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0. INTRODUCTION

To a completely non unitary (cnu) contraction 7' on a separable Hilbert space N,
Sz.-Nagy and Foiag (cf. [8]) associate a contraction valued holomorphic function
©r on the open unit disk B such that ©7(0) is a pure contraction. This is called
the characteristic function of the operator 7. Conversely, given any such holo-
morphic function © on D, there is a completely nonunitary contraction Tg whose
characterstic function coincides with &. The Sz.-Nagy-Foiag theory provides an
explicit construction of the model operator Tg for any given characteristic function
©. Moreover, as is well known ([8], Theorem 3.4, p. 257), two of these operators
S and T are unitarily equivalent if and only if the two functions ©5 and ©7 coin-
cide. However, it is not easy to determine when two functions © and ¥ coincide.
This limits the use of © as a complete unitary invariant. Besides, the model Tg is
not necessarily the best possible description of a cnu contraction with character-
istic function ©. In fact, in a recent paper ([1]), the models associated with the
constant characteristic functions © were described following the Sz.-Nagy-Foiag
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construction. Even in this simple situation the model obscures the nature of the

associated operators.

In the first part of this note we shall describe up to unitary equivalence all
the cnu contractions which possess a constant characteristic function. In case
one of the two defect indices is finite, we show that the characteristic function
is constant if and only if the operator admits a direct sum decomposition such
that each summand is one of the bilateral weighted shifts with weight sequence
{--,1,A1,...}, 0 < XA < 1, or the unilateral shift or the adjoint of the unilateral
shift. In the general case, we appeal to direct integral theory and obtain a similar
result. One consequence of this general result is that the characteristic function
of an irreducible contraction is constant if and only if it is one of the shift oper-
ators described above. It was shown in [1] that these operators are examples of
homogeneous contractions. In the second part we extend this class of examples to
produce homogeneous operators which are not necessarily contractions. We also
show that a cnu contraction with either one of the defect indices finite is homo-
geneous if and only if the characteristic function is constant. More generally, it
turns out that the restriction of a homogeneous contraction to its defect space is
in the Hilbert-Schmidt class if and only if its characteristic function is a constant.
One striking consequence is that, except for the weighted shifts mentioned above,
any other irreducible homogeneous contraction has the bilateral shift of infinite
multiplicity as its minimal unitary dilation.

Along the way, we put the notion of a homogeneous operator on a rigorous
footing and obtain a usable criterion for testing the homogeneity of an operator
which does not require prior knowledge about the spectrum of the operator. As
an application, we give an abstract nonsense construction of homogeneous oper-
ators which covers all the hitherto known examples of irreducible homogeneous
operators. We also show that, if the conditions are right, one can get an entire
continuum of homogeneous operators starting with a single operator in this class.
Last, but not the least, we explicitly record a characterisation of homogeneity of
cnu contractions in terms of their characteristic functions. This result was implicit
in the proof of Theorem 2.1 in [1].
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1. CONSTANT CHARACTERISTIC FUNCTIONS

All Hilbert spaces in this paper are separable and all operators are bounded linear
operators between Hilbert spaces. For a Hilbert space H, U(H) will denote the
group of unitary operators on H. Recall that Dy = (I — T*T)l/z and Dp. =
(I — TT*)/? are the defect operators associated with a cnu contraction 7. The
range closures Dr and Dy of Dy and Dp., respectively, are called the defect
spaces. The dimension of these subspaces are said to be the defect indices. A
contraction C is said to be pure if ||Cx|| < ||z|} for all non-zero vectors z. We
will say that two operators C; : £L; — K;, ¢ = 1,2, coincide if there exist unitary
operators T : L2 — £y and 74 : Ky — K2 such that n.Cy;7 = Cy. The operator
valued functions ©;(z) : £; — K;,i = 1,2, are said to coincide if there exist unitary
operators 7 : L3 — £y and 7. : Ky — K3 such that 1.01(2)7 = Oa(2) for all 2.
Note that this is stronger than merely requiring that @;(z) and ©3(z) coincide for
each z. An operator is quasi invertible if it has trivial kernel and dense range. D

and T will denote the open unit disc and the unit circle, respectively.

LEMMA 1.1. Let C be e coniraction between two Hilbert spaces. Then the
following are egquivalent.
(iYC isa pm"e' contraction;
(il) C* is a pure coniraciion;
(iii) (I — C*C)? is quasi invertible;
(iv) (I — CC*)Y? is quasi invertible.

