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ORDER AND CHAOS IN FLUID FLOWS*
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INTRODUCTION

IT comes as a great shock to many people,

especially those who think of all technology
as flowing from science (erroneously, in my
view), to realize that the ancient problem of
conveying water from point A to point B—a
problem essentially solved thousands of years
ago by experience, and one solved early in this
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century in terms of codified information for
engineering—remains to this day an unsolved
problem in physics. By this 1 mean that it is still
not possible to predict, based solely on first
principles such as for example Newton’s Laws,
how much water can be pushed through a given
pipe with a given loss of pressure. The answer
Is of course known (figure 1), but cannot yet be
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Figure 1.

The ‘Moody diagram’, used widely by en gineers for estimating the pressure differential required

to push fluid through a pipe. The diagram, taken from a standard engineering handbook, presents friction
losses per unit Jength of pipe (ordinate) at different Reynolds numbers (ach:saa] for various vilues of
surface roughness. The thick line at the top left, marked ‘laminar flow", is the only information on tlas
diagram that comes from a proper theory; all the other curves depend on expcnmental duta in some form.
Note the trans:tlon from laminar to turbulent flow at Reynolds numbers around 2000, in what is labelled the
‘critical zone’ Owing to an unfortunate quirk in terminology, the area marked ‘transition zone’ in the
diagram refers to a change in regime in turbulent flow, and notf to laminar-turbulent tranmition.

* Based on the 4th Raman Memorial Lecture, delivercd at the Indian Instutute of Science on 3 March 1986 The full teat 1

available as NAL Tech. Mcmo. DU 8el)2.
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predicted without at some stage having had
recourse to data from testing. Some clever
analvsis reduces the amount of testing required
to provide engineering estimates, but the need
for use of test data cannot be eliminated yet.

The plumbers are therefore ahead of the
scientists, by several thousand years at least.

Why is it that such ancient problems still
remain unsolved in spite of all the spectacular
advances that have been made in a variety of
branches of science and of technology (includ
ing computers)? There are several reasons, but
the most basic is that the equations governing
the flow of such fluids—discovered more than
150 years ago and named after Navier and
Stokes—are nonlinear.

Our understanding of the behaviour of even
the simplest nonlinear systems is stll
rudimentary. One of the striking characteris-
tics of the particular nonlinear system describ-
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ing the flow of fluids is that its behaviour is in
general chaotic. We could in fact justifiably say
(with apologies to an ancient scholar) sarvam
turbulence-mayam jagat: “the whole universe is
full of turbulence”. However, there i1s reason
to believe that hidden in this chaos is a
considerable degree of order. What we mean
by these terms will I hope become clearer as we
go along, but to this day there is no satisfactory
method of handling systems where order and
chaos are so inextricably mixed. Some features
of this complex combination of order and
chaos are indeed wisible to all of us. For
example we all know how one can argue
endlessly about the shape of clouds (figure 2).
Kahdasa called them kamardpa; are they
totally chaotic or is there a hidden order in the
shapes we see? This question, which 1s some-
thing all of us ask at some early stage 1n our
lives, is actually at the very heart, I believe, of

IRy

Figure 2. A photograph of monsoon clouds. What shapes do we see here? Is there any order, or are we
cheating ourselves? (courtesy: Mr C. Rajagopal, NAL).
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problems in fluid flow. Using the most sophisti-
cated mstrumentation availlable today in the
controlled conditions of a laboratory, and
investigating flows far simpler than a cloud, we
still bave to face exactly the same basic
question.

FROM ORDER TO CHAOS

Before we proceed to see the implications of
this combination let us first look at the simpler
limits of the problem and begin with flows
which exhibit considerable order.

Figure 3a shows a famous example'. When a
fluid layer confined between two honzontal
plates is warmed sufficiently (but not too
much) at its lower boundary, the bottom gets
lighter and the fluid tends to overturn; it does
this in a beautifully ordered way, and the
resulting pattern could justly adorn a saree-
border. As the temperature of the lower -plate
is raised, the flow eventually looks chaotic: the
neat rolls are replaced by irregular tongues of
rising hot fluid (figure 3b). (Incidentally, this
picture,; taken in 1932 by two of Raman’s
students, Ramdas and Malurkar?, is probably
the first flow visualization published in India.}

Investigating the flow of water in a pipe,
Reynolds® demonstrated, more than a hundred
years ago, that there are two kinds of motion
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Figure 3a. Convection 1olls in a horizontal layer of
fluid when the lower plate is warmer than the upper
plate. The curves in the diagram are density
contours: In the absence of convection they would
have been a series of parallel lines'.

