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Abstract

Response of cells to changing environmental conditions is governed by the dynamics of intricate biomolecular interactions.
It may be reasonable to assume, proteins being the dominant macromolecules that carry out routine cellular functions, that
understanding the dynamics of protein:protein interactions might yield useful insights into the cellular responses. The large-
scale protein interaction data sets are, however, unable to capture the changes in the profile of protein:protein interactions.
In order to understand how these interactions change dynamically, we have constructed conditional protein linkages for
Escherichia coli by integrating functional linkages and gene expression information. As a case study, we have chosen to
analyze UV exposure in wild-type and SOS deficient E. coli at 20 minutes post irradiation. The conditional networks exhibit
similar topological properties. Although the global topological properties of the networks are similar, many subtle local
changes are observed, which are suggestive of the cellular response to the perturbations. Some such changes correspond
to differences in the path lengths among the nodes of carbohydrate metabolism correlating with its loss in efficiency in the
UV treated cells. Similarly, expression of hubs under unique conditions reflects the importance of these genes. Various
centrality measures applied to the networks indicate increased importance for replication, repair, and other stress proteins
for the cells under UV treatment, as anticipated. We thus propose a novel approach for studying an organism at the systems
level by integrating genome-wide functional linkages and the gene expression data.
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Introduction

Gene expression pattern in all organisms is a property of the

environmental conditions in which they grow. Expression of a

large number of genes is turned on or off conditionally and

temporally allowing the organisms to adapt to different growth or

changing environmental conditions. While some genes are

constitutively expressed under many different conditions, presum-

ably being essential for the organism to carry out basic cellular

processes for growth and sustenance, many genes are expressed

only under defined conditions. DNA microarray offers a powerful

tool to study such gene expression profiling. Studying the gene

expression pattern under different conditions therefore offers an

attractive approach to study the response of an organism to

changing environmental conditions.

The traditional analysis of microarray data involves measuring

differential expression between two samples after background

elimination and data normalization. An unsupervised classification

method such as clustering or principal component analysis is

popularly used to identify genes that have a similar regulation

pattern [1,2]. Although measuring relative gene expression levels is

the preferred method of analysis, the individual signal intensities,

which contain valuable information on absolute gene expression,

are often not considered. Studying the pattern of absolute

expression of genes, rather than relative expression between two

conditions, might provide an alternate useful approach for

comparative analysis.

A few attempts have been made to analyze differences in gene

expression arising out of different conditions of growth. The gene

expression profiling in E. coli has revealed varied mRNA

transcripts in the cells growing in minimal and rich media as well

as in their exponential and transitional phases of growth [3]. In a

similar line, the gene expression dynamics and its relevance to E.

coli physiology is shown by the protein expression profiles and their

correlation with the gene expression profiles [4,5]. Absolute gene

expression analysis in fission yeast has shown that the basic cellular

functions are carried out by the conserved genes and that the

organism specific genes are expressed conditionally for the

specialized processes [6]. These studies have provided a wealth

of data on the molecular and genetic basis of response of

organisms to changing environmental conditions.

While the analysis of gene expression data provides useful insights

into the adaptation process, it is believed that the response of

organisms is dictated by the dynamics of biomolecular interactions

profile. One of the inspirations to carry out the present study was to

understand the changing landscape of protein-protein interactions

under different environmental conditions. The protein-protein

interaction studies carried out experimentally usually represent only

a fraction of all the possible interactions among different cellular

proteins [7]. Moreover, the protein interaction networks available, for
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example in E. coli [8,9], represent only the static protein interaction

networks and are able to capture the interactions involving only those

genes whose products are expressed under the unique experimental

conditions. On the other hand, understanding of the dynamics of

protein interaction networks demands profiling genome-wide

protein-protein interactions under many different experimental

conditions. Such experiments are currently prohibitive in time and

resources. Therefore, profiling interactions under changing environ-

mental conditions presents enormous challenge to the experimental

biologists.

