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Abstract. We construct a resolution for certain class of quotient modules
of a Hilbert module consisting of holomorphic functions on a bounded open
connected set Ω ⊆ Cm. Each one of these quotient modules is obtained from
the submodule of all functions vanishing on an analytic variety Z ⊆ Ω using a
multi-dimensional grid. A construction of the fundamental class of the variety
Z using this resolution is given. The relationship of the resolution for the
quotient module with the Koszul complex is also explicitly described.

1. Introduction

Let Ω be a nonempty open set in Cm, and let A(Ω) be a function algebra of
holomorphic functions defined on Ω. IfM is a Hilbert module over A(Ω), andM0

is the submodule of it consisting of functions in M that vanish on a subvariety
Z ⊂ Ω, it is interesting to obtain geometric invariants for the quotient module. A
study of such invariants has yielded results of various types (cf. [12], [14]). The
final goal is, of course, to obtain invariants that are complete and usable in specific
contexts. Since these invariants are intended to characterise the quotient module,
it is advantageous if they are described using only data obtained fromM andM0.

The fundamental class of the variety Z is one such invariant. It is consequently
of interest to characterise this fundamental class in terms of information obtained
from M and M0. When Z is a hypersurface and M0 is the largest collection of
functions that vanish on Z, a description of the fundamental class was provided in
[12]. The following natural resolution of the quotient module was used there:

0←−Mq ←−M
X←−M0 ←− 0 (1.1)

Here X is the inclusion map. The fundamental class of Z was characterised in [12]
in terms ofM,M0 and the inclusion map X.

In what follows, we consider the case where the subvariety Z has co-dimension
greater than one, but with M0 still being the largest collection of functions in M
that vanish on Z. The approach described here uses a generalised resolution of the
quotient module. The resolution is by means of a grid of short exact sequences
with the dimension of the grid being the same as the co-dimension of Z (see also
[22]). The information obtained from this grid provides the necessary ingredients

This research was partly carried out with financial support from the National Board for Higher
Mathematics, DAE as well as Department of Science & Technology.

1



2 I. BISWAS, G. MISRA, AND C. VARUGHESE

to determine the fundamental class of Z using the following theorem which is a
generalisation of the Poincaré-Lelong formula (cf. [8]).

Theorem 1.1. Let ϕ = (ϕ1, · · · , ϕp) : U → Cp be a holomorphic mapping. If
Yj = ϕ−1

j {0} are the loci of zeros of the components of ϕ, one has

∂∂log|ϕ1|2 ∧ · · · ∧ ∂∂log|ϕp|2 = 2π
√
−1[Y1] ∧ · · · ∧ 2π

√
−1[Yp] = (2π

√
−1)p[Y ],

where [Y ] is the current corresponding to the intersection Y1 ∩ · · · ∩ Yp.

We outline below the general assumptions made on M,M0 and A(Ω). By a
hypersurface Z ⊆ Ω we mean a complex submanifold of dimension m−1. It follows
that, given z(0) ∈ Z, there is a neighborhood U ⊆ Ω and a holomorphic map
ϕ : U → C such that (∂ϕ/∂zj)(z(0)) 6= 0 for some j, with 1 ≤ j ≤ m and

U ∩ Z = {z ∈ U : ϕ(z) = 0}.

In this case, we say that ϕ is a defining function for the hypersurface Z. Whenever
we discuss a zero variety, we will assume that it is the common zero set of holomor-
phic functions ϕ1, . . . , ϕn defined on Ω. It must be pointed out that our interest
lies in equivalence classes of modules consisting of holomorphic functions defined
on Ω. The restriction of such modules to an open subset U of Ω yield equivalent
modules as pointed out in [14, p. 370]. Consequently, we can (by going to a smaller
open set if necessary) ensure that the zero variety has the description given above.
The only assumption we make is that if the zero variety is the intersection of a
number of hypersurfaces, then it must be a complete intersection. The assumption
of complete intersection allows us to get around a number of technical difficulties -
none very serious. We hope to study the general case in the near future.

Let Ω ⊆ Cm be a bounded, simply connected domain in Cm. Let A(Ω) denote
the closure with respect to the supremum norm, on Ω, of functions holomorphic in
a neighborhood of Ω̄, the closure of the domain Ω ⊆ Cm. Then A(Ω) is a function
algebra and consists of continuous functions on Ω̄ which are holomorphic on Ω. We
assume that Ω is polynomially convex which then ensures that A(Ω) is the closure
of polynomials with respect to the supremum norm on Ω.