possible—called by him direct and sinuous,
now more farmliar as laminar and turbulent—a
distinction that is very easy to make when you
open any water tap. If the opening is very small
we know that water usually comes out as a
smooth glassy jet. If the opening is increased,
the surface loses its smoothness and the water
begins to move in a very irregular “turbulent”
way (now more fashionably called chaotic).
Reynolds®showed that whether the motion is
laminar or turbulent does not depend mdi-
vidually on the fluid or on the size of the pipe
or on the velocity, but on a combination of
properties which has since come to be known
as the Reynolds Number (Re}, defined as

Re =V Dly,

where V is the fluid veloaty, D is the diameter
of the pipe and v is the kinematic viscosity of
the fluid. Reynolds found that if this number
exceeded a critical value {(something like 2300}
he flow could become turbulent, whereas
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Figore 3b. Flow over a very hot surface, showing convective motion that is highly turbulent or ¢chaotic”,
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Figure 4a. A jet of dye 1ssuing into a tank of water
quickly becomes turbulent, when it is such a good
mixer that the whole tank gets coloured in a matter

of seconds’’
- [——‘
m/see

eSS

below this value it remained laminar. (The
pressure required to push water through a pipe
in laminar flow is known exactly by theory: it is
turbulent flow that poses problems.) If the
Reynolds number is sufficiently low the prob-
lem is linear; but as it increases the severity of
the nonlinearity also increases.

Going back to the question of ordered
motion, the fluid dynamicist’s answer proceeds
on the following lines. If the Reynolds number
1s extremely low, then the fluud motion is
smooth, regular, and steady if boundary condi-
tions are steady; there is no particular associ-
ated pattern of motion. As the Reynolds
number increases, however, there is a stage at
which the flow becomes unstable and spon-
taneously there is a generation of certain
ordered patterns in the flow, as in the example
shown 1n figure 3a.

As the Reynolds number increases further,
these patterns break down and the flow even-
tually becomes irregular and turbulent. Some
examples of the final state of turbulent motion
are shown in figures 4a, b. Figure 4a shows
how the efficient mixing that is so charactensitc
of turbulent flow takes place®. Measurements
in such flows reveal irregular fluctuations of
every flow quantity, of which a typical example
from the atmosphere is shown in Figure 4b.

Just exactly how does the motion break
down from a highly ordered to a chaotic state?
Figure 5 shows the progression from stablllty
through order to chaos in one instance’. Such a

Figure 4b. A typical record of wmd speed fluctuations, from a cup anemometer mounted on a short

meteorological mast at the Institute’

. The motion seems completely disordered.
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Figure 5. From stabihty through order to chaos.
These pictures, taken in a small wind tunnel at IISc,
show a jet of smoke issuing from the floor of the
tunnel into wind from right. Near the floor the jet is
nearly uniform and looks like a jet of water from a
slightly open tap. The jet, which is basically unst-
able, then orders utself into a remarkable pattern of
vortices, which later break down nto chaotic
motion. This sequence from stability to order to
chaos is typical of a wide class of fluid flows.

sequence 1s typical, but by no means universal.
In some cases, the basic waves characterizing
instabilty seem to produce new instabilities.
One conjecture, due originally to Landau®, is
that there is a succession of instabilities; each
time the flow goes unstable, it leads to the
possibility of new modes of instability and as
this keeps on ad infinitum we eventually get
choatic motion. No such infinite sequence has
ever been actually observed; however there are

cases in which the primary instability leads to a
secondary instability, and the secondary to a
tertiary. Ironically, the pipe flow that started
off all this work is not unstable to small
“perturbations at all—but this is the kind of
pathological behaviour that one usually accepts
with resignation in nonlinear systems!

Is the transition from laminar to turbulent
flow abrupt or gradual? In 1935, Prandtl’, the
greatest fluid dynamicist of this century, said
that transition in flow past a flat plate, for
example (- we can think of such a plate as an
idealization of an aircraft wing or a fan blade),
was “accomplished in a region of appreciable
length” implying that it was gradual, but others
emphasized the suddenness of the phe-
nomenon. The truth turned out to be revealing
and neatly reconciles these conflicting views.
The point at which chaos 1s first seen is
relatively sharply defined, but at this point and
for an appreciable distance downstream the
chaos 1s not present full-time. Figure 6a shows
how this happens™!’; the sudden appearance
of chaos at the point x, is the result of the birth
of what are known as turbulent spots, which
are islands of chaos in a laminar sea—islands
that are minute at birth, but grow as they move
with the flow (eventually covering all of it).
These spots make chaos intermittent; and the
“Intermittency”, i.e. the fraction of time during
which the flow is turbulent, varies from zero
upstream of x, to unity suffictently far down-
stream, over a distance that can often be a
substantial part of the surface!! (figure 6b).