There have been a few attempts to combine protein: protein

interaction networks and gene expression data [10]. The dynamics

of yeast interactome studied using mRNA expression revealed two

kinds of hubs namely, ‘‘date hubs’’ and ‘‘party hubs’’ [11]. The

former are believed to bind different proteins at different time or

location, and the latter are believed to bind to their partners

simultaneously. Also, the hub proteins were shown to have lower

levels of differential expression compared to the non-hub proteins

[12]. Further, it was observed that static and dynamic proteins

cluster into different modules in yeast protein interaction network

[13]. In another study the PPI networks were studied in the

context of genes expressed during aging [14]. These sub-networks

and the modules therein were examined for understanding the

aging process. Thus, although a few attempts have been made in

integrating the gene expression data with protein interaction

networks, the analysis of differential gene expression in the context

of corresponding networks remains an underexplored area. Our

study is an attempt in this direction.

Results/Discussion

We have used gene expression information of E. coli to identify

the genes that are expressed in the prevailing conditions and

constructed reduced networks from the predicted genome-wide

parent functional linkage network. Figure S1A schematically

shows our approach, which we intend to use for the analysis of E.

coli expression data. The sub-networks thus constructed are

hypothesized to represent a real functional interaction picture of

the cell. We have further applied various graph theoretical

measures to extract the relevant biological information from these

sub-networks. This we propose to be a novel methodology in

which a raw microarray data can be analyzed by incorporating

molecular interaction information with gene expression.

Construction of the Conditional Protein–Protein
Interaction Networks

Predicted functional interaction network for E. coli, which

comprises 78,048 interactions among 3,682 proteins, was used as

the parent network [15]. This functional linkages network was

obtained by training a Support Vector Machine on high confidence

interactions in the EcoCyc database and assuming that cytoplasmic

and periplasmic protein do not interact with each other. The

predicted data set has fewer interactions in common with the

experimentally derived networks [8,9]. However, the overlap

increases significantly if the indirect interactions are taken into

consideration.

As a case study, we have chosen to study the gene expression

data from UV exposure in wild type and SOS deficient E. coli at

20 minutes post irradiation [16]. The four conditions studied are

Untreated Wild Type (UWT), UV treated Wild Type (TWT),

untreated lexA mutant (UML) and UV treated lexA mutant (TML).

Graph theoretical measures were applied to the four sub-networks

that were derived by this methodology, and then compared

amongst each other (Figure S1B).

The E. coli genome has the capability to encode more than 4000

genes. Out of these, approximately 40–60% are likely to be expressed

under any defined condition [4]. Using the methodology described in

Materials and Methods, our processing of the raw microarray data

revealed expression of around 2000 genes (Table S1), which is in close

agreement with the earlier studies on absolute gene expression [5].

Networks under each of the four conditions (henceforth referred to as

conditional networks) were constructed by mapping the expressed

proteins on the parent network. The conditional networks possess

around 30,000 interactions among the expressed proteins.

Global Properties of the Conditional Networks
It is anticipated that the effect of turning off or on of the genes

expressed under the four conditions will be reflected in the

conditional networks. While, this is likely to lead to many local

perturbations in the network, the global properties of the four

networks are not likely to change significantly. Various topological

properties of the conditional networks under the perturbations

such as mutation (lexA) or UV treatment along with the network

corresponding to wild-type were therefore studied.

The four conditional networks exhibit similar network parameters

(Table 1). The core cluster comprises .95% of the nodes in the

network. The overlap of the interactions and the nodes in UWT-

TWT and UML-TML is shown in Figure S2. The degree

distributions in all the four conditional networks show power law

behavior with the degree exponent of 1.1. Therefore, the networks

are scale-free, indicating that these are similar to other real world

networks. The scale-free property also is suggestive of their resistance

to random node failure [17]. The network diameters for the studied

graphs imply the small-world property where the number of steps

required for reaching from one node to the other is not more than 9.

