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Tree-level breaking of SU(2) x U(1) in general SUGRA theories

ANJAN S JOSHIPURA*, A MUKHERJEE and SANJEEV K SONI'

Department of Physics, Indian Institute of Technology, Kanpur 208 016, India
TDepartment of Physics and Astrophysics, University of Dethi, Delhi 110007, India
* Present address: Institute of Mathematical Sciences, Madras 600 113, India

T Present address: Department of Physics, Khalsa College, New Delhi 110007, India

MS received 3 June 1986; revised 3 October 1986

Abstract. It is shown that SU(2)x U(l) can be broken at the tree level, without the
occurrence of global potential minima that break U(l),, . in supergravity models that are
more general than those proposed by Nilles, Srednicki and Wyler. The study comprises an
analysis of models with a general soft supersymmetry-breaking structure as well as those of the
Hall-Lykken-Weinberg type.
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1. Introduction

It is now realized # that the breaking of supersymmetry (SUSY) in local SUSY theory,
via the super-Higgs effect, generates an effective theory capable of incorporating the
spontaneous breakdown of electroweak symmetry. If matter is coupled ‘minimally’
(Ellis 1983) to supergravity (SUGRA) and if the Higgs sector consists only of SU(2)-
doublet fields, then the said breakdown does not occur at the tree level of the effective
theory below the Planck mass M ,. Radiative corrections can trigger the breaking
(Alvarez Gaume et al 1983; Ellis et al 1983) if some of the Yukawa couplings are large:
this typically requires a top quark with mass ~ 45-50 GeV##,

The electroweak symmetry can be broken at the tree level itself if an SU(2) x U(1)-
singlet superfield is present (Nilles er al 1983a). The singlet is known, however, (a) to
destabilize the gauge hierarchy (Nilles et al 1983b; Labanas 1983) and (b) to induce
global minima of the potential (Frere et al 1983) which spontaneously break the
conservation of electric charge. Both these problems have been discussed in a special
class of models proposed by Nilles et al (1983a), hereafter referred to as NSW. We point
out in this paper that the above mentioned problem (b) does not exist in models more
general than those of NSW. Coupled with the fact that there exists a way (Ferrara et al
1983) to solve problem (a), our observation makes tree-level breaking of SU(2) x U(1)a

*To whom correspondence should be addressed.

# For a review and original references, Ellis (1983).

# # This is not an inescapable conclusion: SU(2) x U(1) breaking can also be driven with a light top quark
in some models (Claudson et al 1983).
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viable alternative for the construction of realistic models.

In §2 we review the problem of electric-charge-breaking minima and discuss its
solution with a potential which has a general soft SUSY-breaking structure. Potentials
of the Hall-Lykken-Weinberg (HLW) type are considered in § 3, and it is argued that
charge-conserving global minima probably exist in this case too. Appendix A gives
details of minimization of an HLW potential.

2. Charge-preserving minima in general SUGRA theories

It is customary in a SUGRA theory to divide the spin-0 fields into two subsets:
S,~(Z;,Y,). The ‘hidden’ fields Z; acquire vacuum expectation values (VEV’s) of
O(M ), while Y, are the ordinary fields. The scalar potential V" at an energy scale M

(M= M,/./8n) is given by (Ellis 1983).
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where (¢°) are generators of the internal-symmetry group.

The low energy (~ M) limit of ¥ can be derived by eliminating hidden fields as well
as those having O(M ;) masses. Three cases can be distinguished:

(@) Hered = SS ,, which brings the kinetic energy for scalars into the canonical form,

and W is taken as the sum of separate terms involving hidden and ordinary fields
respectively:

WS =f(Z)+g(Y,) ' 3
If one neglects the presence of the GUT sector, the following effective potential is

obtained at a scale ~ M, (Nilles et al 1983a)

0
Ver=9a* +m3 YIYa+m3,z[(A~3)g(Y,,)+ Y,,a—jf—+c.c.], 3)

where g = jexp ((Z1Z,>/M %), g. = 0g/8Y, and A is a numerical constant. The mass
parameter mj,, coincides with the gravitino mass.