ORDER IN CHAOQOS

Paradoxically, the flows that have thus
(eventually) become turbulent or chaotic full-
time (intermittency = 1) have in recent de-
cades been found to contain much ordered
motion'?! The degree of order present varies
appreciably from one flow to another. For
example, the velocity fluctuations shown in
fipure 7a (characteristic of atmospheric wind)
seem completely chaotic, but in fact conceal an
ordered event!? which can be extracted only
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A schematic diagram illustrating transition to turbulence in flow past a flat plate, which may be

considered an 1dealization of e.g. an aircraft wing. Close to the leading edge the flow 1s stable; at a certain
station downstream it becomes unstable, leading to the appearance of well-defined waves. These waves,
which are at first two-dimensional, go through further instabilities and become three-dimensional,
culminating in the appearance of turbulent *spots’ at a fairly well-defined location x,. These spots grow n
size (along the wedges shown) as they move downstream, till they cover the whole flow making it *fully’
turbulent, the intermittency y varying from zero at x, to unity far downstream'’.

after some rather intricate data-processing that
barely escapes bemng dubious! The chaos here
clearly masks the order. Furthermore, even the
special event so detected does not repeat at
regular intervals or have the same intensity
when it does occur again, so that the succession
of events is more like a wedding procession
than a march-past; it has its own element of
chaos. On the other hand, the trace of figure
b seems highly ordered, and is evidently
dominated by a purish wave; nevertheless it is
technically chaotic'® because the (“random”)
modulation of the wave seen in the figure
actually spreads energy over all possible fre-
quencies, giving its spectrum the broad band
that i practical terms is the hall-mark of
chaotic behaviour.

Separation of the ordered or coherent mo-
tion from the rest of chaos is, as I have already

implied, a rather tricky operation and has been
plagued by much scientific controversy'?, But
the presence of significant order in turbulent
motion is a fact of extraordinary importance: it
offers hope of greater skill at predicting turbu-
lence as well as In managing it. So the
order-wallah among fluid-dynamicists sings
(with Robert Frost).

Let chaos stormt

Let cloud shapes swarm!

I wait for form.

FROM CHAOS TO ORDER

To add further colour to all these complex
phenomena, and in partial contradicition of
what we said about the universe being full of
turbulence, there are a variety of ways in which
chaotic motion can actually be suppressed, 1.¢.
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Figure 6b. The ‘intermittency’, which is the fraction of time that the flow is turbulent, increases gradually
from zero to unity. The extent of the transition zone is generally comparable to that of laminar flow, but is
relatively larger at lower Reynolds numbers'!. The velocity trace below shows the intermittent behaviour

characteristic-of a transitional boundary layer.

a turbulent flow can under certain conditions
be “relaminarized”’”. This may strike one at
first as thermodynamically impossible, but we
must remember that the flow systems we
consider are not thermodynamically closed;
relaminarization may be seen as the analogue
of crystallization. Some striking instances of
this phenomenon® are shown in figures 8a, b.
The mixing that was shown in figure 4a can be
completely suppressed by heating the top of
the tank, which stabilises the flow (figure 8a).
In the second example (figure 8b), a flow that
1s already turbulent in a tube (at a Reynolds
number well above the value of 2300 quoted
earlier) can be made to revert to a laminar
state by the simple stratagem of winding the

tube round in a coil®; indeed, as the picture
demonstrates, the curvature of the coil does
not have to be particularly sharp to achieve the
effect (in fact we have here another instance of
nonlinear behaviour: small causes, in the form
of a mild curvature of the tube, yielding large
effects, namely relaminarization). As a final
example, consider the jogger who is breathing
hard after his exertions. The air he sucks
through his wind pipe 1s in turbulent motion,
but when it reaches the minute bronchioles
deep in his lungs turbulence has been com-
pletely suppressed.

In 1949, the well-known inventor Savonius,
famous for the vertical axis windmills of which
several examples have been seen on this
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Figure 7a. How much order and how much chaos?
Wind velocity in the atmosphere (lowest trace),
seemingly with no order in it (second trace from
bottom shows the fluctuation about the mean). A
special form of data processing, called variable
interval time averaging, reveals however an intense
event, indicated by the spikes as seen 1n the upper
traces corresponding to longer averaging times ¢,’
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campus, wrote how it is impossible to control
the wind, 1.€. to suppress chaos. As he pic-
turesquely put 1t, neither Stalin nor Morri-
son—a weli-known Labour leader then in
power in Britain—could “socialize the wind”.
Neither capitalists nor communists can quite
socialize the atmospheric wind even now, but
there are a vanety of other flows that can be;
indeed we have just seen that it has been
happening right under our noses all along.

