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In 1943 Kosambi published a paper titled 'Statis-
tics in function space' in the Journal of the Indian
Mathematical Society. This paper was the ¯rst to
propose the technique of statistical analysis of-
ten called proper orthogonal decomposition to-
day. This article describes the contents of that
paper and Kosambi's approach to the subject. It
was only in 1967 that it began to be appreciated
that the method that had gained wide currency
in several ¯elds under di®erent names was ¯rst
set out in Kosambi's 1943 paper.

There is a powerful mathematical tool in statistical anal-
ysis that is widely used in a variety of disciplines under
a variety of di®erent names. It is familiar in °uid dy-
namics as Proper Orthogonal Decomposition, in meteo-
rology and other related ¯elds as Principal Component
Analysis, in more mathematically oriented studies as the
Karhunen{Lo¶eve Expansion and in other ¯elds as Em-
pirical Orthogonal Functions. It is not so widely known
that the technique was ¯rst proposed and described by
Damodar Dharmananda Kosambi (1907{1966), in a pa-
per titled `Statistics in function space' published in 1943
in the Journal of the Indian Mathematical Society [1].
(There was an `exploratory' paper in Current Science
in 1942 [2].) The reason that it appears under di®er-
ent names { but none acknowledging the original dis-
coverer of the method { is that it seems to have been
independently rediscovered by several others during the
decade following Kosambi's paper. The tool evidently
tackles a problem that has been encountered in numer-
ous disciplines. The present article brie°y describes
the background to Kosambi's pioneering contribution
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without going into the mathematics of the discovery in
any formal detail.

But ¯rst let us describe the problem, which typically
arises as follows. In a large number of phenomena, oc-
curring in nature or created by technology, there are
quantities of interest that vary continuously in time
and/or space. For example, if we measure the velocity
of water being conveyed in a pipe at some ¯xed point
within it when the °ow is turbulent (as it often is),
the graph of velocity (say some component of it) ver-
sus time is a curve that depicts an apparently random
motion. And it appears to demand a statistical descrip-
tion. Similarly if we plot the rainfall or temperature at
any meteorological station, or process and control pa-
rameters in a chemical plant. All these are examples of
stochastic processes in time: what is obtained is a time
trace of some apparently random variable.

More generally, we can consider processes where what
is observed is best expressed as a function or curve. At
the time of Kosambi's paper, the statistics of variables
with discrete or continuous values (e.g., heads or tails
in tossing a coin, distributions of height among a sta-
tistically homogeneous population) had been well stud-
ied. What about those processes where the outcome is
a curve? Kosambi starts his paper with the sentence:
\The main purpose of this note is to develop statistical
methods for discrimination between samples consisting
of whole curves". Kosambi's question is about how to
do statistics if the sample space consists of curves, each
of which is a set of in¯nitely many values constituting
a function of some (one or more) independent variables
such as time and/or space. G I Taylor at Cambridge
had already introduced a statistical theory of turbulence
in 1935, and a spectral method of describing stationary
stochastic processes had been formulated by Wiener and
Khintchine in the early 1930s. Compared to these devel-
opments, Kosambi's approach seems more geometrical.

“The main
purpose of this
note is to develop
statistical
methods for
discrimination
between samples
consisting of
whole curves.”

– Kosambi
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Its basis is problem-speci¯c.

The paper starts by recognizing the importance of de¯n-
ing the `distance' between any two functions, say f(x)
and g(x) in the interval (0,1). Kosambi ¯rst proposes a
distance r(f , g) by the integral

r(f; g) = Á(f ¡ g)
=

Z
K(s; t)[f (s)¡ g(s)][f(t)¡ g(t)]dsdt;

(1)

where Á is a positive de¯nite quadratic form and K(s; t)
is a positive de¯nite or semi-de¯nite continuous sym-
metric kernel. He shows that this de¯nition meets all
the criteria for a distance measure. Now a multi-variate
normal distribution involving a distance Á is the de¯nite
integral of