Other properties such as average clustering coefficient and mean

eccentricity are similar in all the graphs (Table 1). The fractal

dimensions calculated using cluster growing method indicates that the

networks are self similar with all the four conditional networks

possessing similar fractal dimensions. Similarly, network efficiency is

also comparable in the conditional networks in spite of the imposed

perturbations. Thus, we do not find any significant difference in the

global network properties of the four conditional networks.

Unique Nodes of the Conditional Networks
Each of the four conditional networks possesses unique nodes

corresponding to the genes that are expressed differentially.

Author Summary

Many cellular processes and the response of cells to
environmental cues are determined by the intricate
protein:protein interactions. These cellular protein interac-
tions can be represented in the form of a graph, where the
nodes represent the proteins and the edges signify the
interactions between them. However, the available protein
functional linkage maps do not incorporate the dynamics
of gene expression and thus do not portray the dynamics
of true protein:protein interactions in vivo. We have used
gene expression data as well as the available protein
functional interaction information for Escherichia coli to
build the protein interaction networks for expressed genes
in a given condition. These networks, named conditional
networks, capture the differences in the protein interaction
networks and hence the cell physiology. Thus, by
exploring the dynamics of protein interaction profiles, we
hope to understand the response of cells to environmental
changes.

Dynamics of Protein Functional Linkage Networks
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Interestingly, the uniquely expressed genes include a few hubs and

transcription factors. The lists of proteins that are identified to be

uniquely expressed are listed in the Table S2. As anticipated, some

of the proteins involved in DNA repair, recombination and cell

structure determination are observed only in the UV treated wild

type network in comparison with the untreated wild type network.

In addition to the UV damage response genes, other environ-

mental stress related genes are also uniquely expressed in the UV

treated wild type cells. Thus, the comparative analysis of PPI

networks appears to identify a few crucial features that might be

physiologically relevant.

Mapping of the unique nodes of each of the four comparison

sets to different metabolic pathways for E. coli, as enlisted in

KEGG database [18], revealed that replication and repair

proteins, as expected, are more in number in the UV treated

networks compared to their untreated counterparts (Figure S3).

Interestingly, many genes coded on carbohydrate metabolism

operons are seen only in the untreated wild type network. The

presence of these gene clusters in the untreated wild type cells and

their absence in UV irradiated cells appears to suggest the

repression of sugar metabolism in UV treated E. coli cells. Earlier

study has shown that a few carbohydrate metabolism operons

indeed exhibit reduced expression under UV exposure [16].

Similarly, we observe genes belonging to membrane transport

more in number as uniquely expressed in the lexA mutant cells

when compared with the respective wild type cells. Thus, the four-

way comparisons of expressed genes, as anticipated, highlight the

importance of DNA repair and replication processes under UV

exposure.

One of the interesting genes that we observed to be expressed

only in the UV treated cells is the hda gene, protein product of

which is involved in DnaA inactivation. It has been demonstrated

earlier that cells suppress replication upon DNA damage. As Hda

is known to repress hyper initiation of DNA replication by

inactivating DnaA [19], the criticality for Hda in the UV treated

networks appears to be significant. Interestingly, this protein has a

high degree in the UV treated networks (Table S3). Since high

degree nodes are believed to be important in maintaining

robustness of graphs [17], the high degree of Hda and its unique

expression in UV treated cells signifies its importance when the

cells are treated with UV radiation. Furthermore, this gene is

observed to be expressed under UV exposure, both in the wild

type as well as in the lexA mutant, suggesting that its expression is

independent of the well characterized SOS response.

Another interesting example is the unique expression of genes

involved in the iron uptake system in the untreated wild type cells.

The proteins EntA, EntB and EntF function in the pathway of

enterobactin synthesis and the proteins FepA and FepB form a

part of the channel to transport Fe-enterobactin complex inside

the cell. When cells are UV treated, reactive oxygen species

(ROSs) are synthesized via photo-Fenton reaction which leads to

oxidative damage of structural proteins, enzymes, DNA and lipids.