CHAOS IN DYNAMICAL SYSTEMS

Now the fluid dvnamicist believes that all
these. intriguing phenomena are compictely
contained in the classical Navier-Stokes equa-
tions. From one standpoint—very shallow in
his. view—it may therefore be thought that
there 1s no “new physics” to be discovered. But
in actual fact quite the contrary is true; the new
physics is very much there in the nonlinearity
of the equations, waiting to be discovered. But
unfortunately these equations are so compli-
cated that there is no case, not even the most
idealised one we can think of, where all the
stages of the transitions from order to chaos
and back, or their complex combinations, can
be quantitatively described., Even numerical
simulations, using the biggest computers and
the cleverest algorithms currently available,
have not been able to achieve this sort of
description. There have therefore been several
attempts to look at the behaviour of equations
whi¢h mimic fluid flow, although they may not

WW%“ | l. m
(L
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Figure 7b. Fluid flow velocity fluctuations at a point in the wake behind a circular eylinder. There is clearly
a dominant wave, but the modulation seen in the record spreads energy over a wide frequency range,

making the signal technically chaotic'®.
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Figure 8a. Flow in the tank of figure 5b, when the
top of the tank is heated. Such heating stabilizes the
flow and completely suppresses chaos; the dye now
collects as a cloud and does not mix with the rest of
the water™.

represent it accurately. The construction of
such ‘models’ is by no means easy. For
example, a very interesting attempt made by
Burgers'® many years ago turned out on close
examination to be more relevant for shock
waves!’ (another interesting non-linear phe-
nomenon); in other words a model devised for
turbulence turned out to be one for a rather
vicious type of noise.

One of the most influential of such models
was formulated by Lorenz'® in 1962. Lorenz
was concerned with the problem of predicting
weather—and, as a problem in physics, that is
basically the same as the one faced by plum-
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Figure 8b. This is another flow in which there is a
‘reverse transition’ from chaos to order. Flow
coming in through the tube at the top is turbulent, as
can be inferred from the rapid dispersion of dye.
Flow going out of the coils is laminar: a filament of
dye injected after a few turns in the coil does not
spread’.

bers, only it is even more complex~—and
proceeded to make a highly idealized model
for the kind of convective flow that 1s so
common in the atmosphere. In the process
drastic simplifications were made (as Lorenz
was fully aware), but nevertheless the be-
haviour of the solutions of the model equations
which are nonlinear can be so stranhge that it
repays attention. The equations are repro-
duced below:

X = 10Y — 10X,

Y =Y - XZ + 14X,
Z = XY - (83)Z;

here a dot indicates a time-derivative. The
three unknowns in these equations, X, Y and
Z, represent in'some sense the state of the
convective motion in the saree-border pattern
of figure 3: in the model the patlern always
remains the same (in space), but its intensity
varies with time. The numbers in the model
represent the conditions of the flow; the most
important of these is the parameter r, which
stands for the Rayleigh number. This number
plays the same role in the convection problem
as the Reynolds number does in the pipe flow
problem. (In fact, it is a Reynolds number
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Figure 9a. Typical solution of the Lorenz equa-
tions, showing the ‘chaotic’ behaviour of the amph-
tudes X and Y as functions of time. Note the
tendency of the solution to keep flipping, at irregu-
lar intervals, between two oscllatory-type states of
motion®.

based on the velocity that a blob of rising hot
fluid acquires before it cools to the surrounding
temperature by thermal conduction; a critical
value must be exceeded before the rolls of
figure 3a appear at all.) Solutions at r = 28,
i.e. at a Rayleigh number 28 times the critical
value, appear erratic or chaotic as shown in
fisure 9a. It is once again ironic that the
original ‘exact’ equations, to which the above
set was devised as an approximation, have
been found not to exhbit any chaotic
behaviour!? at all! Nevertheless the results for
the Lorenz system have in recent years pro-
foundly influenced the way we look at the
possible mechamisms by which an ordered
motion becomes chaotic.

Even the solutions of these ‘'model” cqua-
tions are so hard to analyse that a further
simplification has been worthwhile. This may
be obtained by looking at the peaks in the
solution; and it led to the discovery that each
peak determines the next one uniquely (or
nearly so0), but not the previous one: see figure
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Figure 9b. Relation between successive maxima in
the variable Z in the Lorenz equations. 1f you enter
on the horizontal axis with any particular maximum,
the value of the next maximum in the solution 13
given uniquely by the folded curve; but the previous
maximum could have etther of two possible values,
the one before that any of four possible values, and
so on. (Computation by G. S. Bhat.)

9b. This interesting observation has provided
the key to an enormous amount of research n
recent years. For, here we have a connection
made between the original partial differential
equations governing the problem, through the
approximate nonlinear ordinary differential
equations (providing a “dynamical mode[”)
that were constructed—albeit rather dubious-
[y—out of them, to a simple kind of “mapping”
that we have discovered between the peaks.
(The mapping is described by equations of the
type X, =AX,), n=0, 1, 2 ..., where
f(X) is a prescribed function of.X.) Once these
connections are seen, it has been realized that
it would be worthwhile to look at just the maps
themselves: there is the fantastic possibility
that hidden in the behaviour of such simple
maps may lie clues to the complex behaviour of
fluid flows (see e.g. the collection of papers n
Bai-Lin?Y).