(2¼)¡k=2e¡Á=2dV (2)

over a desired region, where k is the number of variables
in Á and dV is the associated volume element. A curve
is an in¯nite-dimensional vector, so k ! 1 and (2) is
not useful. The key proposal made here by Kosambi is
¯rst a choice of independent variables that reduces Á to
a diagonal form. This is possible for the class of kernels
considered, and K can be expanded as a series involving
its orthonormal eigenfunctions Ái, with eigenvalues that
are positive and so can be denoted by ¾2i :

K(s; t) =
X

¾2i Ái(s)Ái(t) : (3)

This enables the function f(t) to be expanded in a series
of the eigenfunctions Ái with coe±cients xi :

f (t) =
X

xiÁi(t); xi =

Z
f(t)Ái(t)dt: (4)

The xi here can be thought of as the `Fourier coe±-
cients' of the function f (t) with respect to the basis Ái.
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If the kernel is known the eigenfunctions can be deter-
mined, and (2) can be used to de¯ne the distribution. If
this distribution is normal, so is that of the curves be-
ing considered { an assumption necessary for Kosambi's
analysis.

With kernel K obtained using the canonical expansion
(3), Kosambi shows that the covariance between values
of the functions at s and t is K(s; t). Thus, if the data
are given as a sample of n curves yi = f(ti), the matrix of
covariances E(yi; yj) is the kernel matrix K(ti; tj). The
best estimate of the population mean and the population
kernel are then given respectively by

m(t) =
1

n

X
fi(t); (5)

k(s; t) =
1

n¡ 1
X

[fi(t)¡m(t)] [fj(s)¡m(s)] :

Thus if f is known as empirical data, the kernel can
be determined as also its eigenfunctions and the asso-
ciated eigenvalues. The sample of curves can therefore
be equivalently described in terms of their uncorrelated
Fourier coe±cients xi, with E(x2i ) = ¾2i , and for any
¯nite n, ordinary multivariate statistics can be used.
Furthermore, it can be shown by a variational argument
that the expansion converges `as fast as possible' to the
total energy (Lumley [3]).

In the above description I have omitted various math-
ematical conditions that have to be satis¯ed for formal
proofs but I hope that the ideas are clear. Basically
what Kosambi succeeded in doing was to show how,
from given data on a sample of curves, there is a method
by which the statistics can be handled as a multi-variate
problem, and the Fourier coe±cients of the expansion of
the curve in a special basis converge rapidly in a mean
square sense.

The importance of this theory in applications arises
chie°y from the fact that in many cases observations

The sample of curves
can therefore be
equivalentlydescribed
in terms of their
uncorrelated Fourier
coefficients xi , with
E(xi

2 ) = i
2 , and for

any finite n, ordinary
multivariatestatistics
can be used.
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can be expressed in terms of a small number of Fourier
coe±cients. Thus the problem is rendered more man-
ageable. In particular the eigenfunction can be ordered
in terms of signi¯cance, for example by the contribution
to the kinetic energy of the °uid motion. The problem
therefore leads to a compact description amenable to
further analysis.

In the °uid dynamics of turbulent °ows these ideas were
introduced by John Lumley, then working at the Aerospa-
ce Engineering Department, Pennsylvania State Univer-
sity, in a paper read at an international colloquium held
at Moscow in 1965 [4]. He listed six conclusions (des-
ignated A to F) from the `proper orthogonal decom-
position (POD) theorem' as stated in Lo¶eve's book on
Probability Theory (1955). All the six conclusions are
in Kosambi's 1943 paper [1], the correspondence be-
ing as follows: Lumley's A = Kosambi's equation (1.3),
B = text following (1.3), C = (1.4), D = text before
(1.4), E = (1.3), F = (1.3) and following text. During
the discussion following Lumley's paper, the well-known
Russian °uid-dynamicist A M Yaglom pointed out that
the decomposition attributed to Lo¶eve had earlier been
introduced for di®erent purposes by several scientists,
in particular by Kosambi (1943), Karhunen (1946),
Pougachev (1953) and Oboukhov (1954). He also point-
ed out that E N Lorenz (well known for his pioneering
studies of the chaotic behaviour of the atmosphere) had
used POD in studies of atmospheric turbulence (Lorenz
incidentally introduced meteorologists to principal com-
ponents analysis). Lumley has since acknowledged these
earlier developments.

