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Abstract. Under certain assumptions, it is shown that eq. (2) has only finitely many solutions
in integers x>0, y=0, k=2, [>0. In particular, it is proved that (2) with a=b=1, I=k
implies that x=7, y=0, k=3.
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L.

Let a and b be relatively prime positive integers. Erdds [5] conjectured that there
are only finitely many integers x>0, y=0, k>2, [ >0 with k+1>3 satisfying

xzy+l+k . (1)
and
alx+1)---(x+k)=by+1)--(y+k+1). 2)

By letters x, y, k and [, we shall always understand that x>0, y>0, k>2, [>0 with
k+1>3 are integers satisfying (2). For an integer v with |v|>1, we denote by P(v)
and w(v), respectively, the greatest prime factor of v and the number of distinct prime
factors of v. Further, we write P(0)=P(l)=P(—1)=1 and o(0)=w(1)=w(—1)=0.

In this and the next paragraph, we state some of the earlier resuits on (2). Mordell
[7] proved that (2) with a=b=1, k=2, I=1 implies that either x=1, y=0 or x=13,
y=4. Avanesov [1] confirmed a conjecture of Sierpinski by proving that x=0, y=0;
x=3,y=2 x=14, y=7, x="54, y=19 and x=118, y=33 are the only solutions of
(2) with a=3, b=1, k=2, I=1. Tzanakis and de Weger [12] determined all the
solutions of (2) with a=1, b=2, k=2, I=1. Boyd and Kisilevsky [3] showed that
x=1,y=0; x=3, y=1 and x=54, y=18 are the only solutions of (2) with a=b=1,
k=3, I=1. Cohn [4] proved that (2) with a=1, b=2, k=4, |=0 is satisfied only if
x=4, y=3. Further, Ponnudurai [8] showed that x=2, y=1and x=6, y=4 are the
only solutions of (2) with a=1, b=3, k=4, [=0. Shorey [10] showed that (2) with
=0 and (1) implies that either k is bounded by an effectively computable number
depending only on a, b or k=[at+ 1] where
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Further, it is proved in [10] that (2) with [=0 and (1) implies that k is bounded by
an effectively computable number depending only on a, b, P(x), P(y) and also,

logx < Cik 3)

where C, is an effectively computable number depending only on a, b, P(y) and
P(x—}). On the other hand, we see from Cramer’s conjecture on distance between
consecutive primes that (2) and (1) imply that

(logx)*>>C,k @)

where C,>0 is an absolute constant. In this paper, we shall extend these results to
a more general equation (2). For a given k and [, we refer to a theorem of Siegel [11]
to observe that (2) has only finitely many solutions in x and y provided that the curve
represented by (2) is irreducible over the field of complex numbers and has positive
genus.

1t has not been possible to confirm the conjecture of Erdds, stated above, even
when y is bounded. Erdds [5] considered a particular case of (2) corresponding to
y=0, namely,

(X +1)(X +M)=N! )

where X>2, M>2 and N >2 are integers. Erdos[5] conjectured that 8.9.10=6! is
the only solution of (5). Erdds[5] proved that for &> 0 there exists N depending only
on & such that (5) with N >N, implies that

X=2-¢". (6)
We re-write (5) with M =2 as
(2X +3)2—1=4N!

which reminds us of the open problem on squares of the form N!+ L.

By fixing any three of the four variables x, v,k and [ in (2), the fourth one is
determined uniquely, if it exists. For given x, y and I, we start with the following
result that determines the exact value of k if it exists.

Theorem 1. Let y =max(y,1) and

p= (log (%) +1logy )/log (%) (7)

There exists an effectively computable number C depending only on a and b such that
(2) with (1), k= C and

y>(k+D?if 12log(l+1)=k (8)
implies that
O<k—-p<1. )

We observe that a restriction of the type (8) is necessary for obtaining (9). For
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0<p<(log2)/12, I=[e* ], 0<y<(k+1)? and k exceeding a sufficiently large number
depending only on a, b and ¢, we see from (7), (15) and (23) that S<C,k where
0<C,<1 is a number depending only on a, b and ¢.

Next, we turn to a more general situation than considered in Theorem 1. For given
x and y, we denote by N(x,y) the number of pairs (k,]) satisfying (2) and (1). For
given x, y and I there is at most one k satisfying (2). Therefore, we see from
Lemma 1 that

N(x,y)<Cslogx (10)

where C; is an effectively computable number depending only on a and b. In the
following result, we sharpen (10) whenever y is somewhat smaller than x.

Theorem 2.(a) There exist effectively computable numbers C¢ and C, depending only
on a and b such that for every x and y with

log x

(11)

we have
N(x, )< C;. (12)

(b) Let ¢>0 and y<(1—¢)x. Then

N{x,y) < Cgloglog x

where Cg is an effectively computable number depending only on a, b and e.

A pair (k, ) in Theorem 2 may depend on x and y. Now, for ¢>0 and y<x! ™% we
show that max (k,[) is bounded by a number depending only on ¢, a, b and P(x). See
Theorem 3(b) which finds an application in the proof of Theorem 5. Furthermore,
we give lower bounds for P(x) and P(x —y) whenever y is smaller than some power
of x and we apply these estimates in the proof of Corollary 1.

Theorem 3. Suppose that (2) with (1) is satisfied. Let £>0.
@ If

p (13)

2
X—y>min (ax, x((log k) (log log k)) >,
then | is bounded by an effectively computable number depending only on ¢, a b and P(x).
(b) Ify<x*~* then max (k, ) is bounded by an effectively computable number depending
only on ¢, a, b and P(x).
(c) There exist effectively computable numbers §>0 and Cq4 depending only on a and
b such that the inequalities

y<x® and P(x)<l+k

imply that max (x, y,k,)<C,.

(d) There exist effectively computable numbers 6, >0 and C,, depending only on a, b
and P(x—y) such that if y<x%, then max(x, y,k,1)<C,,.