Thus, it is likely that cells repress iron uptake to protect cellular

macromolecules from damage. The absence of these iron uptake

proteins from UV treated wild type network supports this idea.

The analysis of uniquely expressed nodes under one condition,

but not in another condition, indicates some of the possible effects

of UV radiation on E. coli. The importance of repression of

carbohydrate metabolism and iron uptake upon exposure to UV is

apparent in the networks. Similarly, an important hub, Hda, is

also apparently expressed only upon UV exposure. Thus, the

uniquely expressed nodes in the networks indicate of how E. coli

might respond to UV, thereby suggesting that such an analysis

might be useful in other similar studies.

Analysis of the Path Length Differences
An interesting aspect in systems analysis is to study the effect of

selective removal of nodes on modifications in the shortest path

lengths in the conditional networks. The shortest path lengths in a

network signify the efficiency of communication between the nodes,

and any alteration in these paths might suggest significance of these

nodes under the two conditions. Importantly, the overall diameter

of the four conditional networks is identical, indicating that

diameter as a global property of the network is not subject to

change. Moreover, all the networks have small world property;

almost all nodes can be reached from every other in a small number

of steps. This is not surprising, considering the biological robustness

that is reflected in these networks. Thus, analysis of shortest path

lengths might yield interesting insights into the relative importance

of communication networks in the four sub-networks.

In order to analyze local changes in pathlength differences, the

reduced pathlength matrices were constructed for the common

nodes in network pairs under study. The pathlength difference of

more than or equal to 3 for each node pair in two reduced

networks were considered significant. As expected, for most of the

node pairs, there is no change in the pathlength as there are

multiple paths to reach from one node to another node even in the

event of a collapse of a particular path. Interestingly, we observe

considerable variation in the path for some node pairs, manifesting

their reduced connectivity in terms of efficient information

exchange, two examples of which are discussed in detail below.

The shortest pathlength from AmyA, a cytoplasmic a-amylase

to many of the glycogen metabolism enzymes is observed to be

increased in UV treated wild type network (Figure 1). In the

untreated wild type subgraph, AmyA is connected to glycogen

metabolism enzymes through MalZ, which functions as a

maltodextrin glucosidase. The increase in the path length is due

to the absence of MalZ node in the cells treated with UV and

thereby resulting in isolation of AmyA with respect to proteins

belonging to starch and sucrose metabolism in E. coli. Thus, the

importance of repression of carbohydrate metabolism upon UV

treatment is highlighted not only by the repression of a few

carbohydrate metabolism operons [16], but also by the reduced

efficiency of communication between different glycogen metabo-

lism genes.

Table 1. Global properties of the sub-networks.

Property
Parent
Network UWT TWT UML TML

Nodes 3,682 1,899 1,865 1,957 1,947

Edges 78,048 34,893 34,680 31,900 33,513

Percentage core nodes 96.9 97.4 97.9 96.1 95.5

Average degree 42.4 36.7 37.2 32.6 34.4

Degree exponent 1.2 1.1 1.1 1.1 1.1

Diameter 11 8 8 8 9

Mean eccentricity 7.99 5.66 5.78 5.89 6.07

Average clustering
coefficient

0.23 0.21 0.21 0.22 0.22

Fractal dimension 3.9 3.5 3.4 3.5 3.5

Network efficiency 0.36 0.37 0.38 0.36 0.37

Global network parameters for the parent network (15) and the conditional
networks. UWT, UV Untreated Wild Type; TWT, UV Treated Wild Type; UML, UV
Untreated lexA mutant; TML, UV Treated lexA mutant.
doi:10.1371/journal.pcbi.1000237.t001

Dynamics of Protein Functional Linkage Networks
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Another interesting example pertains to the phosphotransferase

system in E. coli. The sub-network corresponding to a part of

phosphotransferase (PTS) system in E. coli in the untreated mutant

network is very well connected, whereas the mutant UV treated

network lacks CmtB, a component of mannitol PTS permease

(Figure 2). This results in the increased shortest paths from YggD,

which is a hypothetical transcriptional regulator of cmt operon, to

other proteins which are part of the phosphotransferase system in

E. coli. Since PTS regulates the uptake and metabolism of several

sugars, we speculate that the increased paths between YggD and

other PTS components might be a strong indication for the

temporal repression of sugar metabolism in cells treated with UV

radiation.

