GENERAL ARTICLE

RESEARCH ARTICLES

Direct numerical simulation of the initial
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The initial evolution of a turbulent axisymmetric wake at
a macroscale Reynolds pumber of 1500 has been
simulated by direct solution of the unsteady three-
dimensional Navier-Stokes equations using a (temporal)
spectral scheme on the Flosolver Mk3 parallel computer
at NAL. A visualization of the flow IS presented in terms
of constant-vorticity surfaces. The simulation shows a
complete sequence of events from formation of vortex
rings through generation of azimuthal instability and
appearance of streamwise structures to eventual break-
down into turbuleat fow, and reveals explicity
certain interesting features of the development of
streamwise YOTticity.

TursuLENT flows continue to provide the greatest
challenge in studies of fluid dynamics, in spite of more
than a century of scientific effort that has resulted in the
acquisition of enormous amounts of experimental data
and the formulation of many theoretical approaches’.
The chief reason for the lack of any satisfactory theory
to-date is that the Navier-Stokes equations that govern
turbulent flows are nonlinear, and no exact solutions
are known that may be relevant to an understanding of
turbulence for any geometry. Experimental studies have
thrown considerable light on various aspects of
turbulence phenomena, but not all physical vaniables of
interest are accessible to available instrumentation.
Among the most prominent of these is the vorticity
vector, whose three components are difficult to
measure, especially with the resolution required to
acquire the finest viscous scales. Complete measure-
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ments of such vector ficlds over a three-dimensional
domain are till today virtually imposstble,

When feasible, direct solution of the full, unsteady,
three-dimensional Navier-Stokes equations (which we
shall abbreviate to DNS, often also standing for direct
numerical simulation), can provide the kind of complete
data that experiments cannot. In particular, such
simulations yield instantaneous pictures of any flow
variable over the whole computational domain, but are
very demanding on computer power and memory
because of the need to resolve the wide range of length
and time-scales encountered in turbulent flows (see
Reynolds? for a recent review: the ratio of scales to be
resolved increases like the 3/4 power of the Reynolds
number (Re) of the flow). At present, DNS 1s usually
performed on 64° or 128° grids, although 256° and
5122 grids have been occasionally attempted. If N is the
number of grid points along any space direction, then
the number of operations per time-step? is typically of
the order of

75 N3 log, N+ 100 N°,

For a 100 MFLOPS computer with careful programming,
the CPU time required per time-step for homogeneous
turbulent flow simulation 1s about 3 minutes at a
Reynolds number (based on the turbulent macroscale
and velocity scale) of 100, and 9 hours at a Reynolds
number of 400. A typical simulation of fully developed
turbulent flow takes 5000 or more time-steps. It 1s thus
clear that such simulations need substantiali computing
power, and have been attempted only where super-
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computers are easily available, most netably in the US,
Germany, Japan and France,

With the availability of the third generation (Mk3) of
the parallel computers 1n the Flosolver series developed
at the National Aeronautical Laboratory (NAL), the
computational power needed to undertake such a
project has now become available in India*?. The
purpose of the present article is to demonstrate one
such direct Navier-Stokes solution for the interesting
problem of an axisymmetric turbulent wake, and to
present preliminary answers to certain important
questions about vorticity generation in the {low.

The evolution of an axisymmetric wake has long
posed some intriguing questions of both fundamental
and practical significance. It is well known that a wake
breaks down to turbulence at relatively low Reynolds
numbers, in particular when the body producing the
wake has salient edges from which thin shear layers can
emerge in the flow. A classical approach to fully
turbulent flow seeks the so-called self-preserving
solutions, which predict for the axisymmetric wake {as
discussed by Townsend®, for example} that the
thickness 0 of the wake and the maximum velocity
defect wy (Figure 1) vary with downstream distance z as

§~ 213, -2/3

Wo~ 2
These telations have been supported by the experiments
of Hwang and Baldwin’. It will immediately be seen
that the local Reynolds number of the flow, Re=w, d/v
(v is the kinematic viscosity), decreases with distance
like z7 Y3, Thus, while the wake undoubtedly achieves a
fully turbulent state fairly close to the body at even

-
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modest Reynolds numbers, it would appear that it
should revert to the laminar state sufficiently far
downstream! Ailthough the approach to the laminar
state should be extremely slow because it 1s dissipative
(see Narasimha and Sreenivasan® for a discussion of
this point), the possibility of a single flow that
encompasses instability, transition to turbulence, a
more or less mature turbulent state and eventual
relaminarization oflers a rich variety of phenomena to
comprehend. There is also the important question of
the extent to which the wake remembers the body that
generates it. This question is not only of fundamental
significance in turbulence, but has practical importance
in attempts to detect the presence and characteristics of
a body by sensing its far downstream wake.