(€) There is C,, depending only on a, b and y such that P(x—y)<l implies that
max(x,k,)<C,;.
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The proof of Theorem 3(a) depends on the theory of linear forms in logarithms,
We combine Theorem 3(c), (d) with Lemma 8. We derive that (2) with (1) and P(x)<+ k
implies that I/k is bounded by an effectively computable number depending only on
a and b. Also, we see that (2) and (1) imply that I/k is bounded by an effectively
computable number depending only on a, b and P(x—y). Furthermore, if k is fixed,
we may apply the theorem of Siegel, stated above, to finitely many pairs (k,]) given
by the above two assertions to derive that (2) has only finitely many solutions in x
and y under certain assumptions already mentioned. Next, we consider (2) with [/k=1
and a=b=1ie.

(x4 1) (x+k)=(y+1)-(y+2k). (14)

MacLeod and Barrodale [6] showed that (14) with ke{2,4,5} has no solution in x, y
and (14) with k=3 implies that x=7, y=0. Further, MacLeod and Barrodale [6]
proved that for a given k, there are only finitely many pairs (depending on k) x, y
satisfying (14). We prove

Theorem 4. The equation (14) has only one solution in integers x>0, y=0, k>2 and
it is given by x=1, y=0, k=3,

In Theorems 2, 3 and 4, we see that y is somewhat smaller than x. In the next result,
we replace this by the assumption that P(y) is bounded. We combine Theorem 3(b)
with the theory of linear forms in logarithms to obtain the following result.

Theorem 5. Equation (2) with (1) implies that max (x, y, k, ) is bounded by an effectively
computable number depending only on a, b, P(x) and P(y).

We may derive from Theorem 3(c) that (5) implies P(X)> N whenever X exceeds
a sufficiently large effectively computable absolute constant. In fact, we apply Theorem
3(e) to obtain a more general result on (5).

COROLLARY 1.

Let B20 be an integer. There exists an effectively computable number C,, depending
only on B such that (5) with N> C, implies that P(X —B)> N.

For the proofs of our Theorems, we prove certain estimates that are of independent
interest. For example, we show unconditionally that (4) is valid whenever y<(1—é)x
for £>0. We formulate these estimates as the following theorem.

Theorem 6. Suppose that (2) with (1) is satisfied. Then

(a) There exists an effectively computable number C,;>0 depending only on a
and b such that

x> C,;k3 (logk)™*. (15)
(b) Let >0 and y<(l—eg)x. Then
(logx)*>Cy .k (16)

where C,,>0 is an effectively computable number depending only on ¢, a and b.

Ere
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(c) There exist effectively computable numbers C,s and C,5>0 depending only on a
and b such that if k>C, 5 and y<(k+1)* (log(k+1)~5, we have

loglog x> C,¢k.

(d) There exists an effectively computable number C,,>0 depending only on a and b
such that

x—y=C, x5,

2.

This section contains a proof of Theorem 6 and lemmas for our Theorems 1, 2, 3, 5.
Throughout this section, we suppose that (1) and (2) are satisfied and we shall use
this assumption without reference. We put

U;=ax'—by'*' for 0<igk (17)
and

J(x,y)=x—(b/a)yt * M), (18)
Let

F@)=@Ez+1)-@+k)=z"+ A, 2" ' +... + 4, (19)
and

G@)=@+1)-(z+ )=+ 47"+ + A (20)

Then, we refer to [6,p.256] to observe that

0<A;<(k+1)%/2%i! for 1<i<k 1)
and
0<Aj<(+ 1425 for 1<j<l. (22)

We start with the following result that provides an upper bound for 1.
Lemma 1. There exists an effectively computable absolute constant ¢ such that

1< clog(a+1)+(2log x)/log 2. | (23)
Proof. We re-write (2) as

(x+1)---(x+k)_b(y+1)---(y+k+l)(k+l)!
4 K (+D) T

(24)
We observe that

ord; (R.H.S. of (24)) > (I-1)/2. (25)
On the other hand,

ord, (L.H.S. of (24)) < ord, (a)+ max ord, (x +i)<(log(a(x +k)))/log 2.

1<igk R
(26)
" Finally, we combine (24), (25) and (26) to derive (23). 0
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We give estimates for f(x,y) in the next three lemmas.
Lemma 2.
S, y)>0. @7

Proof. We suppose that f(x,y)<0. Then, we see from (17) and (18) that U, <0, which,
since x>y, implies that

U,<0 for 0<igk. (28)
Now, we derive from (2), (19), (20), (17) and (28) that
0<aF(x)—bF)Y'=Up+ A Uiy + -+ AU <0 (29)

which is a contradiction. 0
By (2), we observe that ax*<b(y+k+I)**' which implies that

x<(b/a)1”‘(y+k+I)”‘”’"<0(y+k+l)”“/“’ (30)
where
0=max(1,(b/a)"*)< max(1,(b/a)).

Now, we give an upper estimate for f(x, y).
Lemma 3. For 1<k, we have
(. y) < 160k(max (k, y)}™.

Proof. Suppose that y>k+L Then, by (30) and I<k, we have

x < (bfa) /eyt + 40 ( 14+ k_;'l )1 )

KD I+
< (bfa) eyt + 0w (.
Bla™y (1+——ky L

which implies that
f(x,3)<60ky"™.

If y=k+1, we see from (30) and <k that
1(x, ) <30y 0 < 60ky ™,

Thus, we may suppose that y<k+I. Then

O(k + L+m y \"
x < 1 4+ —=

12
<Ok+Dw | 1 y Y
(k+) (+k+2k2(l+k)

e e

B s -,
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which implies that
G, 5) <x < 160kH+ ), ]

For applications, it is convenient to formulate a version of Lemma 3 which is valid
also for I> k.

Lemma 4.
S (x, y) < 160kx*, (31

Proof. By (1), we observe that x>max (k, y). Now, we apply Lemma 3 to assume that
I>k. Then, the trivial estimate f(x,y)<x implies (31). O

We apply our estimates on f(x, y) to give bounds for x—y.