(b} If, in addition to the above, the superpotential g(Y,) is assumed to depend on GUT
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fields, then after integrating out the latter one obtains the HLW potential (Hall et al
1983).
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Ger = g3+ g2+ g1 + go- In the above equation g; is a homogeneous polynomial of
degree i in the light fields Y,,, and m}, ;2 1s a parameter of the same order of magnitude as
m3 j2-

(¢) Here Wand d are taken to have the following most general allowed structure (Soni
and Weldon 1983). '

W = M2 W2(€1) + MWl (fl) + WO(Yas éi)a (53.)
d = M?dy(&, E])+ Md, (&, ED) + do(&s &L Y, YD) (5b)
; t
with . < aZd > = 62d0( <€i>’ <§1 >& Yas YII) — 501” éi = Zi/M.
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The resulting ¥, describes a theory with SUSY broken goftly by terms of the most
general possible structure consistent with the absence o&uadratic divergences.

2
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Here g and h are a priori independent cubic polynomials in the fields Y, depending on
the form of W, and d,, while S, is a numerical matrix. In the special cased = Z1Z 7 Sas
reduces to the identity matrix.

The simplest Vg of (3) can break SU(2) x U(1) at the tree level. Consider two Higgs
doublets H, H' with hypercharges +1/2, — 1/2, and a singlet Y, with the following g:

g=AHH'Y +%}0Y3. . (7)

We are led, through (3), to the following Vg
Vr= AP (P + B2 Y 4+ | ZHE + 0Y 2[4, ((HP 4+ | H 4] Y )
+my, AGHH'Y +46Y3 +c.0). 8)

It is possible to minimize this V,; exactly (Joshipura et al 1986), although only
approximate minima are given in the literature (Ellis 1983; Nilles et al 1983a; Frere et
al 1983). The global minimum occurs at
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where H°(HY) is the neutral component of H(H') and ¢' = /4 provided

20'+1

Thus SU(2) x U(1) is broken at the tree level. The potential at the minimum is given by
(Joshipura et al 1986)
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It was noticed by Frere et al (1983) that (9) no longer corresponds to a global
minimum of the potential if quarks and leptons are included. Let us consider the
following g in the presence of leptons:

g=AHHY+ALHE* (11)

with L, E™ respectively corresponding to SU(2), doublet and singlet fields.
Substitution in (3) shows that the V4 for this theory has a charge-breaking minimum
corresponding to non-zero VEV’s for E* and L™. The value of the potential at this
minimum is scaled by 4. % (cf. (10)). Now 4, is the Yukawa coupling which controls the
mass of the electron and hence is expected to be small (~ 10~¢). Thus unless 4 is also
chosen to be at least as small as 4, the charge-breaking minimum lies lower than the
charge-preserving one. In the former case, U(1), , can be preserved at the cost of the
existence of a charged fermion lighter than the electron, as implied by the Yukawa
interaction corresponding to AHH'Y.

In view of the above serious problem, we address ourselves to the following question:
can one obtain an acceptable pattern of SU(2) x U(1) breaking if one goes beyond the
simple models described by (3)? The answer, as we show below, is yes. As long as one
uses the V ;- of (3), the problem persists, since the cubic SUSY-breaking terms are fixed
once g is fixed. This restriction is a consequence of the simple form assumed for W
(equation (2)). By starting with a more general expression for W as given in (5), one can
obtain a ¥ (equation (6)) in which the cubic terms are not simply related to g. We take
hin (6) to be independent of g and demonstrate that a choice of h exists for which the
charge-preserving minimum becomes absolute.