LetM be a Hilbert module over A(Ω). We assume that the point evaluation f 7→
f(w), f ∈ M is bounded for each w ∈ Ω. Consequently, M admits a reproducing
kernel K : Ω × Ω → C. We assume, in addition, that M consists of holomorphic
functions on Ω and contains all the polynomials, and lies in the Cowen-Douglas class
B1(Ω∗), that is, (M∗

1 , . . . , M∗
m) is in B1(Ω∗). Although it may not be absolutely

necessary for what follows, we also assume that M is of rank 1.

2. The co-dimension 2 case

For the sake of clarity of exposition, we first present the grid construction when
the co-dimension is two, and then we proceed to the general case. By the as-
sumptions that we have made, the zero variety Z is a complete intersection of two
hypersurfaces Z1 and Z2 with defining function ϕ1 and ϕ2 respectively. Let I1 and
I2 be the maximal set of functions which vanish on the hypersurfaces Z1 and Z2
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respectively, and let I12 = I1 ∩ I2. We recall that the diagram

0 0 0
↓ ↓ ↓

0 ←− I1
2 ←− I2 ←− I12 ←− 0
↓ ↓X2 ↓

0 ←− I1 ←− M X1←− I1 ←− 0
↓ ↓ ↓

0 ←− I12 ←− I2 ←− I2
1 ←− 0

↓ ↓ ↓
0 0 0

(2.2)

where each connecting map is either an inclusion or a quotient map was considered
in [15, page 260]. We require that each row and column be a short exact sequence of
Hilbert modules. Hence all the undefined symbols in the above diagram represent
quotient modules at intermediate stages. Localisation of the grid above provides
the necessary ingredients to obtain the current of integration on the zero variety
Z1 ∩ Z2, using Theorem 1.1. It is the case p = 2 of the theorem which is relevant
to the above grid.

Notice that I12 in the grid above is the quotient module we are attempting to
describe. The result above is then a natural generalisation of the approach described
following the linear resolution (1.1) of the quotient module.

Let K(w,w) be the reproducing kernel for the Hilbert module M. Then as
pointed out in [15, Section 2.3, equation 2.4]), the reproducing kernel for the sub-
module I`, ` = 1, 2, is of the form |ϕ`(w)|2χ`(w,w) for some nonvanishing real
analytic function χ. Thus we have

X`(w)∗X`(w) =
K(w,w)

|ϕ`(w)|2χ`(w,w)
, ` = 1, 2. (2.3)

Consequently, we find that
m∑

i,j=1

∂2

∂wi∂w̄j
log(X`(w)∗X`(w))dwi ∧ dw̄j −K(w) +K`(w)

=
m∑

i,j=1

∂2

∂wi∂w̄j
log |ϕ`(w)|2dwi ∧ dw̄j , ` = 1, 2, (2.4)

where K is the curvature of the moduleM and K` is the curvature of the submodule
I`, ` = 1, 2. Using Theorem 1.1, we conclude that the product of the two currents
described in (2.4) yield the fundamental class of the cycle Z.

3. The general case

If the co-dimension of Z is k, it follows by our assumption that Z is the complete
intersection of k hypersurfaces Z1,Z2, · · · ,Zk. Let Ij , for 1 ≤ j ≤ k, be the largest
collection of functions inM which vanish on the hypersurfaces Zj , and let

Ij1j2···jl
= Ij1 ∩ Ij2 · · · ∩ Ijl

.
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If α is a multi-index, we define a family of modules inductively by the following
prescription

Ii1i2···il
α = Ii1i2···il−1

α /Ii1i2···il−1
ilα

, (3.5)

where ‘ilα’ has the obvious meaning.
We first note that the quotient module Mq can be obtained by a sequence of

successive quotients. Let Xp = I12···(p−1)
p . Define Q0,Q1, · · · ,Qk (where k is the

codimension of Z) inductively as follows:

Q0 =M, Qp = Qp−1/Xp for 1 ≤ p ≤ k

Then Qk is indeed the quotient module Mq.
We now construct the grid of modules mentioned earlier. The vertices of the

grid are the points in Rk with coordinates (x1, x2, · · · , xk) with xj = 0,+1 or − 1
for 1 ≤ j ≤ k. Each such vertex is identified with a module over A(Ω) as follows.
Consider the vertex (x1, x2, · · · , xk). Assume that

xi1 = xi2 = · · · = xip = +1

xj1 = xj2 = · · · = xjq = −1
and all other coordinates are zero. The module associated with this vertex is
Ij1j2···jq

i1i2···ip
. Recall that I = M and this module is associated with the vertex

(0, 0, · · · , 0). Also by the earlier discussion, the quotient module is I12···k and
is associated with the vertex (−1,−1, · · · ,−1).

It will be shown later (Proposition 3.1) that any three vertices which lie on a line
parallel to any of the coordinate axes determine a short exact sequence (the 0’s that
terminate the short exact sequence are understood). The grid thus includes k ·3k−1

short exact sequences. That these sequences are exact follows from a sequence of
lemmas which we state and prove below.

