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Turbulence: waves or events?*

R. Narasimha

Turbulent flows, whether in technology or nature, are generally characterized by shear in the
mean velocity, indeed the mean flow is often driven by turbulent fluxes of momentum, energy, etc.
To describe the time series of such fluxes, the stochastic tools in current use, such as generalized
harmonic analysis and (more recently) wavelets, are inadequate as they do not provide assess-
ments of contributions to the mean (rather than the mean square) of a sign-indefinite quantity like
the flux. Recent analysis of momentum flux in the atmospheric surface layer has shown however
that an episodic description is both feasible and more natural for the flux process, which to a first
approximation can be described as a ‘chronicle’ of signed two-parameter events. In this view flux
is generated in short intense bursts; a parameter called burstiness, which is a measure of
temporal compactness in contributions to the mean (and varies from zero when flux generation is
evenly distributed in time to unity when the chronicle is a sequence of delta functions), has a
value of 70-80% in a neutral atmospheric surface layer. Furthermore, it is found that the motions
are productive (for flux generation) about 35% of the time, counter-productive for about 15% of
the time, and essentially idle (with weak motions cancelling each other out) at other times.

THE classical description of a turbulent flow field is in
the language of generalized harmonic analysis,
developed in particular by Norbert Wiener!, whose birth
centenary we observe this vyear. Elements of this
approach had informed earlier work on turbulence by
G. 1. Taylor’, but the formalism established by Wiener
(and by Khintchine in the USSR) in the 1930s had a
decisive influence on later work; it led to an intense
effort over several decades to develop a statistical theory of
turbulence. The seminal work of Kolmogorov’, who
argued that the power spectral density of the turbulent
energy should depend on the wave number & like k2, in
the so-called inertial subrange of wave numbers, and the
spectacular support it received from careful measure-
ments in the oceans (Grant ef a/.*), appeared to confirm
the usefulness of generalized harmonic analysis as a tool
for understanding turbulence. The books by Batchelor’
and by Monin and Yaglom6 made a large body of results
on such a statistical theory widely available,

The heart of this description is the expression of any
turbulent fluctuation, e.g. the velocity u’, as the integral

w'(x, ) = exp{i(k-x - w)} dZ (k, w), (1)

where the exponential represents a wave of frequency
and wave number k, and dZ represents (the Lebesgue
measure of ) an infinitesimal amplitude corresponding to

oy

ol —

ek - A,

R Narasimha s in the Jawaharlal Nchru Centre for Advanced
Scienufic Research and Centre for Atmospheric Sciences, Indian
Institute of Science, Bangalore 560 012, India

*Text of the presidential address delivered at the Diamond Jubilee

Mecting of the Indian Academy of Sciences, 30 November 1994,
Bangalore

CURRLNT SCIENCE, VOL 68, NO I, 10 JANUARY 1995

given o, K. Basically the field is seen as a superposition
of waves, whose amplitudes however have to obey
certain conditions to permit us to define a meaningful
'spectrum’, which teils us the contribution to the
turbulent energy 4 (u’”) from each infinitesimal range of
waves. In single-point measurements (which are themost
common kind), 1t is the temporal frequency represen-
tation (in terms of w) that is directly acquired. When the
field is statistically homogeneous in space, a description
in terms of the wave-number vector k has been preferred.

