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Abstract. For given positive integers m > 2,d, and d,, wé consider the equation of the title
in positive integers x, y and k > 2. We show that the equation implies that k is bounded.

For afixed k, we give conditions under which the equation implies that max(x, y) is bounded.
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1. Introduction

For positive integers m > 2, d, and d,, we consider the equation
x(x+d)...x+k—1)dy)=y(y+d;)...(y + (mk— 1)d;) (1)

in integers x >0, y >0 and k > 2. Equation (1) with d, = d, was considered in [4]
and [5]. It was shown in [5, Corollary 2] that equation (1) with d, =d, =d and
m>2 implies that max(x, y,k) is bounded by an effectively computable number

( depending only on m and d. In this paper, we extend this result as follows:

Theorem 1. There exists an effectively computable number C depending only on d, and
d, such that equation (1) with m =2 implies that either

max(x, y,k) < C

or
k=2,dy=2d3, x=y*+3d,y.

On the other hand, we observe that equation (1) with m =2 is satisfied whenever
the latter possibility holds.

Theorem 2. Let m > 2. Assume that equation (1) is satisfied. Then

(@) kisbounded by an effectively computable number C, depending onlyonm,d, and d,.
(b) Let k< C,. There exists an effectively computable number C, depending only on
m, d, and d, such that either

max(x,y)) < C, _ | ' (2)
or

d,/d} is a product of m distinct positive integers composed of primes not exceeding m.
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(c) Let k< C,. Then, either (2) holds or

m = o(k) (3)
where
14 for2 <k<7
a(k) ={ 50 fork =28 4)

exp{klogk —(1-25475)k — logk + 1-56577} fork > 9.

We observe from (3) and (4) that m > 14 for k > 2 and m > 2568 for k = 9, m > 17010
for k > 10,m = 125804 for k > 11. Thus, we observe from Theorem 2(a) and Theorem 2(c)
that equation (1) with 3 < m < 13 implies that max(x, y, k) is bounded by an effectively
computable number depending only on d, and d,. This is also the case whenever
equation (1) with m < 2568 and k > 9 is valid. More generally, equation (1) with m > 2
and :

k > max(10,(21 log m)/20)

implies that max(x, y, k) is bounded by an effectively computable number depending
only on m, d; and d,. Finally, we remark that Theorem 2(b) is applied in the proof
of Theorem 2(c). ‘

2. Lemmas

In this section, we prove lemmas for the proofs of the theorems. The lemmas are
more general than required and we hope that they may be of independent interest.
- We start with the following extension of [5, Lemma 1]. We write N for a positive
number given by / ‘

N? =(m— 1)k with m> 2. (5)

Lemma 1. Let £>0 and m>2. There exists an effectively computable number C,
depending only on ¢ such that equation (1) with k > C, and

x>d, | ©)
implies that

1 |
logxz(i—a)N. (7
Proof. We may assume that k exceeds a sufficiently large effectively computable
number depending only on ¢. Then, by equation (1) and (6), we have
(mk — 1)1d7* =1 < (KN XK
which implies that

x’ze-—lkm-—ld(zmk—l)/k_ (8)
Thus

x > (d,d,)"?, ‘ ©)

i
el
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otherwise we observe from (6) that

(d) 2 < x < (dyd)?
i.e. x < d, which contradicts (8). If all primes not exceeding N divide d,d,, we observe
from (9) and Prime Number Theory that

1

logx>§log(d1d2)>(1-a)N/2. ‘ ‘ (10)
On the other hand, if there exists a prime p < N such that p [d,d,, then we argue *
p-adically as in [5, Lemma 1] to obtain

_lf(m_l)<108(x+(k*1)d1)+2. (11)
p logp

Now, we combine (11) and (5) for deriving that
log(x +(k—1)d,)=(1 —¢e)N/2

which, together with (5) and (6), implies (7). O
As an immediate consequence of Lemma 1, we obtain the followmg extension of

[S, Corollary 3].