Lemma 5. T here exist effectively computable numbers c, and c,>0 depending only on
a and b such that

Ixlo
cl(k+ EX 150

x—y< (32)
Cy (k+7(—> !f =0
and
(calylog(y+ 1))k, if 1>0
x—y?{czy/k if 1=0. (33)

Proof. We write ¢,, ¢, and ¢ for effectively computable numbers depending only on
a and b. We write, by (18),

x—y=f(x,y)+A (34
where
A=(bfa)!FFyt+ U0y, (39)

First, we prove (32). If I=0, the assertion follows from (34), (35) with b>a and (31).
Let I>0. Then, we may assume that

llogx<k, (36)
otherwise (32) follows immediately. Now, we derive from (31) and (36) that

£ (x,y)< 166ek. 37)
Further, it is easy to see from (35) and (36) that

A <(c;lxlog x)/k. (38)

Finally, we combine (34), (37) and (38) to obtain (32).
Next, we turn to the proof of (33). By (34) and (27), we observe that

x—yzA. (39)
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If 1=0, the assertion follows immediately from (39), (35) and b>a. Let [>0. Then,
we may suppose that y>0 and [log(y+1)>c, with ¢, sufficiently large. Then, it is
easy to see that A>>(cslylog y)/k which, together with (39), implies (33).

We apply an argument of Erodos and Lemmas 1, 5 to obtain a lower bound for
x in the next lemma. The case /=0 of this lemma is proved in [10].

Lemma 6. There exists an effectively computable number cs>0 depending only on a
and b such that

k7T if 150

(46)
cek® (logh)? if 1=0.

x(log x)* > {
Proof, We denote by c.,...,c,, effectively computable positive numbers depending
only on a and b. We may assume that k> ¢, with ¢, sufficiently large and

x<k? (41)
which, together with (23), implies that

I<cglogk. (42)

Furthermore, we derive from (2) and (1) that none of x+1,...,x + k is a prime number.
Therefore, it follows from the well-known results on difference between consecutive
primes that

x> k92, 43)

We denote by d the greatest common divisor of (x+1)--«(x-+k) and (y+1)---
(y+k+1). Then, by (2), we see that .

xF<(x+1)(x+k)<bd. (44)

Let S={x+1,...,x+k}. For a prime p <k, we choose an f(p)eS such that p does not
appear to a higher power in the factorization of any other element of S. Let S, be
the subset of § obtained by deleting all f(p) with p<k. Then, by a fundamental
argument of Erdds, we have

2
H §< H p[(k/p)]+[(k/p T+ — kel
seSy p<k

Therefore, the contribution d; in d from all primes not exceeding k is at most
K¥(x + k)0 < (e*k),

by (41). Further, the contribution d, in d from all primes p with k<p<(2k+1—1) is
less than or equal to .

(x+ kYRR D=0 ok

by (41) and (42). Now, we set

k=1
dy=d/d,d, andA1=( I1 (x—y+,u)>/(2k+l—1)!.
p==-(k+1-1)

|




_
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Notice that A, is a positive integer not exceeding

e3k (xz_ky N 1)2k+l—1,

by (42). Also, we observe from (2) that d4}A, . Consequently,
2k+i1-1
x—y
<(eoh)| =~
d < (cgk) ( o + 1)
which, together with (44) and (42), implies that
- 2 +cg(logk)/k
xgcmk(%u) )

If I>0, we combine (45), (43) and (32) to conclude that

Ix log x \ 2 *esCoskik Ixlogx \2
xsc,lk( kzg ) gclzk( kzg )

by (41) and (42). If /=0, we obtain in a similar way that x <c, 3k (x/k?)?. The preceding
two inequalities imply (40) immediately. O

Now, we are ready to prove Theorem 6(a), (b), (d).
Proof of Theorem 6(a), (b), (d). First, we observe that (15) is an immediate consequence

of (40) and (23). We re-write y<(1 —¢)x as x—y>ex which, together with (32), (15)
and (23), implies (16). Finally, we apply (33) and (40) to obtain Theorem 6(d). [J

For applications, it is convenient to combine (32) and (15) to formulate the following
result.

COROLLARY 2.
There exists an effectively computable number ¢, depending only on a and b such that
x—y<(cyq(l+1)xlog x)/k. (46)

For the proof of Theorem 6(c), we apply (15), (16} and (23) to obtain the following
result which also finds an application in the proof of Theorem 1.

Lemma 7. Let x>1 and y>4/log 2. There exist effectively computable numbers c, s and
¢, depending only on a, b, y and y such that for k>c, s and

log (I+1)<(yx) "'k, (47)
we have
cigl* if I>k
>
cigk3(logk)™* if I<k.

Proof. We may assume that ¢, 5 is sufficiently large. Let I> k. Then, we may suppose
that y<I*. Now, we derive from (30) and (23) that

log x < ¢y + (2llog (31%))/k
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where ¢,; and the subsequent letter ¢,9>0 are effectively computable numbfars
depending only on a and b. Therefore, by (23), we derive that k<(yy)log! which
contradicts (47). Thus, we may suppose that I<k. Now, we may assume that
y< k3 (logk)~*. Then, we observe from (30) that k> x!/6 which, by Theorem 6(b) with
g=1/2 and (15), implies that

y2x/22c, gk /(log k). a

Proof of Theorem 6(c). We may suppose that Cys is sufficiently large. Then, we apply
Lemma 7 with y=3, y=6 and (23) to obtain

¢cologlogx > log(I4+1)2k/18. 0

Next, we prove a lemma which tells that certain assumptions involving variables
of (2) are equivalent.

Lemma 8(a). Let 0<3<1. There exist effectively computable numbers v, and v,>0
depending only on & such that 1> v,k whenever x>v, and y< x4,
(b) Let u>0. There exist effectively computable numbers vy and v, with 0<v,<1
depending only on i such that y<x"* whenever x>, and 12 pk.