The insights of Kolmogorov and Taylor, while
illuminating (see Narasimha’ for a critical discussion),
did not however lead to any real solution of the
problem, and eventually the reservations that had always
been felt about the spectral mode of description came to
the fore. In the first place, each of the elementary
‘waves’ that add up to describe u” in equation (1)
extends all the way from —oc to +oo along €ach coordi-
nate axis. Although it is common to speak of ‘eddies’ as
being associated with each k, the infinite extent of each
wave goes against the intuitive notion of an eddy as a
structure of some kind that has a finite extent in space
and a finite life-time, Secondly a spectral description,
with its emphasis on contributions to energy, averages
over the phase differences between waves. Both these
rescrvations have grown stronger over the last two
decades, as evidence has accumulated that in turbulent
shear flows there can be a considerable degree of order,
and that ‘coherent structures® in the flow are of great
importance in understanding its dynamics®®. We shall
return to the subject shortly, but must note here that the
homogencous isotropic turbulence that 1s such 2
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Figure 1. Effective eddy viscosity tor turbulent motions in the
atmosphere (based on the data of Momin®).

favourite idealization in much statistical theory is never
encountered in nature or technology. Indeed some
ingenious attempts have been made to ‘manufacture’
1sotropic turbulence in the laboratory ', but it has been
found that it is hard to preserve isotropy even when it
has been created at one time or location.

Most turbulent flows that one has to deal with in real
life actually possess shear, i.e. are characterized by
gradients of the mean velocity. This is true as much In
technological applications as in the atmosphere and the
oceans. The dynamics of the mean flow is In general
dominated by turbulent transport: the mean velocity,
e.g., may be thought of as being driven by the Reynolds
stresses, which are proportional to mean values of
products of velocity fluctuations. In the case of a simple
two-dimensional shear flow in a thin (boundary) layer,
the momentum equation for the streamwise mean
velocity in an incompressible fluid may be written as

ou _du _odu 1dp 3 3 —

=t U =—F W= ———+V ——u'w, (2)

dt dx dz pdx  py2 0z

where u,w are the mean flow velocity components
along x and z, p the mean pressure, p the density, v the
viscosity and u’, w* the velocity fluctuations along and
normal to the dominant mean flow (x and z directions
respectively). The w’w’ term represents the Reynolds
stress or the eddy momentum flux, which dominates the
viscous term preceding it except near any solid surface that
may be presentin the flow. In shear flows it 1s the Reynolds
stress term that characterizes turbulence: and it is the
assoclated fluxes that we are after, more than anything else.

It 1s necessary to realize that these fluxes can be
enormous. An ad hoc way of handling them is to assume
a flux-gradient relation of the same type that, in the
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Figure 2. Typical traces of honzontal velocity from cup anemo-
meters at different levels on a 10 m mast'' (The vertical separation

between anemometers 1s approximately logarithmic in height )

kinetic theory of gases, leads to the familiar molecular
viscosity v. Thus we may put
ou

-uww=v, —

‘' dz

in a thin shear flow (without taking too seriously for the
moment the implied localness hypothesis that we know
to be generally wrong in turbulent flows). Figure |
shows values of the eddy viscosity v, estimated by
Monin® as a function of the scale of motion; these data
are from the atmosphere. It is seen that the eddy diffusi-
vity is strongly scale-dependent, and at the large scales
may be 10! times the molecular value! Large-scale tur-
bulent motions are thus superconductors of momentum
(and heat): if there were no turbulent transport,
temperature contrasts on the globe would be much
stronger than they are.

Given that the fluxes are so important, it 1$ surprising
how little work has been done to understand the
structure of flux time series. Generalized harmonic
analysis does not appear to be a good tool here, for one
fundamental reason. Our interest i1s in finding out how
turbulent motions contribute to the mean flux — u’w’,
which can in general be positive or negative. (It is

essential to note that the fluxes are not sign-definite,
unlike quantities like kinetic energy and dissipation )
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Figure 3. Typical traces of horizontal and vertical velocity fluctuations and their product''; the mean value of the

product is shown by the full line in the top panel.

The spectral approach is able to describe contributions
to positive-definite quantities like u’2; it might be of
some use if we wished to analyse the quantity

2
(v w—-uw),

but not the quantity u’w’ 1tself.

I want to describe here an attempt that we have
recently made'' that enables us, for the first time, to
represent the flux time series as a different kind of
stochastic process.

