropies
fully, including its polarization, we have to now consider not
only C; due to the temperature anisotropy ®, but also cor-
responding power spectra of E, B and the cross correla-
tion between ® and E. Note that the cross correlation
between B and ©, and B and E vanish if there are no parity
violating effects. Since E and B are rotationally invariant
quantities, we can define the power spectra C’?, C% and CF
in an analogous way to the temperature power spectrum.
We now turn to their computation.

Computing the polarization power spectrum

We focus on scalar perturbations. In this case for any given
Fourier mode &, one can define a co-ordinate system with k||z,
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and for each plane wave, treat the Thomson scattering as the
radiative transport through a plane parallel medium. It turns
out that only Stokes O is generated in this frame because
of azimuthal symmetry, and its amplitude depends only
on = n-k. The stokes parameter U = 0 in this frame, for each
k mode. Because U =0 and Q is only a function of |, one
has (9)*(Q + iU) = (0")(Q — iU). (From the explicit form
of the spin-raising/lowering operators given in ref. 50, it can
be checked that (37)*(f()) = (3")*(AW)) for any azimuthally
symmetric function which depends only on (. Second since
U=0, we have (Q +iU) = (Q —1iU).) Therefore a, ;,, = a5 jm,
and we have ag j,, = 0 for such scalar perturbations.

The Boltzmann equation including polarization is given
by a number of authors (see, for example, refs 32, 54, 55).
We will simply quote the result got using the detailed
treatment by ref. 32. We have

2 (dk
cf =2 [HEiqap i, P

T
kLYV{(Hz)!}“Z Jji(kAn)
3 10-2! (kan)®’

af (ko) == dn gmo.m) (75)
where we have expressed the quadrupole source for the
polarization anisotropy, P = (@2—\/EE2)/ 10, by its tight
coupling limit P = 2kL.V/9 (see ref. 32). As argued on
qualitative grounds above, polarization is sourced by the
velocity differences of the fluid, over a photon mean free
path (i.e. kVL,). Once again the spherical Bessel function
Jji(kAn) in eq. (75) will at a given [, pick out (on k integra-
tion) a scale &k~ [/An at around last scattering, while the
visibility function g weighs the contribution at any time n
by the probability of last scattering from that epoch.

Suppose we wish to estimate the polarization aniso-
tropy on physical scales much bigger than the thickness of the
last scattering surface, or / ~ kR* < 1000 or so. As we explai-
ned earlier, the visibility function goes as Te ' whereas the
polarization source is kL, V/3 = (kV/3)(t)"', and so in their
product, T cancels and only e (k¥/3) would survive. The
integral over 1 in eq. (75), would be nonzero only for a
range of epochs of order the width dn* of the LSS. (Note
that just after recombination, the tight coupling expres-
sion cannot be used; however there is also no polarization
for n > n* because there is negligible further Thomson scat-
tering.) So one expects a contribution of order k¥dn*/3 in
doing this integral, apart from an evaluation of the other
terms at n*. A more rigorous analysis, following the time
evolution of the polarization source term, gives a further
factor of ~1/2 reduction, if dn* is defined as the Gaussian
width of the visibility function®. Making such an approxi-
mation, and putting in the tight coupling expression for
the velocity of the photon—baryon fluid, gives

kdn *

af (k, np)=—

1 2
[kR . ] J, (kR*).
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®,E(k)(1+3R)c, sinkn’

N

(76)

Note that again the k integral to find C7 will pick out values
of kR* ~ [. We can infer a number of features of the pola-
rization from the above:

¢ The magnitude of the polarization anisotropy is of order
AP ~ 0.6(kdn*)(®y/3) = 0.6/(nN*/R*)(Py/3), where we
have taken R ~ 0.6. Adopting dn* ~ 10 h™' Mpc and R* ~
10*h™" Mpc, we get at [~ 100, a polarization aniso-
tropy about 6% of the Sachs—Wolfe contribution (or
about 2 uK). The amplitude rises with /, but at large
[ > I the Silk damping cuts off the baryon—photon ve-
locity, and so the polarization gets cut off as e V",
say. This gives a maximum contribution at / < I, depend-
ing on them, with peak amplitude of order 10% of the
peak temperature anisotropies. These order of magni-
tude estimates are borne out by the more detailed numeri-
cal integration using CMBFAST shown in Figure 1.

e The acoustic oscillations of the baryon—photon fluid
velocity imprints such oscillations also on the polari-
zation. The polarization will display peaks when
sin(kr¥) =1, or for kr¥ = (2n + 1)(n/2), with n =20,
1,..., corresponding to / ~ (2n + 1)l /2. These peaks are
out of phase with the temperature acoustic peaks, as they
arise due to the velocity, and they are sharper (since
for temperature there is a partial filling in of the troughs
by the velocity contribution).