From the computational point of view, the axi-
symmetric wake has the convenient property that
(because its Reynolds number decreases downstream)
the demands on resolution will also diminish with flow
development, in contrast to most other flows that have
been investigated so far.

For all these reasons an axisymmetric wake is an
intriguing flow whose exact simulation promises to
throw much light on a variety of questions. We confine
our attention in this article to the generation of three-
dimensional vorticity as the {low breaks down into
turbulence.

The spectral scheme

Of various methods used for direct numerical simula-
tion of turbulence, the spectral method has the
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Figure 1. A sketch of a typical three-dimensional axisymmetric wake behind a ding, The flow is alung 2. The nwan stecamwisg

velocily and the velocity defect profiles are shown on the right.
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advantage of rapid convergence because of the
cvponential decay of errors (compared to algebraic
decay n the finite-difference method, for example), but
is difficult to adopt for complicated geometries. For the
simulation of transinonal flows accuracy is not a luxury
but a necessity?, so the spectral scheme 1s to be
preferred. It has been extensively treated by Canuto et
al?: the methad that we shall adopt, first proposed by
Orszag®, will be briefly described here.

The Navier-Stokes equations for the flow of an
incomnpressible fluid in three dimensions can be written
as

2

VG YV D= — Y pix )W v(x, 1),

if
(1a)
V(v =0, (1b)

where vi(x.1)=(vy. 5. 12} is the velocity field in a three-
dimensional space defined by the vector x=(xy,x,, x3)
and p is the pressure normalized by density. We choose
a boundary condition with a period 2z in all three
space directions, so that

v(xt+2ne f)=v(X, 1) (2)

where e={e,,€,5.¢3), €,=0, =1, £2,..., ©r «=1,2,2%
Given an initial condition such as

VX, 0)=v,(x), (3)

the problem is to compute the evolution of v(x, ) and

pix.1).
The solutions are written in the form of the Fourier
expansions

v(x,r)=z u(k,rjekx, (4a)
k< K

pix,)= Y q(kne*x, (4b)
k< K

where k=(k,, k,,k3) is an integer wavevector, k*=k_k_,
K=N/2 1s a finite cut-off, and k< K means
—K <k, <K for x=1,2,3; u(k,?) and g(k,t) are the
Fournier- (or k-} space representations of v(x,f) and
p(x,1) respectively. The Navier-Stokes equations in
Founer-space can then be written as

ﬂ

{%u (k.t)= —ikqg(k,0)—[v{x,1)- V¥ (x,0)], — vk*u(k, 1),
(3a)

tk-uik,f)=0, (5b)

where the subscript k 15 used to imply that the entire
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expression within the brackets 1s to be evaluated in the
Fourier space. Using the incompressibility condition
((equation (5b)), we can eliminate the pressure term from

equation (5a), and obtain” along any space direction
af{x=1,2,3)

;f—t u (k)= —vk*u_(k, t)—
!
E xfly (k) m+z||= K uﬂ (m! t) u‘_p (na t )& (6)
mn<k
ko u,(k,t)=0, (7)

where
P (K)=kg (3,,— k, k?/kz) +k, (6,5 k, kﬂ;’kz), (8)

and the repeated Greek subscripts are summed over the
range 1,2, 3.

The convolution sums Zuw,u, in equation (6) are
responsible for all the complexities of the spectral
scheme. To compute such terms accurately in Fourier-
space using matrix-multiplication is very time-consum-
ing. In an alternative device due to Patterson and
Orszag'®, which simplifies this calculation, the compo-
nents of the above convolution sums in k-space are first
transformed using Fast Founer Transforms (FFTs) to
physical- {or x-) space where the multiphications are
performed; the results are then transformed back to k-
space agam using FFTs. Because of the high speed of
FFTs, this entire operation can be done significantly
faster this way than through matnx-multiplication in k-
space.

This method suffers from the difficulty that the
computed convolution sum, when transformed back to
k-space, has ‘aliasing errors’ that result from the
truncation of an essentially infinite Founer series to a
finite number of terms> °, Fortunately, these errors can
be removed completely by certain special techniques, of
which the ©2/3rd rule’® has been used here. This involves
truncation in k-space so that only such wavenumbers
for which

k<{2/3)K, (9)

are retained.