We have already mentioned briefly the importance of
coherent structures in turbulent shear flow. Although
single-point measurements do not usually suggest any
obvious order in the signal, simultaneous measurements
at several points can often unmistakably reveal the
presence of coherent motions. An example is shown in
Figure 2, which presents a set of six traces of the
streamwise velocity from sensors strung along a mast of
30 m height to probe the atmospheric surface layer.
(These measurements were made in 1990 at Jodhpur as
part of a national project called MONTBLEX - for the
Monsoon Trough Boundary Layer Experiment'?) These
data leave no doubt whatever about the strong coherence
of the motions, at least over a 30m height! (The
coherent scales are often even larger.)

CUKRENT SCIENCE, VOL. 68, NO 1, 10 JANUARY 1995

Given such coherence in turbulent motions, we first
seek to identify any ‘patterns’ that may be present in the
flux signal. After the earlier mention of eddies of finite
size and life, it might seem that wavelet analysis might
provide just the tool we are looking for. Wavelets have
been discussed at length recently'™', and have some
very attractive properties for use in stochastic analysis.
But there are several difficulties with wavelets as far as
flux analysis is concerned. First of all, the shape of the
wavelet, or the mother wavelet, can have widely varying
forms, subject only to the satisfaction of certain
admissibility conditions, one of which is that its mean
must be zero. It therefore follows that wavelets cannot
be expected to depict a contribution to the mean flux.
Furthermore, if the true pattern in the time series of
interest — assuming one exists—1s different from
admissible mother wavelets, we cannot expect an
efficient or optimum description to emerge, Finally,
wavelets also obey a Parseval theorem, so irrespective
of the mother wavelet chosen, a superposition like (1)
will add up to the energy of the motion, and in fact we
are back to looking at sign-definite quantities: as we
have already seen, such a tool cannot answer the
question raised earlicr about sign-indefinite tluxes.

Before proceeding, let us look at a typical flux signal,
which is shown in Figure 3, along with its mean over a
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Figure 4. Profiles of positive and negative flux events, in
normalized variables'!,

period of 10 min. The first striking fact i1s that the
fluctuations in the instantaneous flux are violent: values
that are twenty times the mean are common, and those a
hundred times the mean are not rare! Recalling how
large the mean fluxes involved are, we see that the
atmosphere has to work very hard indeed to produce the
superconduction of Figure 1!

Are there any patterns in the signal of Figure 3?7 After
trying several techniques for detecting events—
including wavelets, variable interval time averaging,
quadrant analyses etc. — we have recently come to the
conclusion'' that the best procedure is a very simple one
indeed — namely that of looking for fluctuations that are
intense in some sense. That is, we select a threshold,
look at the fluctuations above this threshold, and
average over all of the intense events that stand out to
see 1f any shape or pattern is revealed. This kind of
‘conditional’ averaging makes sense especially if the
final results are not sensitively dependent on the
threshold level chosen; and in the present case this
indeed appears to be so, as any threshold below that
corresponding to one standard deviation in both velocity
components leaves the final picture unaltered. We thus
arrive at the conclusion that, when appropriately
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Figure 5. Amplitude of flux events as a function of thewr duration'’.

normalized, a well-defined flux event profile (or shape)
can indeed be identified (Figure 4). An event can
contribute to the mean flux positively or negatively — so
we first define their profiles separately, but are pleased
to discover that they are approximately mirror reflect-
ions. At the present stage of our work, it 1s therefore a
sufficiently good approximation to say that there 1s only
one shape — but that each event carries a sign with it.

It will be seen that the event-shape that emerges 1s
rather like the Mexican hat that has become famihar
from wavelet studies, but there is a cructal difference:
unlike the Mexican hat, the profile seen in Figure 4 has
a non-zero mean (as it must) — it may be called a heavy
Mexican hat., However the wings of the profile are rather
fuzzy, and we have tentatively ignored them till further
work leads to more definitive data.