¢ Both the polarization and the temperature depend on the
potential @, and so one expects a significant cross
correlation power CTIE. Further, the j, term does not
significantly correlate with j; term in the k-integral for
C"F. So this cross correlation will be dominated by the
product of the temperature monopole with a cos(kr%)
dependence and the polarization (of £ type) with a
sin(kr*) dependence. The peaks of C' will then occur
when sin(kr¥) cos(kr*) o< sin(2kr¥) =+ 1, or when kr*
=(2n+ )(/4), with n=0, 1,..., corresponding to
I~ 2n + 1)(1/4). So C'F has oscillations at twice the
frequency compared to the temperature or polariza-
tion. There will be shifts in the exact location of the
CY and C'F peaks, as for the temperature.

e The E-type polarization has been detected at a 56 level
by the Degree Angular Scale Interferometer (DASI) at /
values of a few hundred, and at a level consistent with the
expectations from the detected temperature anisotropy’ .
The CBI experiment has also detected E type polariza-
tion, with the peaks in the polarization spectrum show-
ing the expected phase shifts compared to the peaks of
the temperature spectrum69. The TE cross correlation
was detected at 95% significance by DASI, but there is no
evidence of any B-type polarization. The cross correla-
tion has also been detected by WMAP. The WMAP ex-
periment has released results on CTIE, although not on C}E .
WMAP detects significant negative CTIE, at [~ 150 and
a positive ‘peak’ at [~ 300. The existence of such an
anti-correlation between temperature and polarization is
an indication that there exist ‘super-Hubble’ scale fluc-
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tuations on the LSS. This is interpreted as strong evi-
dence for inflation type models, since models which in-
volve seeds (like cosmic strings) can produce super
Hubble scale temperature fluctuations (due the ISW
ty]pEe effects) but not the observed anti-correlation in
Cr.

B-type polarization

So far we have emphasized the E-type polarization, as scalar
modes do not produce the B-type signal. However models
of inflation which are thought to generate the scalar perturba-
tions, can also generate a stochastic background of gravi-
tational waves. These tensor perturbations and the CMBR
anisotropy that they generate has also been studied in de-
tail’®, although we will not do so here. Their effects are
best separated from the scalar mode signals, by the fact that
Tensors also lead to B-type polarization anisotropy "'
The temperature contribution from tensors is flat roughly
up to [/~ 100 after which it rapidly falls off. The polarization
contribution, produced at recombination, peaks at / ~ 100. The
peak amplitude of the signal is however expected to be quite
small in general with ([(/+ 1)C5=2m)"2~0.1 uK (E,/
2% 10" GeV)z, where Ej is the energy scale of infla-
tion'®. (An Ejp~2 X 10" Gev corresponds to the ratio of
the /=2 contribution due to tensors compared to scalar,
7/§ = 0.1.) One of the prime motivations for measuring
polarization with great sensitivity is to try and detect the
contribution from stochastic gravitational waves. The B-type
anisotropy can also arise due to gravitational lensing of the
CMB, even if one had only E-type polarization arising from
the recombination epoch57. This could set the ultimate
limitation for detecting the B mode from gravity waves.
Another interesting source for B-type polarization are
vector modes, arising perhaps due to tangled magnetic
fields generated in the early universe’ >, or even pre-
sent in the initial conditions®'. Indeed if there were heli-
cal primordial magnetic fields, at the LSS, parity
invariance can be broken and one can even generate 7— B
cross correlations®,

Reionization and CMBR polarization

One of the surprises in the WMARP results was the detection
of a significant excess cross-correlation power C'* at low [
over and above that expected if polarization was only gene-
rated at recombination’. This can be interpreted as due to
the effects of reionization. But one seems to need a signifi-
cantly higher optical depth to the re-ionized electrons
T,;~0.17, and a correspondingly high redshift for reioni-
zation z,,~ 17. The probes and models of the high red-
shift intergalactic medium, including the use of the CMBR
as a probe of re-ionization is discussed more fully else-
where in this volume by Sethi®. We make a few qualita-
tive remarks.
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First, note that if photons are re-scattered, due to electrons
produced in re-ionization, the visibility function will have two
peaks; one narrow peak around recombination, and a broader
peak around the re-ionization epoch (cf. figure 2 in ref. 63),
which depends on the exact re-ionization history. The proba-
bility for last scattering around the usual LSS will diminish by
a multiplicative factor €™, where 7,, is the optical depth for
electron scattering to the re-ionization epoch. At the same
time new temperature and polarization anisotropies get gener-
ated. The most important effect is that Thomson scatter-
ing by electrons generated during re-ionization, produces
additional polarization. Note that the quadrupole aniso-
tropy at the re-ionization epoch is likely to be much larger
than at recombination, simply because the monopole can free
stream to generate a significant quadrupole at the new
LSS. At re-ionization redshifts close enough to the observer,
the relevant monopole becomes the Sachs—Wolfe value
O, + ® = Py/3. The quadrupole at the re-ionized epoch
1, can then be simply estimated by replacing 1, in eq. (37),
by M. One gets Oa(k, M,5) = sk, M) = (Po/3Yalk(M, —1)).
Note that this does not have the kL, suppression factor,
which obtains around recombination. Also E, in the polariza-
tion source term P above is negligible. In evaluating the
E-type polarization arising from the re-ionization, one
can substitute the resulting P = ©®,/10 in eq. (75) instead of
P =2kLV/9; for the range of 1 where scattering by elec-
trons generated due to re-ionization is important.