COROLLARY 1

Let £>0 and m = 2. If (1) and (6) hold, then

k—1 1 |
log(y+<m : )dz)z(-z——s)N/m for k> Ca, | (12)
Proof. We apply arithmetic-geometric mean to .the right hand side of (1) to derive
(12) from (7) as in the proof of [5, Corollary 3]. O

Let"B; = B;(m, k) be given by [4, (3)-(5)]. We prove

Lemma 2. Let ¢ >0 and m = 2. The equation (1) with

; dl km+ 1 < x1/2 . (13)
an .
dbz <y(1 ~g)/(m+1) ' ) (14)

implies that either

x1=)";+B1d2)";_1+"'+Bmd'2""(k—-§‘l)d1 (15)
where ‘

x;=x—dy, y, =')’—.d2 (16)
or | »

max(x, y,k) < C, : ' ' ’ : ' (17)

for some effectively computable number C, depending only on ¢ and m.
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Proof. Let 0 <e <1 and m > 2. We assume (1) with (13) and (14). Then, we observe
that d; <x, d, <y and x,, y, are positive integers. By (1) and (16), we have

(xy +dy)...(xy +kd))=(y, +4d,)...(y, + mkd,). (18)

We denote by c;,c;,c; and ¢, effectively computable positive numbers depending
only on ¢ and m. We may assume that y, > ¢, with c, sufficiently large, otherwise
we derive from (12), (5), (14) and (1) that max(x, y, k) < c,. Next, we observe from
Corollary 1 that

log(y, + (mk — 1)d;) > c5 k112, (19)
Also, we observe from Lemma 1 that
logx, > c k> . (20)

Now, we follow the proof of [5,§3]. We define A j(m; k), B; = B;(m,k) and H ;(m, k)
as in [4,(2)~(5)]. Further, we define ‘ S

Fi(x,K)=(x; +dy)...(x, +kd,),

Fo,(yasmk)=(y, +d,)...(y, + mkd,)
and
Adz=Adz(y2,m,k)=y’2"+Bld2y';"l+---+B,,,d’;. ‘ (21)

When d, = d, = d, these definitions coincide with the corresponding definitions in [5].
By applying arithmetic-geometric mean to the left hand side of (1), we obtain

k+1 O\
Fdl(xl,k)<(x1+ '; dl).

Now, we use (18),(19), (20) and we argue as in the proof of [4, Lemma 5] to obtain
Fa(v2.m k) < (Ag, + (k7" 1) 1)
Fdz(y2>m! k) > (Adz - (2k2m_1).-1)k

and

k
—; 1d1 - (4k2m—1)—1)k.

Fdl(xl,k)><x1 +

Finally, we utilise these estimates and [4, Lemma 3] to conclude that equation (1)
implies that

x1=A42 +fd,, f= —(k+ 1)/2, ’ (22)
which, by (21), coincides with (15). O

Lemma 3. Let ¢ >0 and m > 2. There exist effectively computable numbers Cs, Cg and
C, depending only on ¢ and m such that equation (1) with max(x, y,k) > Cs, (13) and
(14) implies that m > 14, k < Ce¢ and

pd? =vd, , (23)
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for some positive integers u and v satisfying
max(u,v) < C. (24)

Proof. We may assume that Cs> C, so that we derive from Lemma 2 that (15) is
valid. Further, we re-write (15) as (22) and we substitute (22) in the left hand side of
equation (18) to obtain

Fdl(xl,k)=/\:2+az(f;k)diA:;2—2+ '+ak(‘f,k)dﬁ . (25)

where a;(f, k) with 1 <i< k are given by [4, (44) and (45)]. Now, we substitute (21)
in (25) for writing

Fd,(xl,k):: ZO Tj,dl.dz(m’ k)djzy';k_]

where
H;(m, k) for 0 <j < 2m,
Hym k) + ay(f, K d2d; " H _, (m k—2)+ -
h 1—hm _
T} 4,0, k)= 1 +a,(f, d; d, Hj—hm(mak h) for

hm<j<(h+1)mand2<h<k,
B +a,(f, K)d2dy B % 4 - +
a(f, k)d .d; ™ forj = mk

Proceeding as in the proof of [4, (57) and (58)], we derive that

H(m, k) = Aj(m, k) for 0<j<2m (26)
and
k(k— 1)(k + l)d2

H ,k)—A ,k))d2m = .
(H 3,0 = A (m, k)3 SE—

(27)