It is in fact astonishing how much a study of
such maps has been able to teach us about
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Figure 10. The simple ‘tent’ map, which may be
considered an idealization of figure 9b. For details

see text.

some possible origins of chaos®'. To illustrate
let us further idealize figure 9b, and look at the
particularly simple ‘tent’ map (figure 10), for
which

X)) =2Xif 0< X <172,
=2-2Xif12<X<1

Ttis map cuts out some of the fnlls of figure 9b
by constraining X to the range 0 to 1, straight-
:ning out the curves and imposing symmetry
about the midpoiht. But it retains the crucial
fold at the top: crucial because the value of X
at any given stage cannot uniquely determine
the sequence of numbers leading to 1t, but does
so determine the subsequent numbers. In other
words the present determines the future un-
iquely, but leaves the past vague.

It is not very difficult to prove that the
correlation between two successive numbers n
the sequence gencrated by this completely
deterministic map is zero?’; and that any
number is just as probable as any other in such
a sequence (all members of which will of
course lie between 0 and 1). What we mean
when we say the correlation is zero is that we
would be unable to predict, by purely statistical
procedures, any entry knowing any (or all) of
the previous entries in the sequence, To make
this more specific we can agree to denote all

-

numbers in the sequence which fall between 0
and (.5 by H. and those that fall between 0.5
and 1.0 by T. And we order the sequence n
terms of Hs and Ts (see for example table 1).
We will then find that this sequence of Hs and
Ts from the map is statistically indistinguishable
from the kind of sequence of heads and tails
obtained by tossing a coin (also shown in table
1). In other words, we have here a completely
deterministic system whose behaviour is
apparently stochastic; i.e. the results appear
“random”.

Table 1 Comparison of a sequence from the tent map and
from coin-tossing

A. Tent map

0.89442719100 H
0.84458247200 H
0.75665977601 H
0.05327320804 T
0.426225606434 T
0.59019468524 H
0.72155748195*H
0.22774014442*T
0.17967884467*T
0.56256924267*H
0.50055394135 H

0.42220123600 T
0.62167011200 H
0.48668044799 T (.97336089598 H
0.10655641609 T 0.21311283217 T
0.85245132869 H 0.29509734262 T
0.81961062951 H 0.36077874097 T
0.55688503610 H 0.88622992779 H
0.45508028883 T 0.91016057767 H
0.35935768933 T 0.71871537867*H
0.87486151460 H o 25027697068 T
0.99889211729 H 0.002215765342*T

0.21114561800 T
0.31083505600 T

(.00443133083 T
0.03545224667 T
0.28361797333 T
0.26894378662 T

0.00886306167 T
0.07090449333 T
0.56723594666 H
0.53788757324 H

0.01772612333*T
0. 14180898666 T
0.86552810669 H
(0.92422485252 H

B. Coin-tossing

H HTHTTTTMHTTTTH H
HTHMHHHTHTTTHHT H
TTHHTMHTTHHTTMHMHT

L =S il

Values of X, from the tent map
X, 1=2X, 0= X,<17)
=2-2X, (12< X, =),

starting with X, = I/VS, Compare the two starred sub-
sequences which start very close 10 cach other (less than
0.003) but arc far apart three steps later, If we fabel entries
less than 0.5 with a T, and those greater than 0.5 by an 1,
there are 20 and 24T in the 1ent map. These 45 entries
from the tent map may be compared with results of actual
trinds with a coin; note that ia tha sequence there are 12
(1) out of a total of 45 triads,

Nate that there are speiod inttial values X, for which the
scquence would vither tlermmate (¢.8. Xy = 13, X, = 1,
X, = 1) or repeat inaso called “hadt-oycle’ {e g Xy = Yy,
X, = X = by eie) In general, however, the sequenee
is pon-periodic and inhiite, as an the fable above.
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There are two other points to be made from
the entries in table 1. The first concerns the
definition of chaos: note that a number n the
sequence can sometimes approach very closely
some previous value (e.g. compare the two
starred subsequeérnces), but eventually the later
numbers depart substantially from each other.
In fact X approaches its previous values arbit-
rarily closely, but never stays close. The reason
is that the later values in the sequence depend
sensitively on imitizi conditions. And this leads
us to the second point. Any {arbitrarily) small
uncertainty tn the present state of the system
(i.e. current entry in the sequence) grows
eventually to a finite or substantial error in the
future—thus limiting predictability. At the
same time, prediction of the state of the system
at any given future time is in principle possible
to any prescnibed accuracy, provided the pre-
sent 1s known sufficiently accurately (although
what is ‘sufficient” can turn out to be so
extreme as to be impractical). The implications
for numencal weather prediction are clear:; it
has been picturesquely stated that the flap of a
butterfly’s wings could eventually change the
weather. (Mercifully it won’t in general change
the climate, though.)