For integrating in time, we have used a third-order
accurate Runge-Kutta scheme to start the computation,
followed by a predictor—corrector scheme for [urther
time-ntegration.

In what follows we shall use cylindrical (r,¢,z) or
Cartesian (x=r cos ¢, y=r sin ¢, z) coordinate systems
as convenient. The corresponding velocities are (,,vy, W)
and (u, v, w) In the two systems.

The initial conditions are set up such that we have a
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tubular shear layer at time t=0, with a top-hat veloaity
profile across the thickness ¢ of the tube, given by

w=}}_ forr>ro+o/2
=) forr £ry—a/2

= ,./2} (1 +tanh {(r—ry)/20) for ro—0/2<r<ry+¢/2,

(10)

and tanh (do/)x1; W is the free-stream velocity, rq is
the initial radius of the wake and ¢ 1s the momentum
thickness of the shear layer. We 1mpose a small
perturbation on this shear layer corresponding to an
mcrement in the radial component of velocity ¢, given

by

Av,=a, sin{mz +y)+a, sin{ng+,), (11)
with prescribed amplitudes a, and a, and phases y, and
V4. In the present computations, we have put in three
streamwise modes (corresponding to m=1, 2 and 4) and
the first 16 azimuthal modes, all the latter with very
small amplitudes and random phases.

The free-stream velocity at t=01s W, =1, and the
centreline velocity defect wg i1s also equal to 1. The
computations are made in double precision on a 64°

grid, the computational domain having the size 2x in all
three directions.

Parallelization

The spectral algorithm for solving the Nawvier-Stokes
cquations cannot be parallelized profitably using the
domain-decomposition technique'', so effectively used
with the finite-difference and finite-element methods.
One option is to parallelize the FFTs themselves, since
they constitute a sizeable fraction of the calculations.
This approach is most appropnate for butterily-
connected parallel machines such as NCUBE, on which
Pelz!? parallelized a spectral algorithm  this  way.
However, the approach does not distribute the memory
requirement equally between processors, and so is
wasteful on the Flosolver in which the available
memory is ¢venly distributed.

The ease of paralielizing matrix-multiplication on
some machines, especially with a large number of
nrocessors, has led to the adoption of matrix multi-
plication by some previous investigators'>'* to compute
the convoluetion sums in equation (&) On a mull-
computer with a small number of processors such as the
Fiosolver. however, matrix-multiplication 18 inefllicient
compired 1o the FFT-based algorithm ol Orszag.

Keeping in mind these factors, we have chosen to
develop an algorithm that distnibutes the memory
reguitement and the computing load cqually between
different processors, thus casing the process of bus-
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synchronization!> 16, This algorithm computes the
evolution of each of the three velocity components in a
different processor. The evolution of any velocity
component 15 of course not independent of the others
because of nonlinearity, and hence 2 certain amount of
data transfer between different processors is necessary.
in the present computations, this transfer is made n
large blocks, and is a fast operation due to the presence
of dedicated message-passing co-processors in the
Flosolver architecture. As a consequence, mast of the
time could be devoted to the actual computation itself,
and a parallelization efficiency of up to 97% has been
achieved. The finer details of the parallel algonthm
have been published separately’® ¢ and will not be
repeated here.

Kert!’ performed similar calculations on a single-
processor Cray-XMP for isotropic turbulence, and
reports a CPU time of 3.25s per time step. Using the
present algonthm and the same time-stepping scheme
as Kerr, the CPU time 1s about 8 s on the 3-processor
Flosolver Mk3, ie. the sustained computational per-
formance is about 40% of that of the Cray-XMP*!>. It
will be possible to attempt finer grids (and higher
Reynolds numbers) 1n [uture as the Flosolver is
augmented further.

Results

The present computer code has been validated against a
published calculation of an axisymmetric jet!®. In
addition, we have computed the divergence of the
velocity at different times and found 1t to be of the same
order as the computer precision. Since equation (6) can
be solved without appeal to equation (7), the pursistence
of the divergence-frce condition over time provides
another indicator of the uccuracy of the present
simulation,

We present comparisons, in Figures 2 and 3, of the
computed shape of the mean velocity distribution and
wake thickness with measurements’. The agrecment 18
scen {0 be reasonable; the thickness 1s stownly tending
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Figuore 3. The computed growth of the wake along with the ‘scl-
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i ) . (e = —T).
towards the self-preserving solution, in a manner

consistent  with the slow approach observed in the
experiments.