From the explicit calculations using the method described by Glesser in [3, Appendix],
we derive that-

H,(m, k) — A;(m, k) >0 for k>2, m<13 (28)

where j =m + 1 if m is odd and ~§ =m+ 2 if mis even. By (26) and (28), we derive that
mz=14. :

Since m > 2, we apply a result of Balasubramanian [4, Appendix] to obtain from (26)
that k is bounded by an effectively computable number depending only on ¢ and m.
Finally, we take square roots on both the sides of (27) to obtain (23) satisfying (24). [

o

If m> 2, we show that the hypothesis (13) is not required whenever equation (1)

with d, = d, is satisfied. If (13) is not valid, we observe from [5,(7)] that

%110 o fm+1

which, by [5, Lemma 1], implies that max(x,y,k) is bounded by an effectively
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computable absolute constant. Further, we derive from (1) and (23) that _
HX X+ 1)+ k= D))= vy () + 1)... () + (mk = 1)) (29)

where x’ = x/d,, and y' = y/d,. Next, in view of (24) and k < Ce, we apply the theorem
of Faltings (under suitable assumptions) to equation (29) for concluding that there
are only finitely many possibilities for x, y satisfying (1). For deriving this assertion
from equation (1) with (23), (24) and k < Ce, we shall not utilise the theorem of
Faltings as it is non-effective. We shall follow an elementary approach which is valid
under certain restrictions.

Let g =ged(d,,d7) and f(X) be a positive real valued function of a positive real
variable X satisfying

lim f(X)= co.

X=wc

We derive from Lemma 3 the following result.

Lemma 4. Let m> 2 and 6> 0. The equation (1) with (13), (14) and

d ar \ -
gs()max(/ 12 ) (30)
d,) fd,) |
implies that ’
max(d,,d,, k) < C, (31)

where Cyg is an effectively computable number depending only on &,m, f and 6.

Proof. We write C,,C 10 and C, | for effectively computable numbers depending only
on¢,m,f and 6. By Lemma 3, we conclude that

k<Cy : | (32)
and (23) with (24) is valid. We divide both the sides of (23) by g to derive from (24) that
max( ﬁ,fl) <C,. | (33
9 g ‘ : ’

By (33) and (30), we observe that
 min(f(d,).f(d;) <6C;,
Now, by the definition of f, we obtain

| min(d,,d,) < C,,

which, together with (27) and (32), implies that max(d,,d,)<C 1 O

‘The assumption (30) is satisfied whenever one of the following conditions holds.
(The choice of 6 and f is given in the brackets)

(1) d, fixed 0= f(d,))
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(ii) d,fixed (0=1(d,)) ‘
(i) ged(d,,d,) =1 (0=1,f(X)=X)
(iv) d, =d, 0=1f(X)=X)

(v) dy<djflog(dy +1) (0=1,£(X)=log(X + 1))
(vi) d7<d,/log(d, + 1) (0 =1,1(X)=log(X + 1))

Therefore, equation (1) with m > 2, (13) and (14) implies (31) if at least one of the
assumption (i)—(vi) holds. As remarked earlier, the assumption (13) is not required
whenever m > 2 and (iv) is valid. In the next section, we prove Theorem 2(a) by
showing that the assumptions (13) and (14) are not needed whenever d, and d, are
fixed. :

3. Proof of Theorem 2(a)

We may suppose that y exceeds a sufficiently large effectively computable number
depending only on m, d, and d,, otherwise the assertion of Theorem 2(a) follows
immediately from (12) and (5). Then (14) is satisfied and (13) is a consequence of (7).
Now, as remarked at the end of the previous section, we conclude the assertion of
Theorem 2(a). O

4. Proofs of Theorem 2(b) and Theorem 2(c)
In this section, we shall always assume that equation (1) with
m>2, k<C, (34)

is satisfied. Then, by equation (1), we may assume that y, >y’ where y’ is a sufficiently
large effectively computable number depending only on k,m,d,,d, and y, is given
by (16), otherwise Theorem 2(b) and Theorem 2(c) follow immediately from (34).
. Then x,, given by (16), is positive and (18) is valid. Also, we observe that (13) and
(14) are satisfied. We put