Proof. (a). We may assume that v, is sufficiently large. Let y<x?<x/2. Then, we
apply Theorem 6(b) with £=1/2 to obtain (16) which, together with (30) and (23),
implies that > v,k.

(b) By (2), y<(afb)*"**(x + k)***? which implies the assertion. O

Finally, we state an estimate of Baker [2] on linear forms in logarithms and its
p-adic analogue, due to Yu [13]. Let ay,.... ., be non-zero rational numbers of heights*
not exceeding A ,...,4,, respectively. We assume that A;>3 for 1<j<n. We put

Q=[] logd;, @ =Q/log4,.
j=1
Then we have

Lemma 9. (Baker [2]). There exists an effectively computable number c,o depending
only on n such that the inequalities

0<|adt--abn—1]|<exp(—c 0 Qlog Q' log B)
have no solution in rational integers b,...,b, of absolute values not exceeding B(>2).

Lemma 10. (Yu [13]). Let p be a prime number. Suppose that b,,...,b,_, and b,= —1
are rational integers of absolute values not exceeding B(>2). There exists an effectively
computable number c,, depending only on n and p such that either ob!---oal"=1 or

ord, (o' -+ af"— 1)< ¢, Qlog @' log B.

*The height of a rational number u, /u, with ged(u,,u,)=1 is defined as max(ju, |, |u,]).

{{
i
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k3

Proof of Theorem 1. We denote by c,5, Cy3,...,€,9 effectively computable positive
numbers depending only on a and b. We may assume that k> c,, with c,, sufficiently
large. Let F(z), G(z) and U, with 0<i<k be given by (19), (20) and (17), respectively.
We apply Lemma 7 with y>2, 4/log2<y<6 and yy=12 to derive from (8) that

y>(k+1D2 (48)

By (27), we observe that U,>0. Therefore, it suffices to show that U,_; <0. We
assume that

U1 20 (49)
and we shall arrive at a contradiction. By (2),

aF(x)—bF(y)y' =bF(y)R(y) (50)
where R(y)=0 if I=0 and for />0,

R(y)=Gy+k)—y'=R,()+R;(y)

R,(W=(+K' =y, R()=A\(y+k\ '+ + 4.

with

Then, it is easy to derive from the estimates (21), (22) and (48) that

F()<3y5, R()<K2'Y, Ry(p)<2Py L
Therefore, we derive from (50) that

aF(x)~bF(y)y' =bF(y)R(y) <6bl(k +Dy**!~". (51)
We notice from (17) that

Upy—=xUp_ =by*"'"(x~y)>0
which, by (49), (29) and (50), implies that

by** " x—y) < Uy=bF()R(y)— A Uy — - — AU, (52)
Now, by (49), (21) and (48), we derive that

— AUy = = AU =AUy = = AU S skt 12
which, together with (51) and (52), implies that

X — y < Cye(KI+ 12 +k*y™Y). (53)

If 1=0, we see from (33) and (53) that y <k'*/* which contradicts Lemma 7. Thus,
we may assume that [>0. Now, we combine again (33) and (53) to derive that

ylogy<cys(k?+kI+k3(1y)™Y). (54)
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Now, we combine (54) and (48) to observe that < c,s(k*+kI+k*71) which
implies that

1< cyek. (53)
Now, we see from (54), (48) and (55) that

ylogy<ey kSt (56)
Then, we apply Theorem 6 to derive that

(log x)? = c 5k (57

Finally, we combine (1), (30), (57), (56) and (55) to conclude that k<x<c,. O
Proof of Theorem 2 (a). We write 30, C3,.--,C37 for effectively computable positive
numbers depending only on a and b. Suppose that the assertion (12) is not valid. For
a given k, we observe that there is at most one [ satisfying (2). Therefore, we may
assume that (1) and (2) are satisfied with k=k,, I=1, and k=k;, I=1, such that
ky<ky, ky>c3 and ky—k; > ¢3¢0 with ¢34 sufficiently large. Then, by (2) with k=k,,
I=1, and k=k,, I=1,, we observe that

(X 4+ 1) (X +ky—ky)=(Y + )oY +ky—ky +1,—-1) (58)
where
X=x+k;, Y=y+k +I. (59)

By (59) and (1), we see that X >Y which, together with (58), implies that [, <[,.
Further, by (30), (11), (23) and Theorem 6 (b), we derive that

k;loglogx < ¢y, (l;+1) (i=12) (60)
which, together with (23), implies that

k;<cs,(logx)loglogx  (i=1,2). (61)
Now, we see from (58), (59), (11), (61) and (23) that

(ky—ky)loglogx <cya(l,—1y)- (62)

By counting the power of 2 on both the sides of (24) with a=b=1, x=X, y=Y,
k=k,—k, and I=1,—I, obtained from (58), we have

[,~1,<€2 max ord,(X+i)+1. (63)

1Kisk~ky

We show that

either ll <034 lOg k2 or lz'—ll <C34 log kz. (64)
If
lma)i ord, (x+j)=ord, (x +j,)<2logk,, (65)
<jsk

then we count the power of 2 on both the sides in (24) with k=k,, [=1, to obtain
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l; Sc35logk,. Therefore, we may suppose that (65) is not valid. Then, by (59), we write
X+i=x+jo+k,+i—j,

to observe that
ord, (X +i)=ord, (k, +i—j,)<2logk, (66)

for 1<i<k,—k,. Then, we see from (63) and ‘(66) that I, —1, <5logk,. This proves
(64). Now, we combine (60), (62), (64) and (61) to derive that either k,<cs4 or
k,—k; <c36 which is not possible if ¢35> ;6.