Let us consider the following 4 in a model with leptons and Higgs fields:

h=AVHHY+ ). LHE". 12)

Symmetry-breaking terms with this structure ére not allowed in NSW or HLW
potentials. They can be obtained, however, if W, in (5) is chosen to depend nontrivially
on hidden fields. With g and h as given by (11) and (12), substitution in (6) yields
Ver=|AP|HP|Y|*+|AHY + AL E* |2 +|AH'Y + 4, L°E* 2
+|AHH'|* + | LH'|? + |1 E*|* H'H'
+mi, (H'H +H'H+ L'L+|E* P +|Y]?)
+my,, (AHH'Y+ A,LH'E* +cc)+%D*D* (13)
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We have dropped the ¥ terms from g for simplicity. They are not expected to change
the qualitative conclusions but need to be retained in general to get rid of an unwanted
global U(1) symmetry.

It can be seen from (13) that all charged fields are forced to acquire vanishing vacuum
expectation valuesif {A'| = |1,/4,.| < 3. The charge-preserving solution can still exist if
| A} = |A'/A] > 3. V at this minimum is given by (Frere et al 1983).

V(L) = —m3p/A% (A (A ~1)); A=%[14]+ (4] -8)2]. (14)
min
In the NSW case (corresponding to W, being independent of £)|A'| = |A4]| and the
charge-breaking solution must exist. In general by allowing nontrivial dependence on ¢;
in W, one can make 4’ < 3 even when 4 > 3 and avoid the charge-breaking minimum
altogether.
Even when A" > 3 there exists a reasonable range of parameters for which the charge-
breaking minimum lies higher. For 4'>3, (L™ ) = (E* ) = (H” ) = (m35/A,)A’
with all other VEV’s vanishing corresponds to a minimum with

Ve) = F@A’Z(A’Z—I); A =z[lA+ (47 -8 7], (15)

2
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A suitable choice of 4 and 4’ can make ¥_, (2) higher than V min(1). Consider for

example [A[, [4|> 3, then V_, (2) > V nin(1) provided
(ZelA*)
—_—— 1
AP 7

ie. [/ Ae] > 1A/ Aq|.

With 1/, ~ 10*, this needs A’/A, ~ 10, This can be achieved by fine-tuning the
coefficients in Wy(Y,, &). Such a fine tuning is technically natural.

3. Charge-preserving minima in HLW theories

By starting with a complicated W in (5), it is possible to avoid the spontaneous breaking
of U(1), . Nevertheless, a theory with the superpotential separable as in (2) is simpler
and it would be nice if this were free of the problem. This may be the case if one
considers the HLW potential containing nontrivial effects of superheavy fields in the
low-energy sector.

Consider again the light sector consisting of H, H' and ¥, and choose the following
g eIT: -
Gog= AHH'Y + mHH'. ,« ' (16)

This leads to the following V4
m
Y4—
2 ( -+ )
+md, (H'H +H H+|Y]?) _
-+ (m'3 2 AHH’Y‘{" 2m3/2mHH' + C.C.) + %DZDa. (17)
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The value of Vg of (17) is not the most general which could have been constructed. -
However, this form of ¥ 4is expected to hold in a la¥ge class. o_f models. For examplg
the quadratic and linear terms in Y in g zdo not_arlse in the minimal SU(S) model (Ellis
1983) or in its extension (Ferrara et al 1983) VYh.ICh makes the gauge hierarchy stable_ at
one loop. The ¥ term will also be absent if it 1 abs:ent in t_he original superpotential.

As shown in Appendix A, the SU(2) x U(1)-breaking minimum of V', can and must
exist if A(= m}z/ms2) does not lie in the following range:

el =2|h—1] < A < L+20+ 2]~ 1. | (18)

This inequality reduces to the well-known |4| < 3 when rﬁ = "f‘/{"a 2 =0. .

Even in the presence of leptons, the above charge-preserving minimum may continue
to be the global minimum. This is plausible for the following reason: the inclusion of
leptonsadds a term A.LH 'E* 10 g However, the presence gf the mass term for HH’ i.n
g.qSpoils the inherent symmetric role of L'and H existing in the NSW _example‘:. This
symmetry was crucially responsible for leading to a global U(l)e_n}_-breakmg minimum.
It is easy to see that the point at which only L™, E* and H'® acquire nonzero VEV’s, as
in the earlier example, is not even an extremum of V. The complexity of the poten-
tial does not allow us to rule out the existence of other charge-breaking minima.
It is, however, conceivable that a reasonable range of parameters A and m may
exist for which charge-breaking minima do not exist but the U(1),  -preserving mini-
mum does.