D=d,/d7, (35)
¢(Y)= Y"+B,d, Y’""1+-~+B,,,d'2"—(%1)d1, (36)
LX,Y)=(X +d,)...(X +kd,)— (Y +d,)...(Y + mkd,) (37)

and ' '
I(Y)= L(¢(Y),Y). . . _ (38)

Now, we apply Lemma 2 and (18) to suppose that I(y,) = 0. Then, since y' is sufficiently
large, we derive from (34) that

(Y)=0. : (39
By (36), (37), (38) and (39), we obtain pairwise distinct integers 4

<A, <mk, 1<i<k 1<j<m, (40)
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such that
HY)+idy =(Y+ 4 ,dy). . (Y+4,, dy))for I <igk 41)

tn =
We observe that (40) covers all the integers in the interval [1,mk]. There is no loss
of generality in assuming that each m-tuple {4 ,...,4, } is such that

by <e<i for1<igk (42)

Let {/',1.0_1,...,/1, } be the m-tuple containing 1. Then, we observe from (42) that

io.m)

)..0_1 = 1. Further, we derive from (41) that

1

(= io)dy =(Y 44y dy). (Y4 4y ydy) = (Y + 7 ). (Y + 4, ) for
1<i<kii,. (43)

By putting Y= —4, ,d, = —d, in (43), we get
(i~ io)dy = (A = 1)....(h,, — Dl for 1 <i<kyi#i. (44)

We observe from (44) that

ig=1. ' (45)
It follows from B, = m(mk + 1)/2, (36) and (41) that
m(mk+1)/2= ) 4  for 1<i<k. (46)
j=1

Further, we set

A=y = 1)y, — 1) for 2<i<k, 47

A=y, = 1.3y, — 1) : o (48)
and
k
Q=[[A. (49)
i=2

Now, we observe from (47), (48), (49), (40), (44) and (45) that
A, Q=(mk—1)! (50)
and ‘
Q=(k—1)!D*"1, (51)

Proof of Theorem 2(b). By (44) with i=2 (45) and (35), we conclude that D is a
product of m distinct positive integers. Therefore, it suffices to show that every prime
divisor of D is at most m. We set

k+1 |
¢1(Z)=Z'"+B12"“1+---+B,,,-<——_;;)D (52)

By (36) and (52),

pY)_ (Y | B
=) | R
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Further, by (41) and (53), it follows that
W(Z)+iD=(Z+4,,).. (Z+4,,) for 1<i<k, (54)

Since D is an integer, we observe from (54) that /(Z) is a polynomial of degree m
with integer coefficients.

Let p be a prime divisor of D. By (44) with i = 2 and (45), we observe that p < mk.
Then, we derive from (54) that

Y(—v)=0(modp) for 1 <v<p. (55)

This implies that p < m, since ¥(Z) = 0(mod p) has at most m incongruent solutions
mod p. d

For an integer v > 1, we write P(v) for the greatest prime factor of v and we put
P(1) = 1. The letter p denotes always a prime number. For the proof of Theorem 2(c),
we require the following results from Prime Number Theory. The first result is a
sharpening, due to Hanson [1], of a theorem of Sylvester.

Lemma 5. For positive integers k> 2 and n > k, either

P(n(n+1)...(n + k— 1)) > 3k/2
or
(n,k)e{(3,2), (8,2), (6,5)}-

The second result is due to Rosser and Schoenfeld [2, p 65-70.] on estimates for
some well-known functions in Prime Number Theory. Let

=Y 1
9(x) = g logp

and

E=—y- ) Y(ogp)p"
n=2.p
where y is Euler’s constant. Then

Lemma 6. For x > 2, we have

n(x) > x/(log x) for x =17, (56)
n(x) < 13x/(1010g x), 57
Y. (logp)/p > logx + E — 1/(2log ), (58)
Y (logp)/p <logx +E + 1/(log x) for x = 32, (59)

3(x) > x(1 — 1/(log x)) for x =41, - (60)