This kind of behaviour has been called
“deterministic ¢chaos”, which is apt precisely
because of the seeming contradiction in terms.
An equally apt Indian word would perhaps be
chanchal, which embodies a concept that
seems already neatly to reconcile unpredicta-

bility and determinism.
Einstein is supposed to have said that he did

not believe in a God who played dice. But if
God 15 nonlinear—how can He be other-
wise?7—it is clear that He need not play dice to
appear probabilistic or random.

The kind of example we have described
above 1s, ] feel sure, going to affect profoundly
our view of statistics, let alone fluid behaviour,
because the familiar distinction between deter-
ministic and stochastic processes can no longer
be sustained. Indeed a more basic question ¢an
be raised: is it possible that the processes that
we classify as stochastic are 1n fact also
basically deterministic, but only governed by

the kind ot nonlinear mechanism which is
caricatured in this simple example? Should not
the distinction rather be between regular and
chaotic behaviour?

IS TURBULENCE DYNAMICAL CHAOS?

We will not pursue the implications for
statistics here, but come back to fluid flows. It
1s interesting now to speculate that the transi-
tion to turbulence that we have described
earlier is in fact nothing other than the kind of
chaotic behaviour that the simple model ex-
hibits. Spurred by this possibility, a series of
results have been proved in recent years about
such maps, and more often demonstrated on
the computer, by methods that may well be
called ‘apphed computer technology’, i.e. com-
puters applied to understand nature! One such
striking result is due to Feigenbaum, who
demonstrated that such maps had certain
universal characteristics, summanzed in two
numbers which basically describe the relation
between the parameter values at the appear-
ance of successive instabilities (bifurcations)
charactenizing the solutions of the map. These
numbers can be computed to extraordinary
accuracy.

Thus if we consider the quadratic map
f(X) = RX(1—X) (which 1s actually a trans-
formation of the tent map but contains the free
parameter R that serves as an analogue of the
Reynolds number), then as KR increases
the steady solutions of the map go through a
sequence of instabilities, leading at each sta2e
to the appearance of a new limit cycle witl,
twice the old period. A limit cycle (sec foot-
note to table 1)is a steady oscillation of fixed
amplitude; a wire galloping in wind, or a water
pipe that exhibits the jerky, noisy oscillation
known as ‘hunting’, are examples of limit
cycles in fluid flows. This sequence of instabili-
ties is illustrated in a bifurcation diagram® ot
the kind shown in figure 11. If R, 1s the value
of R at the nth bifurcation, the first Feigen-

baum number 18

l. Rn-Rn—l
im -
= Rn+1 ""'Rn

= 4.669 201 6...
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Figure 11.

f(X) =RX (1-X)

3.60

Bifurcation diagram for the quadratic map f{X) = RX(1 ~ X), showing a sequence of

period-doubling limit cycles as R increases (period n appears at R,)). For R < 3, X, tends to a fixed point X™*
which depends on R as shown. At R = R; = 3, there is a bifurcation into two (unstable) fixed points, and
X, tends to a limit cycle of period Z, i.e. every second number repeats, for Ry < R < R,. For Ry < R < Ry
there is a limit cycle of period 4 (every fourth number repeats); and so on. The end of the sequence, at
R, = R, marks the onset of chaotic solutions. At four values of R > R, are shown the distribution of X in
the solution. At R = 4 the distribution is given by the arc-sine law, which 1s infinite at X = (0, |1 and a
minitnum at X = Y2. Note the distorted scale on the abscissa, designed to separate the values of R at which
successive bifurcations occur (after Grossman and Thomae®?).

The behaviour of X begins to show chaos at the
limit point R, of the sequence R,;: as seen from
figure 11, R, = 3.5699...

The fascinating question 1s whether we can
now make the connection backwards from the
map to the fluid flow and expect to find the
same numbers operating in the flow problems.
For example, can the Rayleigh number at
which the flow becomes chaotic 1n the convec-
tion problem be related to the Rayleigh num-
bers at which the first instabilities appear, in
the same way that the value of the parameter R
in the map, heraiding chaos, i1s related to the
primary instabilities revealed in the map? The
suggestion that this might be so—that indeed
the route to chaos may be universal—caused
understandable excitement in the scientific
world some years ago. For it 1s the traditional

wisdom in the study of nonlinear systems that
they are idiosyncratic: it has been considered a
useful exaggeration to say that no nonlinear
system is like any ocher. Is it then nevertheless
possible that all those nonlinear systems that
do exhibit chaos reach that state in the same
way’?