4. Conclusions

We have investigated the breaking of SU(2)x U(1) at the tree level in a wider class of
SUGRA models than that studied by NSW. It appears that, for some choice of
parameters in the theories, the absolute minimum of the potential corresponds to the
desired breaking of SU(2)x U(1) down to U(1), , . The existence of charge-breaking
absolute minima in NSW models has led to the belief that, in a realistic SUGRA theory,
tree-level electroweak breaking is impossible. Our work shows that this need not be
the case if we go beyond the NSW structure. Taken together with the fact that
there exist ways (Ferrara et al 1983) to avoid the gauge hierarchy problem in the
presence of light singlets, tree-level electroweak breaking appears to be a viable
possibility. ‘

In the last couple of years, many papers dealing with the question of the electroweak
symmetry breaking have appeared (lbanez et al 1985). Most authors except
Derendinger and Savoy (1984) rule out symmetry breaking through singlets on the
basis of the results of Frere et al. Moreover, none of these papers have considered the
consequences of allowing a general (Soni and Weldon 1983) soft breaking of
supersymmetry. Considering the open status of supergravity model building, our
results are thus still of relevance in that they enlarge considerably the class of
phenomenologically reasonable models. It remains for us to extend the model of §2 to

include a full set of fermions and to work out in detail the consequences for low energy
(~ 10* GeV) physics.
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Appendix A

We consider here the minimization of the potential of equation (17). For the nonzero
VEV’s we write

(HY ) = A7'myppae®, (HY ) = A7 'myp0e',
(Y ) =1""mypye" (A1)

where a, v and y are chosen positive. The phases «, w and 5 can be chosen as zero at the
minimum without affecting the final conclusions.
With the above choices and definitions, V. takes a value V; given by

Vo = A7m3,, I?o,
Vo = (y +m)*(a* +v?) + v2a* + (a® + v2 + y?)
— 2av(AY + 2) + 3 D*D*A% /m3 », ' (A2)
where i = m/m; ;. It is easy to see that at an extremum
a=nu.

This equality ensures that the D-terms vanish at an extremum of V5 The extremum
conditions now take the form

v[(y+mP+v*+1—(Ay+2m)] =0, (A3a)
v2Q2y— A+ 2M)+y = 0. (A3b)

We are interested in solutions that break SU(2) x U(1), so we discard the solution
v=y=0, and define a new constant A" = 4 —2m. In terms of A’, the extremum
conditions are

v 4y — Ay +(h—1)? =0, (Ada)

20y — A +y=0. ~ (Adb)
The value of Vg at the extremum is given by

Vo = —v*+y2. (AS)
Equations (A4) can be reduced to a single cubic equation. If we write

x=(y/A)—z
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we can eliminate v from (A4), obtaining

(- 1) 1 I:I 1

i xm . A6
A7 247 T (A6)
By (A4b), v* = — (2x)”*(x +%). Thus, to get a real v, we must look for solutions with
—3<x<0.

The symmetry-breaking extremum will lie lower than the symmetric solution
v = y =0 if and only if the right side of (A5) is negative, i.e. y* < v*. This yields

O=f(x)5x3+|:

2| A'%| < 1, (A7)

where x, is a solution of (A6). Equation (A7) has a solution in the range —% < x, <0
provided |4'| > 1 and f(—1/2]A’[) > 0. Substitution in the definition of f(x) yields the
inequality

(A -1 > 40h— 1),
ie. |A—2]~1 > 2(h—1). (A8)

This is equivalent to the restriction that A does not lie between |2rm — 1| ) {m—1]
and 2 + 1+ 2 | — 1]. Approximate values of v and y can be obtained by neglecting the
cubic term in (A6). These are

AT A2=20h—12 7
y%_z" s

AT 1—20m— 1y
v~ [A? =200 — 1))

In the large | A'| limit, both y* and v? are proportional to A"
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