Expression of the Hubs
It has been reported that the highly connected nodes of the

network (hubs) are three times more likely to be essential than the

poorly connected nodes [20]. Moreover, dynamics of yeast

interactome has revealed two kinds of hubs, ones which are

present under a variety of conditions, and the ones which appear

only under certain specific conditions [11]. Thus, it is important to

analyze the presence or absence of hubs under the four conditions.

We have defined hubs of the parent network as the nodes having

degree more than 60 and thereby identified 736 hubs in the

network. We find that around 70–75% of the hubs of the parental

network are expressed in the conditional networks. As a null

hypothesis, when test networks are constructed by choosing

random nodes of the parent network, we find only 50% hubs

(Figure S4). Thus, essentiality of the hubs appears to manifest itself

by the expression of a large number of hubs under all the four

different conditions. One such example of the Hda hub was

described above.

Centrality Measures
It is likely that the importance of a functional role of a gene

might differ according to the prevailing condition of growth. The

relative importance of a node in graph theory can be assessed by

calculating various centrality measures. We have therefore

analyzed different centrality measures of graph theory with respect

to their relevance to the four sub-networks.

Degree centrality is based on how well the node is connected in

a graph. Degree centrality thus states that a node tends to be

essential in a network if it is highly connected and its removal has

severe impact on the overall topology and connectedness of the

network [17,20]. Similarly, if a node is positioned in such a way

that it can communicate with other nodes quickly then the node is

considered to be important in terms of closeness centrality.

Betweenness centrality, on the other hand measures the number of

shortest paths that traverse through a node. Both closeness and

betweenness centrality have also been reported to be good

measures to assess gene essentiality [21–23]. Based on these

observations, we calculated the three centrality values for the

nodes in the conditional networks, and then for each of the nodes

we computed the pair wise difference between the different

conditions.

To address conditional or relative criticality of a node, we

calculated the difference in the centrality measures for the

common nodes in the comparison set. The centrality measure

difference is approximately normally distributed, thus about

99.7% values are expected to lie within 3 standard deviations of

the mean value. For most of the nodes, there is no change in the

centrality value as expected. We have chosen to study those

proteins whose centrality measure difference is more than 3 times

the standard deviation of the distribution. When untreated wild

type and UV treated wild type networks are compared, the

Figure 1. Path length analysis for the starch and sugar metabolism genes. In the untreated wild type network, the subgraph for starch and
sucrose metabolism pathway proteins is well connected. The absence of MalZ in treated wild type network increases the path from AmyA to some of
the glycogen metabolism proteins significantly.
doi:10.1371/journal.pcbi.1000237.g001

Dynamics of Protein Functional Linkage Networks
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proteins belonging to carbohydrate metabolism and energy

metabolism such as BglX, Dld, GatB, GlgA, CydA, CydB and

YneH have greater centrality measure in the untreated wild type

network. The replication and repair proteins, namely RecN,

RecO, Tag, HepA and HolC on the other hand have greater

centrality values in the UV treated wild type network. Likewise,

DnaA, DnaE, Mfd, RecJ and SbcB functioning in the replication

and repair machinery possess significantly higher centrality values

in UV treated mutant networks compared to their untreated

counterparts. We observe no considerable change in the centrality

measure for the proteins of the pathways such as polyketide

biosynthesis, cell motility and xenobiotics biodegradation. A

detailed list of proteins with significant difference in centrality

along with their functions in UWT- TWT and UML- TML

comparison set is given as Table S4. In order to check if the

standard deviation cutoff (3.0) has any effect on our overall

conclusions, we reanalyzed the data on the centrality using a cutoff

of 2.0. However, the overall conclusions on the importance of

carbohydrate metabolism in untreated cells, and those of DNA

replication and repair in the UV-treated cells, remain the same.