(b) Suppose that (1) and (2) with k=k,, I=1, and k=k,, [=1, are satisfied. Then, we
observe that (64) is valid. Now, we apply Theorem 6(b) to derive that either
ly<c3qloglog x or I, —1; <c;3,loglog x where c; is an effectively computable number
depending only on ¢, a and b. Finally, we observe that for a given [ there is at most
one k satisfying (2) to complete the proof of Theorem 2(b). O

4,

Proof of Theorem 3(a). We denote by d,,...,ds effectively computable positive
numbers depending only on &, a, b and P(x). We may assume that x>d, with
d; sufficiently large, otherwise the assertion follows from (1). By (24), (25) and
(26), we see that

log k
1<d, max ord, (x+i)<d,| max ordz(—xi"1—1)+—o§——>.
1<i<k 1<i<k log2

Further, we write x as IT{%] p9»/) where p,..., P, are the distinct prime factors
of x. Now, we apply Lemma 10 to ord, (—xi~*—1) with p=2, n=w(x)+ 2 < P(x)+2,
ay=—1, by=1; ;. =pj, b4y =0rd,(x) with 1 <j<o(x) and «,=i, b,=—1, to
obtain

1< d, (loglogx)logk
which, together with (46) and (13), implies that

(log k) (loglog k)* < d,(log x)(log log x).
Therefore, since w(x)< P(x), we have

x> k@™, 67
Consequently, there exists a prime p dividing x such that

porértd > k. . (68)
Now, we count the power of p on both the sides of (24) to derive that

[/p]— 1 < ord, (a) (69)
which implies that I<d;. O
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(b) We apply Lemma 8(a) with §=1—¢ to conclude that k<dg! where ds and the
subsequent letter d, are effectively computable numbers depending only on ¢, a, b
and P(x). Now, we apply Theorem 3(a) to conclude that max (k,)<d,. O

(c) We write dg,...,d, 3 for effectively computable numbers depending only on a and
b. There is no loss of generality in assuming that x>dg with dg sufficiently large.
Suppose that (2) with P(x)< I+ kand y < x/2is satisfied. Fora prime p with k<p<k+!
and p|x, we derive from (2) that pla. Therefore

P(x)< max (k, P(a))-
Consequently, we observe from prime number theory that

a(x) <dok/logk. (70)
First, we show that

1< dyok " (1)

Let x <k®®, Then, we see from (23) and (70) that 1<d, k. Thus, we may assume (67)
which implies (68), (69) and hence, [< d,,k. This proves (71). Finally, we combine (30),
(71) and Theorem 6(b) with ¢=1/2 to conclude that y>x*.

(d) Let dys,...,d,q be effectively computable positive numbers depending only on g,
b and P(x—y). We may assume that x>d,, with d, sufficiently large. Suppose
that (2) with y<x/2 is satisfied. Then, the inequality (16) is valid. Further, we may
suppose that

1> max (P(x—y),2a), (72)

otherwise, we may derive from (30) and (16) that y=xis,
Let F(z) be given by (19). We re-write (2) as

0 # aF(x)—aF(y)=F(y) by +k+ 1)---(y+k+])—a). (73)
For a prime p dividing x—y, we see from (73) and (72) that

ord, {(x—y)<ord, (F()) +ord, (a). (74)
Further, we observe that

ord,, (F(y))< max ord,(y+ i)+[5] + [52] + o (75)

1Sisk p p

Now, we derive from y<x/2, (74) and (75) that

log (%) <log(x—y)= me_y) ord, (x—y)log p<d; ¢ (log (y+k)+k)

which, by (16) and (23), implies that either y>x“'” or I<d,;k. Finally, as above, we
apply (30) and (16) to assume that the latter inequality is not valid.

() We may assume (72). Therefore, the inequality (74) is valid. Consequently, there
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is an effectively computable number d,4 depending only on g, b and y such that

log(%) <log(x—y) <loga+n())log(y+k)+2k ¥, lo% .
psli

which, together with (23) and Theorem 6(c), completes the proof. O

Proof of Theorem 5. Wedenote byd, ,,...,d,q effectively computable positive numbers
depending only on a, b, P(x) and P(y). We may assume that x>d, 4 with d, 4 sufficiently
large, otherwise the theorem follows from (1). We apply Lemma 9 to conclude that

x—y2=x(logx)™ (76)
On the other hand, we derive from (46) and (23) that

x—y <dyx(log x)*/k. ) (77
We combine (76) and {77) to derive that

k < (log x)*22. (78)

Now, we show that

y < (log x)™. (79)
For proving (79), we refer to (23) and (78) to assume that

y>(k+ D (80)
Then, by (27), (2), (15) and (80), we observe that

0< U, dyy((k+ D21+ k2x41) (81)
where U, is given by (17). On the other hand, we apply again Lemma 9 to obtain

U, = max (x*, y**)((k + [ log x) %2
which, together with (78) and (23), implies that

U, = max (x¥, y* 1) (log x) %2, ' (82)

Finally, we combine (81), (82), (78) and (80) to obtain (79). Therefore, we conclude
from Theorem 3(b) with ¢=1/2 to obtain that max (k,l)<d,, which, together with
(30) and (79), implies that x=max(x, y,k,[)<d,s. O

Proof of Corollary 1. We denote by d,, d4, and d,, effectively computable positive
numbers depending only on B. We may assume that N >d,, with d,, sufficiently
large. In (2), we put a=1, x=X, k=M, b=B!, y=B and [=N—-M —B. By (6), we
notice that X > N so that (1) is satisfied. Therefore, we derive from Theorem 6(c) that

M < dj,loglog X. (83)
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Further, we see from (5) that
N >d;, (log X)/loglog X.

Now, we apply Theorem 3(e), (83) and (84) to conclude that
P=:PX-B>N-M—-B>M+B.

Further, we see from (5) and (85) that

P (_@_(B+1)-~-(B+M))
M! M! '

Finally, we derive from (86) and (35) that P> N.

5.

(84)

(85)

This section is devoted to preliminaries for the proof of Theorem 4. Let F(z) be given

by (19). Then

k io—1 ij-2—1

A}= Z Z A Z iOil'”ij-l fOIléjSk.
i=jp=10i1=1 ij-1=1

We write the right hand side of (14)

k
+1)--y+2k) =[] @+j@k—j+1)

=1

where
u=yy+2%k+1).
Let
k
)=[] (+iQ@k—j+1)=2*+BZ* "'+ +B,
=1
where
k - ij-2-1

B_]= ‘Z . 21 Z lloll 2k"lo+1) (2k‘i1_1+1)
I=h=1ln= lj 1=
for 1gj<k.