The power spectrum of turbulent kinetic energy is usu-
ally expressed in terms of its density as a function of
wave number or frequency (the integral giving the total
energy). Using POD, it can also be expressed in terms
of the energy in the modes, also called `characteristic
eddies'; this description often accounts for most of the

The importance of
this theory in

applications arises
chiefly from the fact
that in many cases
observations can be
expressed in terms
of a small number of
Fourier coefficients.
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In the turbulent
flow in a channel,
for example, it has
been found that
the dominant eddy
(i.e., the first term
in the expansion)
accounts for 76%
of the total energy.

energy in relatively few modes, and is more compact [6].
In the turbulent °ow in a channel, for example, it has
been found that the dominant eddy (i.e., the ¯rst term
in the expansion) accounts for 76% of the total energy
[5] . POD provides us therefore with an e®ective expan-
sion of the velocity ¯eld in organized modes (coherent
structures) with random coe±cients.

Another major application has been to provide low-
dimensional dynamical-system models for understand-
ing turbulent °ows.

In spite of all this, the problem of turbulence remains
unsolved, because POD, while an e®ective tool for anal-
ysis, demands prior data on covariances. To make it
a powerful tool for dynamical prediction has not been
easy.

In meteorology, analysis of the principal components of
rainfall time-series at di®erent stations enables one to
de¯ne geographical clusters where the proximity of the
principal components helps identify regions of coherent
rainfall.

There are two interesting features of Kosambi's paper
that re°ect his views of mathematics. First, applica-
tions are never far from his mind: the areas he mentions
{ again characteristically { are meteorology and anthro-
pology (both important in India). (Perhaps his inter-
est in the latter subject accounts for the geometrical
°avour of his work; he talks about measurements from
the ear ori¯ce to the pro¯le at ¯xed angles, for example.)
Secondly, he proceeds to describe how the calculations
can actually be carried out using special calculating ma-
chines, for which he o®ers two designs of his own, one
mechanical and the other optical (Figures 1,2). The de-
sign of the mechanical calculator seems to have been
inspired by Kelvin's tidal machine, with templates and
pulleys. Kosambi shows how it is possible to perform
additions, subtractions, divisions and summation of

Applications are never
far from Kosmabi’s
mind: the areas he
mentions – again
characteristically – are
meteorology and
anthropology.
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Figure 1 (top). Design for a
mechanical calculating
machine (Kosambi, 1943
[1]).
Figure 2 (bottom). Design
for an optical calculating
machine (Kosambi, 1943
[1]).

squares in his machine with the assistance of a panta-
graph and measurement of torque and moments. He
remarks

Calculating machines, under the circumstances that now
limit my activity, cannot go beyond the stage of design.
The fundamental ideas will be made clearly by the two
schematic ¯gures appended here in the hope of doing ser-
vice to some more fortunately situated experimenter.
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Is it not interesting
that Indian
scientists learnt
how to use POD
fromLumley,
Lorenz et al, rather
than directly from
Kosambi?

It will be seen that in those pre-digital days what
Kosambi designed were analogue computers. Prof Dani
mentions in his article in this issue of Resonance a letter
by Homi Bhabha that refers to electro-mechanical cal-
culating machines made by Kosambi with the help of an
RAF engineer; it is not clear whether they were related
to the designs shown in Figures 1 and 2.

Proper orthogonal decomposition, by whatever name it
may be called in each discipline, is now a standard math-
ematical tool in the analysis of a variety of stochastic
processes. Is it not interesting that Indian scientists
learnt how to use it from Lumley, Lorenz et al., rather
than directly from Kosambi?