The resulting re-ionization contribution can be best calcu-
lated numerically, for example using CMBFAST, as illus-
trated by Sethi (this volume). But the scale where the peak
in the power spectra can be estimated noting that a} will
involve the product j,(k(M,; —N™)y{k(Mo —MN.)), which con-
tributes to the k-integral dominantly when both &(1,; —Nn*) ~ 2
and k(Mo —M,;) ~ {. This implies that the re-ionization con-
tribution to E-type polarization peaks at [~ 2(Mg—M,)/
M, —Nn*)~ 10 for the parameters appropriate for a
ACDM cosmology and a z,; ~ 20. This scale basically reflects
the angle subtended by the Hubble radius at re-ionization.
One has to also take account of the damping due to the large
width of the LSS at re-ionization, which will shift the peak
to smaller /.

The k integral which determines CTIE, involves the product
ok = M*)Yii(kM = M,))ji(kR*), the last j,(kR*) coming
from the temperature contribution from the usual LSS.
Note that 1, is much bigger than both 1,; and n*, and the
two j; factors will re-inforce each other for small /. The
cross-correlation peak will occur at an [ similar to the peak
in C4. The indication from the WMAP data for significant
optical depth from re-ionization is not easy to explain (cf. ref.
64). If the preliminary WMAP result continues to firm up
with subsequent years data, it will set very strong constraints
on the star and active galaxy formation at high redshift. It
may be also worth exploring new physical alternatives.
For example, ref. 65 explores the possibility that tangled
magnetic fields generated in the early universe could form
subgalactic objects at high enough redshifts to impact signifi-

CURRENT SCIENCE, VOL. 88, NO. 7, 10 APRIL 2005



SPECIAL SECTION: COSMOLOGY

cantly on re-ionization. Note that if there is significant op-
tical depth to re-ionization, then inhomogeneities at the
new LSS can lead to new secondary sources of both tem-
perature®® and polarization anisotropies®’. Eventually the
detailed measurement of the polarization signals, could be
a very effective probe of the reionization history of the

: 6
universe 8.

X. Concluding remarks

In this review we have tried to emphasize the physics behind
the generation of CMBR anisotropies. We have given details
of the computation of the primary temperature anisotropies,
and also indicated the relevant issues for polarization. Our
aim is more to introduce the budding cosmologist to the well-
known (and reviewed) techniques used to calculate the
CMB anisotropies, rather than provide an extensive survey
of observations and results. Of course, it is the existence of
very good observational data that makes the effort worth-
while. Clearly the CMB is and will continue to be a major
tool to probe structure formation and cosmology. We
have already learned a great deal from the detailed obser-
vations of the degree and sub-degree scale temperature
anisotropies, particularly the acoustic peaks. The explora-
tion of small angular scale anisotropies is just at a beginning
stage and holds the promise of revealing a wealth of in-
formation, on the gastrophysics of structure formation.
The future lies in also studying in detail the polarization
of the CMBR. Already WMAP results have revealed a
surprisingly large redshift for the reionization of the uni-
verse. Polarization will also be a crucial probe of the presence
of gravitational waves. We can expect in the years to come
much more information on cosmology from WMAP, future
missions like PLANK and other CMB experiments, with the
possibility of more surprises!

Appendix A: The collision term: Details

Consider the integral over the collision term on the RHS of
eq. (25). We have | p*dpe (f) = n,64(4, + 4,) where

4= [ pap S 7 () - 7, Y
4= [ Pap S L p @ WVF (7, B) - F(B. . (A
4 2

are respectively, the isotropic and anisotropic contribution
to the collision term. From the invariance of the scalar piui,
where «' is the four velocity corresponding to the bulk
motion of the electron (Baryonic) fluid we can show that

p=a(l +nv)(1-0)p (A2)

(We have used here the fact that in the fluid rest frame the
components of #' = (1, 0, 0, 0), while ' =(y, /,/goo,y v/

flgss ) withy, = (1 - e )’1/2)WesphtA1 I, — I, with
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f(p.m). (A3)

I —jp3dp /(P ) lz—jp3dp

For evaluating I, we use the fact that f'is a scalar, that is 7(p,
n) = f(p, n). Also the integrand of 7, does not depend on n’".