We now show some computer visualizations of the
flow. When a selected variable is shown over the whole
computational domain at some prescribed tme, the
picture is best interpreted as a representation of a short
ime history of the variable at a given station in z, this
correspondence becoming more nearly exact as we
morve further downstream in the wake. In Figure 4 are
shown two equivorticity surfaces (absolute magnitude)
at time t=35. The initial shear layer has rolled up by
this time into four vortex tings, which are not identical
because of the streamwise perturbations imposed in
modes m=1.2 and 4 (see equation (}1)). By time 1=20
(Figure S}, the rings pair and there are essentially only
two vortex rings in the domain. These rings develop an
azimuthal instabifity in the manner studied by Widnall

et al.'9, and the strain field between the rings gives nse
through longitudinal stretching to streamwise vortex
structures. Al later times (Figure 6) the vortex rings
break down and the strcamwise vortex structures
dominate. At =50, which is at the end of the present
computations. the flow begins to show features
indicative of fully developed turbulence, such as the
emergence of small scales.

Figures 7a.b show typical streamwise and transverse
sections of the vorticity distribution. Note that there are
patches inside the wake where the flow is very nearly
irrotational. The fractal nature of the edges is evident,
and bears a strong qualitative resembtance to published
pictures of jets?®: no similar studies of axisymmetric

Figure 4. Surlaces of constant vorticity magnitude m at Gme (=3

Figure 6. Surfaces of constant vorticity magmiuce  ana streamwise
given by yellow {m=05) and red (=275} (respectively sbout 10% vortcity . at time r=50, yellow {w=1), red {w,=03) and bluc
and 50% of the pcak vorlcily obuverved at this ime} (.= =05}
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Figure 7. Typical distributions of the vorticity magnitude  at time
t=50 over a str ise (4} and (B) cross-section, In the
figures, the vorticity strength increases from light blue (w=0.25) to
red (&o=3) in steps of 0.25,

wakes at moderate or high Reynolds numbers are
known to us. Most reported flow-visualization
studies?’22 are limited to low Reynolds numbers
{about 300 based on the macroscale), at which the near-
wake shows helical instability. On the other hand,
Simmons and Dewey?? show pictures of the wake of a
disk at a Reynolds number of about 5000, indicating
nearly axisymmetric vortex shedding. In laboratory
studies small non-axisymmetry or tunnel noise may
trigger helical instabilities. In our computation no
helical mode was initially excited, and the noise level is
much less than that encountered in laboratory facilities;
thus the initial axisymmetric vortex shedding and the
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absence of helical modes even at =50 need occasion
no surprise.

We finally present (Figure 8) an analysis of the
evolution of the enstrophy Q;(= fw?; @ is the vortcity
vector, and integration is over the whole computational
domain). At =0 the vorticity is entirely azimuthal: the
total enstrophy Q=2 drops steeply with time as the
initial shear layer grows, and reaches a minimum at
t2125. Around this time the streamwise enstrophy Q,
starts becoming noticeable. Thereafter both Q and Q,
increase to a maximum, reached respectively at t>~27
and 30. At later times both enstrophies start dropping,
but their ratio appears to be settling down to a nearly
constant value of about 1/3, approaching equipartition.
This non-monotonic variation of the component
enstrophies as the flow evolves towards self-preserva-
tion adds an interesting twist to what has always been
an intriguing problem.

Conclusion

We have presented a temporal simulation of the initial
evolution of an axisymmetric wake at Re=1500 on a
64* grid without any subgrid-scale turbulence modelling.
Towards the end of the present simulation, the wake
begins to show behaviour characteristic of turbulence,
such as the emergence of small scales i the flow. To
establish a self-preserving state (if indeed it exists) we
need to continue the present calculations for a longer
time, and this is being currently done.

The initial development of the wake reported here 15
qualitatively similar to what is known from laboratory
studies of axisymmetric wakes™2!™ 2% At such carly
times, however, the evolution of the flow is stronglh
dependent on the precise initial conditions used. and
one should not look for exact correspondence with any
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Figure 8. Fvoluton over tune of he totdl enstrophy . the
stresmwise enstrophy £, and the rane Q£
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one evperiment  The essential qualitative features such
as formation of nings and their subsequent breahdown,
along with the evolution of strcamwise structlures, are
ohserved very clearly m the present simulation. The
distinct advantage of such stmulations is that, unlike in
experiments, we are able to obtdin accurate mstantancous
pictures of the entire flow field.
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