We may thus conclude that the cutoff value of standard deviation,

if modified, does not appear to alter the overall biological

conclusions.

Further, to study the essentiality of the nodes depending on the

UV treatment or the lexA mutation, we undertook degree

centrality analysis of top 30% nodes in each of the conditional

networks. Using these criterion more than 550 nodes can be

classified as high degree nodes under each condition (Table 2).

When the common high degree nodes of wild-type networks

(untreated as well as UV treated) and the common high degree

nodes of lexA mutant (untreated as well as UV treated) networks

are compared, interestingly 104 high degree nodes are unique to

the wild type networks but are absent in either one or both mutant

networks. Similarly 100 high degree nodes are unique to the

mutant networks but are absent in either one or both wild type

networks. We therefore consider them as the nodes that are

essential in a mutation independent and mutation dependent

manner respectively. A similar comparison for the high degree

nodes in the context of UV treatment revealed 42 nodes as

essential depending on UV treatment and 57 nodes as essential

when there is no UV treatment (Table 2). We further mapped

these proteins onto different metabolic pathways in the KEGG

database and classified them as lexA mutation independent, lexA

mutation dependent, UV treatment dependent and UV treatment

independent (Figure 3 and Table S5). Some specific examples of

this analysis are discussed below.

We are able to identify many repair proteins such as DinG,

DnaN, MutM, MutS, RuvC, Rep and RecF that are likely to be

indispensable for the UV treated networks in terms of degree

centrality. The criticality of some of the proteins that belong to

lipid metabolism and cofactors and vitamins metabolism seems to

be UV treatment dependent. One of the proteins that appears to

be important from our anslysis in UV treated cells is UspA, the

universal stress protein. Earlier study has shown the role of UspA

in resistance to DNA damaging agents and that its regulation is

lexA independent [24]. The mutants lacking uspA were shown to be

sensitive to UV irradiation. It is interesting to observe the

importance of this protein through network centrality studies,

Figure 2. Path length analysis for the nodes of phosphotransferase system. The absence of CmtB in the UV treated lexA mutant network
increases the pathlength from YggD, a putative cmt operon transcriptional regulator to other phospho transferase system (PTS) enzymes.
doi:10.1371/journal.pcbi.1000237.g002

Dynamics of Protein Functional Linkage Networks
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Figure 3. Classification of hubs according to the KEGG metabolic pathways. The high degree nodes of each of the four conditions are
classified as critical in a UV treatment dependent or independent manner and lexA mutation dependent or independent manner, and they are
mapped onto different metabolic pathways of E. coli as enlisted in the KEGG database.
doi:10.1371/journal.pcbi.1000237.g003

Table 2. Degree centrality of the conditional networks.

Conditional
Networks

Number of High
Degree Nodes

Networks
Compared

Common
Nodes Criticality

Number of
Proteins

UWT 570 UWT-TWT 527 Mutation independent 104

TWT 560 UML-TML 523 Mutation dependent 100

UML 587 UWT-UML 465 UV independent 42

TML 584 TWT-TML 480 UV dependent 57

The analysis of the top 30% nodes in terms of degree centrality alone in each conditional network revealed the nodes that are proposed to be essential depending on
the UV treatment or the mutation. UWT, UV Untreated Wild Type; TWT, UV Treated Wild Type; UML, UV Untreated lexA mutant; TML, UV Treated lexA mutant.
doi:10.1371/journal.pcbi.1000237.t002

Dynamics of Protein Functional Linkage Networks
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which was otherwise not obvious from the classical microarray

analysis. Similarly, our analysis also suggests the importance of the

protein, ApaH. ApaH functions as a diadenosine tetraphosphatase

and its substrate AppppA has been reported to regulate cell

division [25], affect cell motility and catabolite repression [26] and

shown to bind to several heat shock and oxidative stress proteins

[27]. Our observation that ApaH is critical in the studied networks

in an UV dependent manner seems to be relevant in this regard.