The experimental evidence here js still some-
what ambiguous. It is true that the sequence of
numbers observed in certain experiments
closely mimic the Feigenbaum period-doubling
sequence (figure 12). It is still however not
possible to assert categorically that it is in fact
the way that chaos appears in etther the
convection flow or any other problem. The
universality of this route to turbulence appears
to have been exaggerated. We cannot, for
example, see its refevance to the phenomenon
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Figure 12. Spectrum of temperature fluctuationsin
convective flow of liquid helium in a small rectangu-
lar box. The conditions correspond to the last
observable stages in a period-doubling sequence at
a Rayleigh number about 40 times the critical value
at which rolls appear. In the upper figure we ob-
serve twoQ sub-harmonics (peaks at iatervals of a
fourth of the basic natural frequency), and m the

lower four sub-harmonics (after Libchaber and
Maurer®).

of transition through the turbulent spots we
described earlier.

A different suggestion has been made by
Ruelle and Takens*. They propose that in a
variety of systems chaos does not appear after
the infinite sequence of bifurcations that
Feigenbaum has described or the infinite sequ-
ence of instabilities that Landau onginally
postulated. They show that in a wide class of
systems, chaos can appear at the end of only
three bifurcations. This they do by proving that
in such systems what is known as a strange
attractor can appear at this relatively early
stage. The nature of such attractors is illus-
trated in figure 13, 1n particular for the Lorenz
system” . The idea of a strange attractor, can
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Spine of
Cantor Book

Cantor ‘Book’ =" I
edge of antractor

Figure 13. A sketch of the Lorenz strange attrac-
tor. The state of the system wanders endlessly on the
attractor, getting arbitrarily close to previous posi-
tions but never staying close. Once the state moves

away from rest {(origin), it 1s sucked towards one of
the two fixed points but 1s eventually flung away
from it, to be suckled by the other fixed point and so
on (compare figure 9a). Near the origin the attractor
resembles a book-like object with infintely many
sheets of zero thickness, constituting a Cantor set, 1t
the space shown is chopped into cells of given size,
and the number of cells containing the attractor
courtted up, 1t 1s found that as the cells get smaller
the sum increases more rapidly than the inverse
square of the (linear) size of each piece, and (of
course) less rapidly than the inverse cube. The
attractor therefore occuples more ‘room’ than a
surtace but less than a solid in three-dimensional
XY Z-space: it i1s i1n fact an object with a fractional

dimension (approximately 2.06 in the Lorenz
case)®, [0 : State of rest; ® : Fixed points].

be described in simplified terms as follows:—
Suppose we take a cup of coffee, stir it and let
go, then usually the flow comes to rest after a
while. That is, the stable state of motion for the
conditions of this familiar early-morning fluid-
dynamical problem is one of rest. To put this
result in a little bit of jargon the state of rest is
an “attractor” for this problem, in the sense
that all ncighbouring states tend towards one
of rest eventually. (Compare the behaviour ot
the quadratic map in figure 11 for R < 3.)
There are other conditions, or nonlinear sys-
tems, in which the solution eventually 1s not
oite of rest but rather one of steady oscillation
with a fixed amplitude, which we have already
introduced as a limit cycle. Limit cycles have
the property that no matter where you start
your motion, within a certain range of initial
conditions, the system eventually settles down
to a state of steady oscillation. Both of these
are attractors: the state of rest is an attractor of
dimension O (potnt), limit cycles are attractors
of dimension 1 (curve, in a sujtable space of
states). We can also have an attractor of



Current Science, Julv 5, 1987, Vol. 56, No. 13

043

dimension 2. In state space, this would corres-
pond to a torus i.e. an object shaped like a
vadé or donut. Here the state of the system s
capable of two different kinds of closed
trajectories, going around the torus either
along its major circumference, so to speak, or
around the smaller one across it. What Ruelle
and Takens showed was that beyond these
three possibilities there is a fourth, in which the
point denoting the state of the system wanders
forever without lying on any particular surface,
getting quite close to previous positions at
various times but never staying close to any
point or cycle (compare our results with the
tent map, table 1). It was suggested that
turbulent fluid motion 1n fact represents such a
strange attractor of the Navier-Stokes equa-
tions. The Lorenz system showed one of the
first such strange attractors, although tt was not
so called at the time of the discovery,; the
nature of the strange attractor in the space of
the variables X, Y and Z in the equations 1s
shown in figure 13. (One may wonder whether
the strange attractor idea would have been so
popular i1f 11 had been called something else,

Log (power spectral density)

0.1 0.2

e.g. singular fractal sink!)
THE TROUBLE WITH DYNAMICAL CHAOS

Although these new viewpoints are exciting
and promise fresh insights into the problem of
the development of chaos in fluid flows*, we
must remember that there are many difficul-
ties—some of them not even faced yet by the
new approaches. Let me give just three exam-
ples of the serious inadequacy of all currently
known models. The first 1s that in all of these,
chaos develops at low frequencies, beginning
by the appearance of energy at subharmonics
of a basic fundamental frequency. This 1s
illustrated e.g. by the spectrum of X(r) in the
[orenz model (figure 14). Butn all fluid flows,
a characteristic feature of the final transition to
turbulence is the appearance of high frequency
chaos following what 1s known as the cascade
process. The filling of the spectrum at long
waves, from slow or ‘infra-red’ chaos, does not
explain how the short waves (high frequency
oscillations) that are the true signature of

turbulent flow arise. A second problem is that
in most of these theories the critical value of