Lemma 3.1. If I is an ideal in I + A and in I + B, then(
I + A

I

)
∩
(

I + B

I

)
= (I + A ∩B)/I.

Proof: Consider x ∈
(

I+A
I

)
∩
(

I+B
I

)
. Let x = (i + a) (mod I) = (i′ + b) (mod I).

Since

(i′ + b) (mod I) = i + (i′ − i) + b (mod I)
= i + b (mod I),

it follows that a = b(mod I). Hence x ∈ (A ∩ B) (mod I) and consequently x ∈
I+A∩B

I . Thus (
I + A

I

)
∩
(

I + B

I

)
⊆ (I + A ∩B)/I.

The reverse inclusion is easy to prove. 2

Lemma 3.2. The module Ij1···jq

i1···ip
is symmetric in the indices i1 · · · ip.

Proof: We note that Ij1···jq

i1···ip
can be written as a continued quotient (using the recur-

sion relation) containing only terms of the form Iα for α a multi-index. The indices
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i1 · · · ip appear in the same combination in the continued quotient as subscripts.
The result follows since Iα is symmetric in the indices that occur in α. 2

Lemma 3.3. The equality Iβ
αγ = Iβ

α ∩ Iβ
γ holds for multi-indices α, β, γ.

Proof: We use induction on the length of β. For length zero, we have Iαγ = Iα∩Iγ

by definition. Otherwise,

Iβk
αγ = Iβ

αγ/Iβ
kαγ

= Iβ
αγ/(Iβ

k ∩ I
β
αγ) (by induction hypothesis on Iβ

kαγ)

= (Iβ
k + Iβ

αγ)/Iβ
k

= (Iβ
k + (Iβ

α ∩ Iβ
γ ))/Iβ

k (by induction hypothesis on Iβ
αγ)

=

(
Iβ

k + Iβ
α

Iβ
k

)
∩

(
Iβ

k + Iβ
γ

Iβ
k

)
(by Lemma3.1)

= (Iβ
α/(Iβ

k ∩ I
β
α)) ∩ (Iβ

γ /(Iβ
k ∩ I

β
γ ))

= (Iβ
α/Iβ

kα) ∩ (Iβ
γ /Iβ

kγ) (by induction hypothesis on Iβ
kα, Iβ

kγ)

= Iβk
α ∩ Iβk

γ . 2

Lemma 3.4. The module Ij1···jk
α is symmetric in the indices j1 · · · jk.

Proof: It is enough to prove the result for an adjacent flip since any permutation
can be written as a sequence of adjacent flips. By definition,

Ij1···jk
α = Ij1···jk−1

α /Ij1···jk−1
jkα . (3.6)

We use induction on k the length of the superscript. The result is true for k = 1
since the permutation group is trivial. Assume that the result is true for length
(k − 1) and any subscript α. Now consider an adjacent flip in j1 · · · jk. If the flip
does not involve jk, the result is true by the induction hypothesis and (3.6) above.
We therefore need to prove that

Iβij
α = Iβji

α .

Now,

Iβij
α = Iβi

α /Iβi
jα

= (Iβ
α/Iβ

iα)/(Iβ
jα/Iβ

ijα).

By Lemma 3.3,

Iβ
ijα = Iβ

i ∩ I
β
jα

= Iβ
i ∩ I

β
j ∩ I

β
α

= Iβ
i ∩ I

β
α ∩ I

β
j ∩ I

β
α

= Iβ
iα ∩ I

β
jα.



6 I. BISWAS, G. MISRA, AND C. VARUGHESE

Hence

Iβij
α = (Iβ

α/Iβ
iα)/(Iβ

jα/(Iβ
iα ∩ I

β
jα))

= (Iβ
α/Iβ

iα)/((Iβ
iα + Iβ

jα)/Iβ
iα)

= Iβ
α/(Iβ

iα + Iβ
jα),

which is symmetric in i and j. 2

We now proceed to prove that the edges of the grid define exact sequences.

Proposition 3.1. Any three vertices in the grid which lie on a line parallel to any
of the coordinate axes determine a short exact sequence (the terminating 0’s being
understood). There are k · 3k−1 such exact sequences.