Further, we put
k
A=Ay=Y i forg=1,2,....
i=1

Then, we have 4,=A,, 4,=(A;—A,)/2,
A3 =(3A5'—' 10A4+9A3 “‘2A2)/24,
Ay=(A;—TA¢+17A5—17A, + 6A5)/48,

B, =(2k+1)A,—A,, 3B, =As—(Sk+4)A, +(6k? + 12k + 5)A,
—(6k*+Tk+2)A,
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and

1 4 22 7 91, 149
3By = —- sk+Z A k2 k2
3 6A,3+<3k+15)A7 <2k +10k+ 0 )A6

+ <3k3 +§2§k2 +%k +4—62>A5—<10k3+52—9k2+%k+239>A4
+(9k3 +¥k2 +%k+;—é>A3— (Zk3 + 3k2 +%k+é)A2.
Further, we derive from [9, p.6] that
Ay =k(k+1)/2, Ay=k(k+1)2k+1)6, Ay=k3k+1)2/4,
Aq=kll+1)(6k>+9K* + k—1)/30, Ag=Kk*(k+1)(2k° +4k> + k— 112,
Ag = k(k+ 1)(6k® + 15k* + 6k3 — 6k — k+ 1)/42,

Aq =k*(k+1)(3k® +9k“+5k3—5k2—2k+2)/24
and

Ag = k(k+1)(10k7 + 35k +25k° — 25k* — 17k3 + 17k? +3k—3)/90.

Consequently, we obtain the following expressions for 4, 4,, 4;, 4, and B, B,, B,.

Lemma 11. Ay =k(k+1)/2, Ay=k(k+1)(k—1)(3k+2)/24,
Ay = k¥k+ 1)*(k—1)(k—2)/48,

Ay = k(k+ 1)(k—1)(k—2)(k—3)(15k* + 15k — 10k — 8)/5760 91)
and
By =kik+1)(2k+1)/3, B,=k(k+ 1)(20k* + 16k> — 11k2 — 19k —6)/90, (92)
B3 = k(k+1)(280k” — 28k® — 830k> — 745k*
+ 136k> + 557k + 486k + 144)/5670.
Let
2k? k
[
We write
Flz+f)=2"+ 4,())2* 1+ + ALS) %3)
where

A,-(f)=('i°)fi+('::11) f“‘A1+-~-+(k_i+1>fAi_1+Ai (94)

for 1<igk.

Then, we apply Lemma 11 to obtain the following result.

Lemma 12, Let

0 if k=0(mod6)
—1/6 if k=1,5(mod 6)
9=93 _23 if k=2 4(mod6) ®3)

172 if k=3(mod6)




124 N Saradha and T N Shorey

Then
Ay(f)—B = +0k,

e e R R
+(—616—g(1+5))k
A =B (2835 9) 736 6+( 110650 12“%52)"5
(720'52 -3 k4+(£;g %° %52+%53>"3
+<12 §é+ & - ;63>k2

8 1. 1, 1,
+( 315+65+25+ 6)k

and

Proof. We write g=4k*+4k and f—g=0. Then, we check that (95) is satisfied.
k
Further, we see from (94) that A,(f)=kg+ A, + 6k, Az(f)=(2)g2 +k-1)A,9+

A, + 5(’;)(29+5)+5(k— 1)4, and A3(f)=(’;>g3 +<k; 1)A1g2+(k-l-2)Azg+

k—1 k-2
A3+6<§)(3gz+359+62)+5( 5 >A1(29+5)+5( 1 >A2. Now, we apply
Lemma 11 to complete the proof of Lemma 12. d0

Finally, we obtain estimates for all A(f) and B;.

Lemma 13. For 1<i<k, we have

A(NH< 1+¢k)< )f‘ (%6)

where
3 1\2 3 1\2\"!

a3+ (15043 ) o
Furthermore,

Bjskf(k+l)”/j! for 1<j<k (98)
and

B,<(2k)*A,, B,>(k+1)*4,. 99)

Proof. By (94), we see that

B ol Al A=) A i
A-(fK(i)f( Tk fzk(k T +f"k(k—1)---(k—i+l))'
(100)
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Further, by (21) and f> (2k?)/3, we observe that

1 /3V 1\
Afig= = o
o755 (1+3)
which, together with (100),-implies (96) where ¢, is given by (97). By (90), we see that
By>(k+1)*4, and

B;<(2kY4;, for 1<j<k,

which, by (21), implies (98). 0

6.

In this section, we shall prove Theorem 4. The computations for the proof of
Theorem 4 are carried out on a pocket calculator. Throughout this section, we assume
that (14) is satisfied. For a prime p>0, we write

n=by+b,p+---+b,p*
where by,...,b, are integers satisfying b, #0 and 0<b; < p for 0<i< . Then, we start
with the following well-known result.
Lemma 14.

n—(bo+-+b,)

= . (101)

ord,(n!) =

For the proof of Lemma 14, we observe that

i<t

ord )= 5 [}tl‘]:,ﬁl (bi+bis1pt o+ b

which implies (101). We denote by 7 the number of positive integers i such that

G

Then, we apply Lemma 14 to obtain the following lower bound for x and this is
fundamental for our argument.