0.3 C.4 0.9

Frequency
Figure 14, The power speetral demsity of X i the Torenz ssstem (hom Farmer e al ).
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the parameter, like the Reynolds or Rayleigh
number at which the onset of chaos 1s pre-
dicted. is related directly to the values at which
the initial instabilities appear. On the other
hand, we know from observatians extending
over many decades now that there is no unique
critical value for the parameter, but rather that
its value depends strongly on the external
disturbances in the flow. For example In
transition on a flat plate, the critical Reynolds
number can vary from less than 10° to at least
something like 5 X 10°, if not even higher,
depending on the disturbance level (figure 15).

Finally, and to me most disconcertingly,
these models that behave in such strangely
attractive ways at moderately large values of
the parameter do not in general preserve that
trait for higher values. Thus the Lorenz attrac-
tor loses its strangeness at higher Rayleigh
numbers: beyond r = 50 chaos disappears, and
the solution 18 a simple and rather tame limit
cycle once again (Sparrow®”)! And that seems
totally unphysical.

These difficulties are so serious that one 1s
tempted to wonder whether dynamical chaos is
related to flow turbulence at all. The only way
that the current position can be viewed, it
seems to me, is that it has raised the sigmificant
question whether there are only a fimte num-

Figure 15. Dependence of the ‘critical’ Reynolds
number, marking the birth of turbulent spots, on the
disturbance level in the wind tunnels in which the
experiments are conducted®.

ber of ways in which chaos can arise. Are there
only certain “fundamental modes” of transi-
tion, wrrespective of the situation in which
chaos occurs, whether in fluid mechanics, or
chemical kinetics, or aircraft motion at high
angies of attack or (if we dare) social systems?
Is there an analogy here to the relation
between all matter and the elementary parti-
cles (albeit the latter keep proliferating)?-—i.e.
are all transitions to chaos made up of com-
binations of such fundamental modes? Or is
the scenano different each time?

What we can say with confidence is that if
there are only so many possible routes to
chaos, they have certainly not all been disco-
vered yet. If there are as many different routes
as there are problems 1n which chaos manifests
itself, 1t would of course be disappointing. At
the present stage it appears as if the only way
to find out is to observe more closely how chaos
arises 1n each situation and construct the
simplest possible dynamical models in every
case. We are right now in the process of
formulating models which we hope will include
those basic features of turbulence that appear
to us crucial in fluid flows. How far such
models can go and what light they will even-
tually throw on the problem is still a very open
question, but it is certainly something that
should be very exciting to pursue.
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DST WORKSHOP ON *‘BIOSYSTEMATICS OF INSECTS OF IMPORTANCE IN AGRICULTURE,
MEDICINE AND FORESTRY’

A DST-sponsored workshop on the above theme
was conducted from 27-30th April with partici-
pation by senior entomologists from nearly 20 Uni-
versities and an equal number of young scientists.
Inaugurating the workshop, Prof. S. Krishnaswamy,
Vice-Chancellor, Madurai Kamaraj Umversity,
exhorted the participants to profitably use the
emerging techniques in biosystematic studies 50 as
to have a better and proper understanding of the
species. The twenty-five papers presented related to
tne role of ultrastructure, karyoiogy, biochemical
parameters, ecobehaviour and biogeography which
sufficiently emphasised the need for such an in-
tegrated approach in order to be able to meaning-
fully assess the increasing variations in the natural
population of insects of agriculturaj, medical and
forestry importance, more noticeably in such pests
species or vector species tending to exhibit what has
come to be known as ‘biotypes’ ‘siblings’ etc. Of
particular interest were the special lectures on
‘Molecular biology and biosystematics of insccts’ by
Prof. Kunthala Jayaraman of the Anna University;

‘LDH system as a tool in biochemical systematics’
by Prof. Kamalakar Rao of the Pachaiyappa’s
College, Madras and 'Raciation in Drosophila as
demonstrated by laboratory experiments’ by
Dr Ranganath of the Mysore University, which
discussed the emerging trends in the field of
biosystematics. The plenary lecture by Prof. T. N.
Ananthakrishnan of the Entomology Research
Institute on *The dimensions of species' highlighted
the need for indepth investigations on vanous
aspects involving diverse methodologies, to have a
mcaningful understanding of the concept of
speciation, more particularly in view of the
dynamics of the species.

Demonstration  sessions  on methodologies
involving  ultrastructure  study,  electrophoretic
studies for LDIT and proteins, Karyology etc were
atvo included. T. N. ANANIUAKRISHNAN
Entomology Research Institute,

Loyola College,
Muadras 61X 034.