9(x) < x(1-+ 1/2log x)). ~ (61)
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By taking y’ sufficiently large, we derive from Lemma 3 that
m> 14, | | | (62)
Further, we apply Lemma 5 to sharpen (62) aé follows.
Lemma 7. We have
m> k. ' (63)
Proof. By (62), we may assume that
k>13. (64)

We denote by py <p, < - <y, the elements of {4, ,—1,...,4
greater than k. We observe that

1.m— 1} which are

0<s<m—1. ’ (65)
By writing uo =k and p_, , = mk, we divide

(k,mk) — {uy, ..., 4}
into (s + 1) disjoint intervals

()14 ) for 0<j<s.
Then, we find J with 0 <J < s satisfying

Byp—By—12(mk—k—s—1)/(s+1). (66)
By (66), (65), (62) and (64), we derive that |

Kyyq — Hy—12(13k/14)— 1> 2k/3. ' (67)

Now, we derive from (67) and Lemma 5 that the interval (u;, u ;+1) contains an integer
u divisible by a prime > k. Further, we observe from (49) that y divides Q. Therefore,
‘we conclude from (51) and Theorem 2(b) that

k<P(u)<PD)<m. | | 0
Lemma 8. For k > 8, we have

logm>k—logk —2. ‘ (68)
Proof. By (51), (63) and Theorem 2(b), we derive that

W) <n(m) G

where w(Q) denotes the number of dlstmct prime divisors of Q. On the other hand,
we observe from (50) and (48) that

w(QQ) > n(mk) — m. (70)

R ZYER
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Further, we combine (70) and (69) for deriving that
n(mk) — m < n(m). (71)

Now, we apply (56) and (57) in (71) for deriving that

13 13logk
1 >k—logk—{ —+ . 72)
9gm 8 (10 10]ogm> (72)
By (72) and (63), we have
logm >k —logk — 2:6. (73)

Then, since k > 8, we observe from (73) that m > 28. Now, we derive from (72) that
logm>k —logk — 2:15.

Repeating this process two more times, we obtain (68). O

Proof of Theorem 2(c). By (62) and (68), we may assume that k > 9. Then, we observe
from (68) that m > 115. The proof depends on comparing an upper and lower bound
for A,. By (48), we obtain

Ay <A, hy

m

which, by arithmetic — geometric mean and (46), implies that

A< (M)‘ <e("’" + 1)'""1. (4)
| 2m—1) 2 ~

By (50), (51), (63) and a consequence P(D) < m of Theorem 2(b), we conclude that

logA, > Y ord,((mk—1))logp.
' ’ m<p< mk

Therefore | _ ‘
logh, >(mk—1) ¥ 2P _9(mk— 1)+ 9(m). (75)

‘ m<p<mk P
Now, we apply (58), (59), (61) and (60) in (75) for deriving
logA, > (mk — 1)(log k — 2/(log m)) — mk +m + 1 — m/(logm). (76)

Next, we combine (76)'and (74) to obtain |

logm > klogk — k—logk — 2+
q logm

Then, we observe from (77) and m > 115 that

+log2+1. (17)

logm > klog k —(1-4216)k —log k + 1-48239.

Repeated applications of (77), as in the proof of Lefnma 8, yield
logm > klogk —(1-25475)k —log k + 1:56577. ' O
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.5. Proof of Theorem 1.

Let m= 2. Suppose that equation (1) is satisfied. As earlier, we may assume that y
exceeds a sufficiently large effectively computable number depending only on d, and
d,. Further, the inequalities (13) and (14) are valid. Consequently, we conclude (15).
Next, we argue as in the proof of Lemma 3, for deriving (27). We calculate

Hy(2,k) — A4(2, k) = (4k> — 5k3 + k)/90. (78)
By (27) and (78), we find that
D? =(d, /d?)* = 4(4k* — 1)/15. | : (79)

In particular, we observe that k is bounded by an effectively computable number
depending only on d; and d,. Further, as in the proof of Theorem 2(b), we show
that D is an integer satisfying P(D)=2. Then, we conclude from (79) that D =k =2,
which together with (15), implies that x = y2 + 3d, y. O
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