Lemma 15.
xz2kt—k. (102)

Since 120, the inequality (102) implies that

x=2k—k. (103)
Proof. We re-write (14) as .
(x+1)-(x+k) _(+1)--(y+2k)(2k)! (104

k! a (2k)! R
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By (101),
]
ord, ((—2:'—)) =k (105)

Further, we observe that

(y+1)-(y+2k ® y+2k Yl Elf
d(’mr—‘ 7|77

and every summand is either O or 1. Therefore

(y+1)--(+2k)\ _
ord2 (—-—-—('ZkT—‘—) =1 (106)

uM

On the other hand, we see that

ord, ((x_+ﬂk_'(1+_k))< max ord, (x+i)<(og(x+h)log2.  (107)

1<isk

Finally, we combine (104), (105), (106) and (107) to obtain (102).
As an application of Lemma 15, we prove

Lemma 16. If (14) holds, then
k k
(x+1)~--(x+k)><x+5) . {108)
Proof. Ttis easy to check (108) for k< 4. Thus, we may assume that k > 5. Suppose that

k
(x+1)---(x+k)<(x+§). (109)

2 plk—
By Lemma 11, we observe that A, -<T>(§>=§, Az—(;‘)(g) =W

K\ /K K(k—1)(k—2)2k+1)
ad 4s=\3)\3) = 48
and k> 5 that x>k>2 Now, we derive from (109) that

AV A 1o )
- < — B PS 8,k—4
S <4)(2) <1+ S ) SKExk4/1728

which implies that 172x3 <k”. Now, since x > k%, we derive that k> 172. Then, we
apply (103) to conclude that x > k3 and this is a contradiction.

For small values of y and k, the next two lemmas are useful. The first may be
confirmed by direct checking.

are positive. Further, we see from (103)

Lemma 17.

P((x+1)-(x+5)>31 for 54<x<600

i
E f
H




|
!
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and
P((x+1)--(x+6)) =37 for 120 < x < 600.

Lemma 18. Equation (14) implies that

17 if ke{5,6,7,8}
y=1328 if k=9
32 if k=10

Proof. By the arithmetic-geometric mean, we observe that

X+ 1)+ +(x+k) k+1

x4 1) (x + k))H* =
((x+ 1) (x+ k)< p x+—
which, together with (108), implies that
1/k k
{4+ 1) (x + k)] =x+ 5| (110)
By applying again the arithmetic-geometric mean, we see from (87) and (92) that
k+1)(Q2k+1
[+ 1)---(y+2k))”"]<u+|:(———)g—i——)]. (e
Now, we combine (14), (110) and (111) to derive that
0<x—u<[w@]—[g]. (112)

Let ke{5,6,7,8} and y < 16. Then, we see from (88) and (112) that x < 600. Now,
we apply Lemma 17 to derive that x < 54 if ke{5,6,7} and x <120 if k=8 which,
together with (103), imply that k=35 and x>27. Therefore, we see from (88) and (112)
that y(y+ 11)< 54 which implies that y < 3. Furthermore, we observe [(y + 10)/4] —
[y/4]—[10/4]=1if y=2,3 to derive from Lemma 15 with 7> that y< 1. Then, since
the left hand side of (14) is not divisible by 31, we see that x>31. Consequently, we
observe that the left hand side of (14) is greater than the right hand side of (14).

Let k=10 and y<31. Then, we observe from (88) and (112) that x< 1684 which,
by Lemma 15, implies that t=0. On the other hand, we observe that [(y+20)/32] —
[y/32]1-[20/32]=1 if y > 12. Consequently, we conclude that y <11 which implies
that x <424 contradicting (103).

Let k=9 and y<27. Then, by (88), (112) and (103), we observe that x <1301,
x > 503 and y > 14. Then, we observe [(y + 18)/32] — [y/32] —[18/32] =1 to apply
Lemma 15 with t>1 to derive that x>1015 which implies that y>22. If
y€e{23,26,27}, we see T > 2 to obtain from (102) that x > 2039 which is not possible.
If y =24, then x < 1091 and, by looking at the prime factors of 1086, 1091, 1093, we
derive from (14) that x < 1076 which is not possible, since the left hand side of (14)
is less than the right hand side of (14). If y = 25, then x < 1159 and we argue, as above
by looking at the prime factors of 1151, 1159, 1162, to derive x < 1149 for arriving
at a contradiction. O
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Now, we are ready to prove an inequality for (87) analogous to (108).

Lemma 19. Let u>0 if k=3 and

L if k=0(mod 3)
12 if k=1,2(mod3)

Ther DNRk+ )-8\
Iju-{-;2k —-j+1)> ( E’(—il(—gu:—>

Proof. The Lemma can be verified for k < 4. By direct computations, we may assume
that u< 21 if k=35, u< 145 if k=6 and u< 125 if k="7. Now, we refer to (88) and
Lemma 18 to exclude these possibilities. Thus, we may suppose that k>8. We set

h(9) = h(8, k)= ((k+ 1)(2k + 1) — 6)/3.
We observe that

h(6) < k(2k + 3)/3. (113)
We suppose that

k

ﬂ (u+jk—j+1))<(u+h@ M- (114)

j=1
By (113), we see that

(u+ h(O)) < u* + kh(f)u* !

K\ [ K2k +3)\?
5) (5

K\ [ k(2k+3) ¥
+(k)( 3 ) (115)

We put
—k5—2k4 k3+ k2+ L k,
45 9 6 15°
D;= w(l&ﬁ + 32k* — 870k® — 1120k? — 423k — 72)
5670
and

L (K\[M2E+IY K\ [ k(2k +3)\¥
e () (52 e () (557

Further, we observe from (112), (103) and k>8 that u > k*2k +3)/9. T herefore

LR\ (k2R +I))
RS2<5>< 3 )u s, (116)

Thus, we derive from (114), (89), (115), (116) and Lemma 11 that

e 5
\ _
+2<’;)(——-k(2k3+ 3)> uts, (117)

T — T
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We derive from (117) that u <550 if k=8, u <1200 if k =9 and u < 1500 whenever
k = 10. Now, we apply (88) and Lemma 18 to exclude these cases. Furthermore, the
inequality (117) implies that u < 1950 if k=11, u < 3980 if k = 12 and these cases are
excluded by (112) and (103).