The analysis carried out by us is based on the predicted

genome-wide functional linkages [15]. In order to examine if the

properties observed for the conditional sub-networks are consistent

with those obtained from experimentally validated protein:protein

interactions, we further carried out similar analysis for the two

available experimental protein:protein interaction networks [8,9].

The core protein interactions in the network reported by Butland

et al. covers 1,255 proteins and 5,395 interactions among them [8].

The average degree for the core network is approximately 8.5 and

the clustering coefficient is ,0.085. Similarly, the core protein

interactions in the network reported by Arifuzzaman et al. covers

2,927 proteins and 11,105 interactions [9]. The average degree for

the core network is approximately 8.5 and the clustering

coefficient is ,0.065. The low average degree and clustering

coefficient for the experimental networks compared to the

predicted functional linkages might be due to the inability of

experimental methods to saturate the genome-wide interaction

networks.

The obtained conditional networks derived from the experi-

mental interactions show topological robustness similar to their

parent networks. Interestingly, similar to the conclusions that we

have drawn based on the analyses derived from functional linkages

network, we observe the UV-dependent criticality of many of the

replication and repair proteins through network centrality analysis

as well as the analysis of unique nodes of the networks. We also

observe the expression of ,65% hubs in conditional networks

derived from Arifuzzaman et al. data [9] and ,85% hubs in the

ones obtained from Butland et al. data [8]. These numbers being

significantly higher than those by choosing nodes in the networks

randomly, suggest that one may obtain biologically important

insights through such an analysis.

Some of the cutoffs applied in our study might appear to be

superficially arbitrary. For example, a gene was considered to be

expressed if the net signal intensity corresponding to its spot was

more than or equal to the median signal intensity of the spots

within the sector. Although this cutoff might seem arbitrary, the

rationale for using median was based on the observation that gene

expression is a stochastic event and hence the expression of a gene

as well as copy number of the expressed protein differs from cell to

cell even in an isogenic cell population [28,29]. Despite the

inherent stochasticity, the response of a colony of bacteria to

external stimuli is based on simultaneous expression of a set of

genes. It is reported that the noise in gene expression is inversely

proportional to the mean expression level [30] and also that

essential genes have lower noise in their expression [31].

Therefore, with median as our cutoff, we can eliminate the noisy

expression and identify those as genes as expressed which have: (i)

high expression levels and (ii) respond to the growth condition. In

order to minimize noise in such an identification process we have

considered each sector of the chip independently to overcome the

differences in the environments within the chip that contribute to

expression variances. Thus, with our cutoff of 1.0, we see a

reasonable of number of genes being expressed, i.e. ,40–60% [4],

and also expression of approximately 75% of hub proteins.

We further tested the effect of different cutoffs on the overall

conclusions of our analysis. With the cutoff of 0.9 and 1.1, we

observe that our earlier conclusions, such as increased importance

of replication and repair proteins, and cofactor metabolism

proteins in the UV treated cells, repression of carbohydrate

metabolism upon UV treatment and importance of unique nodes

of the conditional networks, remain identical. With further

modification of these cutoff values to 1.2, we observe approxi-

mately 1600 genes being expressed which might be considered

fewer than anticipated [4]. Similarly with modification of the

cutoff value to 0.8, many more proteins are considered to be

expressed, which might lead to noise in the expression analysis.

Thus, although the cutoff value of 1.0 appears arbitrary, it leads to

reasonable hypothesis on the response of E. coli to UV.

Thus, the comparative analysis does indeed reveal physiolog-

ically important changes in the four networks. Some of these

changes would not have been apparent by measuring gene

expression alone, or by the standard analysis of microarray data.