Two parameters then describe each event: its duration
in time, and its amplitude — say the peak value of the
flux during the event. These parameters seem
uncorrelated with each other (Figure 5), so we need
both. Using the integral under the profile curve, we can
also define the magnitude of the event as the
contribution made to the mean flux by the event: the
magnitude can also be signed.

All of this suggests the idea that an ‘episodic’
description of the flux process may be feasible. A
eraphic way to display this episodi¢ character is what
we have called the burstiness diagram'>'® (Figure 6).
Given a stretch of data that has been analysed into
events, one orders them down from the biggest (i.e.
largest magnitude or contribution to flux). Then one
computes the cumulative contribution to the flux down
the list from the biggest events, and their cumulative
duration as well, and plots them as in Figure 6. The
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Figure 6. Burstiness diagrams''.

curve that results (Figure 6 a) typically rises steeply
from the origin, overshoots the 100% flux mark, reaches
a peak and drops down; eventually the small events left
(below the threshold) make little contribution to the
flux, so the curve reaches 100% time on a flat trajectory.
The interpretation is simple. Positive flux events, lasting
only a fraction of the time, generate rather more than the
net mean flux during the time, and negative events,
lasting an even shorter fraction, cancel out the excess
and reduce the net flux to nearly 100%. Over the rest of
the time not much flux is generated overall. Reading
numbers off Figure 6, we could say that, as far as the
momentum flux is concerned, the atmosphere (under the
conditions prevailing at the time when the data in
Figure 6 were taken) was productive about 35% of the
time, counter-productive about 15% of the time, and idle
about 50% of the time ~ a pattern that might remind us
of how many human organizations work! The numbers
given are characteristic of the atmosphere when it is
neutrally stable; when conditions are different the
numbers do change appreciably'’,

A second type of burstiness diagram (Figure 6 b) is
somelimes useful. Here the events are ordered down
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kFigure 7. Trace of the raw momentum flux signal (bottom), together
with the equivalent chronicle of flux events (top)''

according to the absolute magnitude of the event (i.e.
ignoring its sign). Then the overshoot seen in Figure 6 a
is absent. The area between the burstiness curve and the
45° line, suitably normalized, yields us an index that
tells us how ‘bursty’ the flow is. If the index (which we
call the ‘burstiness’"”) is unity, all flux is produced in
events of zero duration, i.e. the flux signal is a sequence
of delta functions; if the index is zero, flux generation is
evenly distributed in time. Under neutral conditions the
burstiness in the atmosphere is found to be about 70—
80%.

It is now possible to replace the raw flux signal by
what we have called a chronicle of events!""", as in
Figure 7. This brings a description of the flux signal to
that of a special kind of ‘point process’ "7 rather than the
generalized harmonic analysis that has been the
traditional tool. Once we adopt such an episodic
description, the questions that naturally arise become
entirely different; what are the distributions of the
magnitude and duration of events? what are the arrival
times? how are these paramcters affected by stability?
how well are they corrclated over the scale of the tlow?
And so on. Answers to some of these questions are now
beginning to be available''.
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Incidentally, we appear to have here, for the first time,
an objective way of distinguishing ‘active’ from
‘passive’ motion, a concept that was introduced by
Townsend'®. The very simple criterion we have found is
that Jlow fluctuations (typically less than a standard
deviation in the velocity components) contribute little to
the flux, and could perhaps be identified with passive
motion; the more intense fluctuations are ‘active’ in the
generation of flux. An attractive possibility is that the
passive motion is best described in the language of
waves, whereas the active motions — productive or
counter-productive — are best seen as a series of events.
So I suggest a tentative answer to the question in the
title that turbulence can be both waves and events — but
the waves are passive, and all the flux comes from the
events, which (to a first approximation) are always
members of a signed two-parameter family, with the
positive events outnumbering and outlasting the
negative ones in a neutrally stable flow.
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