So we have I, = [p*dpf(p, n) = (pra*/4m)[1 + i]. For evalu-
ating /; we stay in the initial electron rest frame and trans-
form the integral over p to one over p using eq. (A2). We
get I, = (a*/4m)(1 — 40)(1 + 4n-v)p where we have used
the fact that p = fd3f)ﬁ J'p) is the energy density of radia-
tion in the fluid rest frame. Using the invariance of T ,"cu,-uk,
and from the fact that the components of both »' and 7}
which involve one spatial index are of order v/c, we can
check that p = p + O(v*/c?). Since, p = pr(1 + 40)(1 + iy),
to linear order I; = (a*pg/4m)(1 + 4n-v + iy). So

4

A =L puliy +4n-v—il. (A4)
41

To simplify 4,, we use the addition theorem for spherical
harmonics to write

1= Z 20 [ apaery;, MIT (7 1)~ 7. (7] =

=2

. pR ! Z[ Zm(n)ZZm

4

(A5)

where i, = | dQY3%,i(x, M, n). In evaluating 4, we have used
the fact that the term f{(p, 71) does not contribute to the integral
over d€’. Also writing f(p, ") = fip, n') = f(p) + fi(p, 1), the
J» term gives zero contribution. And since f; is already first
order in perturbations, we can evaluate 4, by replacing n
and 7’ by their unbarred values (these will differ only by
terms of order v/c and the difference when multiplied by
i»m Will not contribute to the first order).

Finally, we also need to evaluate dtv/dn. Since 4, and
A, are already of first order, we need to evaluate this term
only to zeroth order, to write down the equation for the per-
turbed brightness. We have dt/dn = 2"/u’=a to the leading
order. The perturbed brightness eq. (26), given in the main
text, is got from eq. (25), eq. (A4) and eq. (AS).

Appendix B: Silk damping: Details

We have given in the main text the iterative solution to eq.
(45) to the first order in L,. To derive Silk damping one
needs to go to the second order iteration,

A

0i
=0 {

+n-Vil +8n- V¢]
on

d
2

5i®
+n-V} —+n-Vi©48n-vo | . B
on an
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As mentioned in the text, we neglect the anisotropy of the
Thomson scattering, and also the effects of the gravita-
tional potential ¢. Taking the zeroth moment of eq. (B1),
we get

diy 4
g =iy —L, | —+—=V-
iy =iy LY{aT] 3

Py 83(V-v)

1o
+—=V7i
> 3 o 3 °

oo

(B2)

So to the next order in L, eq. (49) is modified to

43V-v) 150,
17{3 n 5V }

di, 4
M Ty

3 (B3)

Similarly, taking the first moment of eq. (B1), the Euler equa-
tion (eq. (52)) gets modified to

4 ov i
[PB pR}an _V[p§0]+

7 .
prly| = 40V 29(% |, 3 vy v)+—v2
3 8n 3 |on) 15

(B4)

Here we have used the relation [(dQ/d4mnnmn, =
[8;84 + 88, + 8,841/15. (This can be written down from
symmetry and the coefficients and its amplitude fixed by
contracting over any two indices.) We have also neglected
the baryonic pressure compared to the radiation pressure.
Equations (B3) and (B4) form a pair of linear coupled
equations for the perturbations in radiation density i, and
matter velocity v. Assuming that the rate of variation of the
co-efficients of various terms, due to Hubble expansion is
small (compared to kc;), one can use the WKBJ approxima-
tion, to derive the dispersion relation for the baryon-radiation
acoustic oscillations.

Consider therefore a plane wave solution of the form

v=Vexp(ik-x+]Tdn) ; i =Texp(ik-x+]Tdn). (B5)
Let us also look at longitudinal waves with k parallel to V.
In fact, taking the divergence of eq. (B4) one can see that
these modes are completely decoupled from the rotational
modes. To leading order one gets from eq. (B3) and eq. (B4),
a dispersion relation which is a cubic equation for T,

k2 2
— LT3+ b2 +bFTLY[ —i} Ky, (B6)

5b

which can be solved iteratively. Here we have defined

= (1 +3pp/dpr) =1+ R. To the lowest order we get
F +i(k/ J_ 3b). So to the zeroth order the dispersion relation
is that of a sound (pressure) wave in the baryon—photon fluid,
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with an effective sound speed c; =(l/\/§). Consider the
effects of terms proportional to L,. Since the I’ term is
already multiplied by L, we can use the lowest order solution
to write —LYI"3 = —LY(—kz/ 3h)I'. This reduces the cubic equation
to the quadratic equation

k? 2
r’+r—+% Ly [1—3 i}rk—:o,

B7
3 5b B*| 3b (B7)

whose solution to first order in L, is eq. (61) given in the
main text.
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