Proof: Any three vertices which lie on a line parallel to any of the coordinate
axes have all their coordinates common except those in one position. Assume
this position is the j-th where the three vertices have the coordinates 1, 0,−1.
The modules at these three vertices are of the form Iβj

α , Iβ
α and Iβ

αj where α and
β are multi-indices. Here we use the symmetry properties proved earlier. Since
Iβj

α = Iβ
α/Iβ

αj , these three vertices determine a short exact sequence.
Since j can be chosen in k ways and there are 3k−1 choices of coordinates for

the remaining common coordinates, we get k · 3k−1 short exact sequences. 2

The module Ij appears at the vertex with coordinate 1 in the j-th place and
0’s elsewhere. For each j, the three vertices with 1, 0 and −1 in the j-th place and
zeros everywhere else determine the following short exact sequence:

0←− Ij ←− I←−Ij ←− 0, (3.7)

that is,

0←−M/Ij ←−M
Xj←− Ij ←− 0. (3.8)

This gives us k short exact sequences.
By following the procedure outlined in the co-dimension 2 case, we get the nec-

essary ingredients to determine the fundamental class of Z. Specifically, as before,
we have

X`(w)∗X`(w) =
K(w,w)

|ϕ`(w)|2χ`(w,w)
, ` = 1, 2, . . . , k. (3.9)

Consequently, as in the case of k = 2, we have

AltSum`(w) :=
m∑

i,j=1

∂2

∂wi∂w̄j
log(X`(w)∗X`(w))dwi ∧ dw̄j −K(w) +K`(w)

=
m∑

i,j=1

∂2

∂wi∂w̄j
log |ϕ`(w)|2dwi ∧ dw̄j , ` = 1, 2, . . . , k, (3.10)

where K is the curvature of the module M and K` is the curvature of the sub-
module I`, ` = 1, 2, . . . , k. The following Theorem is now evident by appealing to
generalization of the Poincare - Lelong formula given in Theorem 1.1.

Theorem 3.1. The product
∧k

`=0 AltSum`(w) is a current which represents the
fundamental class [Z] of the cycle Z.
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4. The Koszul complex

The grid of short exact sequence of modules described in Section 3 is not a
resolution of the quotient module in the usual sense. We describe below, using
the Koszul complex, how to obtain a more conventional resolution for the quotient
module. Let J ⊆ {1, 2, · · · , k} be a subset. As before, let

IJ :=
⋂
j∈J

Ij

be the intersection. Consequently,

IJ ⊆ IJ′ (4.11)

if J ′ ⊆ J . The cardinality of J will be denoted by #J . For any l ∈ [1 , k], let

Vl :=
⊕

{J|#J=l}

IJ

be the direct sum. Set V0 := M and Vk+1 = 0.
We will describe a homomorphism from Vl to Vl−1. Take any J ′ with #J ′ = l−1

and set J = J ′⋃ j, where j /∈ J ′. There is an obvious inclusion homomorphism of
IJ in IJ′ obtained from (4.11). Let n(J, J ′) ∈ Z be the number of elements in J ′

larger than j. In other words,

n(J, J ′) := #{z ∈ J ′| z > j}.
Let

ΦJ,J′ : IJ −→ IJ′ (4.12)

denote the injective homomorphism which is (−1)n(J,J′)-times the inclusion map
defined in (4.11). For any j ∈ [1 , k], set Φj,∅ to be the inclusion map of IJ inM.

Finally, for l ∈ [1 , k], define

Φl : Vl −→ Vl−1 (4.13)

as the direct sum

Φl :=
⊕

{J,J′|J′⊂J,#J′=l−1}

ΦJ,J′ ,

where ΦJ,J′ is defined in (4.12) and the sum is taken over all possible J and J ′

satisfying the above conditions. Note that

Φ1 =
k⊕

j=1

Φj,∅ .

Now it is easy to check that Φl−1 ◦ Φl = 0. Furthermore, the following

0 −→ Vk
Φk−→ Vk−1

Φk−1−→ Vk−2
Φk−2−→ · · · Φ2−→ V1

Φ1−→ V0 (4.14)

is exact, where Φl is defined in (4.13). (Recall that V0 := M.) The quotient
M/Φ1(V1) evidently coincides with the earlier defined quotient module I12···k.

It is straight-forward to recover the earlier grid of modules from the sequence
(4.14). For example, the grid in (2.2) is obtained from the sequence (4.14) with
k = 2

0 −→ I12 −→ I1 ⊕ I2 −→M
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by setting I1
2 and I2

1 to be the quotient of the homomorphisms Φ12,2 and Φ12,1

respectively, defined in (4.12), and by setting I1 (respectively, I2) to be the quotient
of the homomorphism Φ1,∅ (respectively, Φ2,∅ ).

It may be noted that any IJ is canonically identifed, as a M-module, with M.
Indeed, the homomorphism

M −→ IJ

defined by f 7−→ f
∏

j∈J ϕj gives the canonical identification, where ϕj as before

is a generator of the ideal Ij . The exterior product
∧l Ck has a natural basis of

the form {ej1 ∧ ej1 ∧ · · · ∧ ejl
} where 1 ≤ j1 < j2 < · · · < jl ≤ k. Therefore, Vl gets

identified with (
∧l Ck)

⊗
CM.
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