Thus, we may assume that k > 13. Then, we see from (112) and (103) that

7
>—k*
U3 (118)

Further, we observe that

2 171
__ks 8
755 Da<ggpks

k\ [ k(2k + 3) 4<~1_ 29 4k12< 13 2
4 3 =24\ 39 ~1000

5 5
o(F)(HEIY LBV s 1y,
5 3 60\ 39 250

Therefore, we derive from (117) and 8 > 1 that

D, <

and

< lpe 313 k7+ 39‘k“+ 3 k!
15 5670 u 1000 u®> 250 u3
which, together with (118), implies that

7 4 2 4 3 2
k' — K"+ K" +K°.
25k u<15k k k

Consequently, we conclude that k < 7 which is a contradiction. O
As an immediate consequence of Lemma 19 and (110), we obtain the following

improvement of (112).

COROLLARY 3.

Suppose that (14) is satisfied. Then, either x=7,y=0,k=13 or

x—u=f. (119)
Proof. We may assume that u > 0 if k = 3. Then, we see from Lemma 19 that

[( Ik] (u+j2k—j+ 1)))1”(] Zu+[h@)]=u+ [k(2k3+ 3)}.
i=1

On the other hand, we see from the arithmetic-geometric mean and (92) that the left
hand side of (120) is less than u + [(k + 1)(2k + 1)/3]. Consequently, we conclude that
(120) holds with equality sign. Hence, the assertion (119) follows from (14), (87)
and (110).

(120)

Proof of Theorem 4. We may assume that u > 0 if k = 3. Then, we conclude from (14),
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(87) and (119) that
k
+f+1)-@+f+ k)=j]_‘[1 (u+jk—j+1) (121)

We may verify, by direct computation, that (121) is not possible whenever k <7. Thus,
we may suppose that k > 8. Further, by (121), (93) and (89), we see that

(Ay(f) = B+ (Ag(f) = B 7% -+ (Alf) = BY =0.

Thus
(Ay(f) = B+ (Ax(f) — B "2+ (4a(f) - Byut?
<(By— Ay~ + Ry (122)
and
(B, — A (/)™ 4+ (B — A /)2 +(By — Ay
<(Aff)— B *+ Ry (123)
where
Ry=Bsu* S +-+ By, Ry=As(fW >+ +AL). (124)

By (119) and (103), we see that

2 '
uz okl + 1?ifk>9 and u%fk. (125)

Thus, we derive from (124), (96), (98) and (125) that
R <-2—k5(k+1)“’u"”5 ifk=29 and R <£f5 k uk=s (126)
33145 g #5470 \5 '

Next, we turn to the coefficient B, — A4(f) in (122) and (123). By (91), we calculate
A, =22449if k =8 and A,=157773 if k=10. Then, we derive from (94) and (99) that

30730 ifk=8
— 4 <
(4= B0 \{487570 if k=10 (127
. . k\ ., (k-1 .
Similatly, by observing B, — A,(f) < B, — 4 f4- 3 A, f3, we obtain
45990 ifk=9
— S g
(B~ AL/10 \{606420 if k=11 (128)
and
11450 if k=12
B,—A4 2g
(By— AN {mw 13 (129)

since, by (119) and (103), u > 3982 if k = 12 and u 3> 8060 if k = 13. Next, we notice that
f<iR (130)
and
uzk* ifk>14 (131)

First, we consider the case that k = 2,4(mod 6). By Lemma 12 with = —2/3, we

T

R

Eh
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see that A,(f)— B, = —k/2 and

2 .1, 4 . 341
AS(f) = By < g5k =3k As(f) =By <k =k,

since k > 8. Therefore, we derive from (123) that

2 .1 4 . 341
Ll,k—1 _ks__k4 k=2 __k8_ 7 k—3
zhu <(45 3 )” +(135 2835 )”

+(Ay(f) = BJuF~* + Ry. (132)

Then, we see from (132), (127) and (126) that u < 530 if k=8 and u < 1300 if k = 10.
Now, we apply (88) and Lemma 18 to assume that k > 14. Further, we see from (96),
(97), (130) and (126) that

Af) S+ ¢4 f*k*/24 < k'2/25 (133)
and
R, < 17f3k3u*~3/480 < 9k*5u*~5/1000. (134)

Thus, we combine (132), (131), (133) and (134) to derive that

2 4 8 k7 2kt 9 k* 4
Sk <Su<—ktt——t+ =t <k K2
SCSUSG Y sy T o S e

which implies that k < 4.

We argue, as above, to derive from (122) that

2kt < (B, — AJ(f) 4+ R, (k= 3(mod 6)), (135)
<(By— A/ *+ R, (k=0(mod6)) (136)

and

2 7
(ZE kS —ﬁk3>u""2< (By— Au(/~*+ Ry (k=1,5mod6)). (137)

We see from (136), (137), (129) and (126) that u < 3982 if k = 12 and u < 8060 if k = 13.
On the other hand, we apply (119) and (103) to exclude these possibilities. Further, we
see from (135), (137), (128) and (126) that u < 1300ifk =9 and u <3950 if k = 11. In view
of (88) and Lemma 18, the first case is not possible. Let k=11. Then 1 =0 and
35<y<52. Further, we observe [(y+ 22)/64] — [y/64] —[22/64]=1 if y=42 to
derive from Lemma 15 that y < 41. Further, corresponding to every y with 35 y <41,
there is precisely one value of x given by (119) and (88). Finally, we count the power
of 2 on both the sides of (14) in each of these seven cases to arrive at a contradiction.

Thus, we may assume that k% 2,4(mod 6) and k> 15. Then, we apply (131) to
derive from (135), (136) and (137) that

2 7
(ngsﬂ’_ika)uk—zS(B4_A4(f))u"‘4+R3 (k#2,4(mod6)).  (138)
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Further, by (98) and (126), we see that
B4~A4(f)<B4<3k‘2/40, R, <dk'*u*73/145. (139)
Now, we combine (138), (139) and (131) to obtain

2, 3k 4K 7 1S
2 s B3k AR ek
gt <n T

g SR . .

S

which implies that k<12. 0
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