This is partly due to the fact that the levels of expression of many

genes do not change under different conditions, but nonetheless

the profile of interactions surrounding them changes significantly,

thereby altering their significance in the broader picture of the cell.

In this manner, studying the dynamics of protein:protein

interactions appears to hold promise for the systems level

understanding of an organism.

The analysis proposed in this study can also be potentially

applied to disease interaction networks. For example, understand-

ing how the interactions within a pathogen or a host change

during the disease process, and the implications of these changes

might yield useful insights into the disease. Further, this

information can be used to deriving novel therapies against the

diseases.

Methods

Microarray Data Processing and PPI Network
Construction

The raw microarray data for E. coli were downloaded from the

Stanford Microarray Database (SMD, http://smd.stanford.edu/)

[32]. The SMD lists sector information of the chip, and it is likely

that environments within the chip differ considerably. Each spot

was therefore assigned to one of sixteen possible sectors in the chip

using sector information given in the raw data. A gene was

considered to be expressed if the net signal intensity (i.e.

background corrected) corresponding to its spot was more than

or equal to the median signal intensity of the spots within the

sector.

The conditional protein interaction network was built for the

expressed genes by mapping them onto an existing predicted

functional interaction network for E. coli [15]. All orphan nodes

were removed from the obtained network and the core interaction

network was used for further analysis.

Global Properties of the Network
Network properties such as average degree, degree exponent,

diameter, average clustering coefficient were calculated according

to [33]. The mean eccentricity was calculated according to [34].

Fractal dimension was measured using cluster growing method

[35]. Network efficiency is the property that quantifies how well

the nodes of the network exchange information, and this

parameter was calculated according to [36].

Path Length Analysis
The shortest paths for all pairs of nodes in the network were

calculated by Dijkstra’s algorithm [37]. The difference in the path

for a node pair in two different networks was analyzed.

Dynamics of Protein Functional Linkage Networks
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Centrality Measures
Network centrality measures like degree centrality, closeness

centrality and betweenness centrality were calculated [36]. The

definitions of these centrality measures are as follows:

Degree centrality of a node i in the network G is

CD
i ~

P
j[G Ai,j

N{1

where, Ai,j is the element in the adjacency matrix A for the nodes i

and j, and N is the total number of nodes in G.

Closeness centrality of a node i in the network G is

CC
i ~

N{1
P

j[G di,j

where di,j is the shortest path between i and j.

Betweenness centrality of a node i in the network is

CB
i ~

P
jvk[G njk ið Þ

�
njk

N{1ð Þ N{2ð Þ

where, njk(i) is the number of shortest paths between j and k that

traverse through i and njk is the total number of shortest paths

between j and k.

Sub-Network Visualization
Sub-networks were visualized and analyzed using Cytoscape

2.4.1 [38] and NAViGaTOR (http://ophid.utoronto.ca/

navigator/).
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treatment dependent/independent proteins

Found at: doi:10.1371/journal.pcbi.1000237.s005 (0.03 MB XLS)

Figure S1 Differential gene expression and comparison of

networks. (A) Pictorial representation of differential gene expres-

sion in the network context. Red and green represent the nodes

expressed uniquely under the defined conditions, whereas blue

nodes are expressed under both the conditions. (B) Four-way

comparison of the networks. UWT, wild type; TWT, UV treated

wild type; UML, lexA mutant; TML, UV-treated lexA mutant.

Found at: doi:10.1371/journal.pcbi.1000237.s006 (0.47 MB TIF)

Figure S2 The overlap of the interactions and the nodes in

UWT-TWT and UML-TML.

Found at: doi:10.1371/journal.pcbi.1000237.s007 (0.76 MB TIF)

Figure S3 Mapping of unique nodes to different metabolic

pathways.

Found at: doi:10.1371/journal.pcbi.1000237.s008 (0.45 MB TIF)

Figure S4 Expression of the hubs.
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