Proof. To show that (i) and (i) are equivalent, first notc that the contraction
C is pure if and only if the kernel of the operator (I —C*C)!/? is trivial. However,
if C is quasi invertible then polar decomposition shows that (I — CC*)!/2 and
(I — C*C)'/? are unitarily equivalent, which implies the stated equivalence in this
case. For the general case, write C = C @0 with C' quasi invertible, and note that
C is pure if and only if C is pure.

Clearly, if C is a pure contraction then the kernel of the self adjoint operator
(I —C*C)'/2 is trivial and hence this operator has dense range. Thus (I —C*C)/2
is quasi invertible.

The equivalence of (i) and (ii) shows that the the operator (I — CC*)1/? is
quasi invertible as well.

Finally, if (I — C*C)Y/? is quasi invertible then it is obvious that C' is pure. 8
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NOTATION 1.2. Let € : £ — K be a bounded operator from the Hilbert
space £ into the Hilbert space K. Put

L fn<g0
H, =
{IC ifn> 0.

Let H = € H,. Define an operator T : H — H as follows :
nel

I: My — Hpga n # 0;

TClﬁn:{c n=0.

( Clearly, ||T¢|| = max{||C||,1}. ) In particular, for scalars A > 0, Ty will denote
the bilateral shift with weight sequence {...,1,A,1,...}.

THEOREM 1.3. For each pure contracizon C, the operator T¢ ts ¢ cnu con-
traction with constani characteristic function. Conversely, each cnu contraction
with constant characteristic function is unitarily equivalent lo Tc for some pure
contraction C.

Proof. Let H be a reducing subspace for T = T. If T were unitary on H
then for any x € H, we would have ||T7z|| = ||z|| = |7*"2|}, » = 1,2,.... From
the definition of the operator T and the fact that C is pure it follows that z = 0.
This shows that  is the trivial subspace. Therefore, Tz has no unitary part and
hence is a cnu contraction.

It is easy to verify that the adjoint 7 =75 : H — H is given by

T*lHn:{I:H"‘“Hnﬂ n#l
c* n=1.

Consequently,
ek [0 Hy—Hn n # 0;
(1=1"T) ‘H"_{(I—C*C)% n=0.

Similarly, 0% : ’ 21
tHy = MHp n# L

S )E‘an{(leC*)% n=1.

Since C is a pure contraction, by Lemma 1.1 both the operators (I — C*C)!/? and
(I — CC*)M? have dense range. It follows that

Dr={zeH:z,=0 forn#0}

and
Dy ={zeM:z, =0 forn#l1}
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It is now evident that Dps(T*)"~! Dy IDT =0 for n 2 1. Thus the characteristic
function of T is given by

def

[e.9]
Oy (7) [— T+% 2" Dre (T”‘)"‘IDT] ’DT = —T¢|Dr,

n=1

for all z € D. The fact that —~T|’Dq~ coincides with the operator —C : L — K
completes the first haif of the proof.

Conversely, let T' be a cnu contraction with constant characteristic function
Or(z) = —C : L — K for all z € D. Then C' = —@7(0) is a pure contraction.
Furthermore, by the direct part of this theorem, the characteristic function of the
operator T coincides with ©@p. Therefore, T is nnitarily equivalent to 7. This
completes the proof of the theorem. &

We shall show that the cnu contraction T is a direct integral of ordinary
weighted shift operators.

Let Lo (resp. Ko) be the kernel (resp. rangé closure) of C and let £q (resp.
K1) be its orthocomplement in £ (resp. in K). The operator €' admits a 2 x 2
matrix representation with respect to this decomposition. Indeed, C' = Ca®o. It
is clear that the operator T¢ is unitarily equivalent to the direct sum Tz @ To.
Let V; be the unilateral shift or its adjoint according as 7 > Onor 1 < 0. It Is not

hard to verify that the operator Tg is unitarily equivalent to @ V;,i# 0, where
i=—m
m = dim Ly and n = dim K.

Thus it is enough to obtain a simple representation for the cnu contraction
Tc with the assumption that C : £ — K is quasi invertible. In this case, let
U : K — L be any unitary operator. Since CU : K — K has dense range, it follows
that the operator W in the polar decomposition CU = W P is unitary. Hence the
operator C coincides with the positive operator P : X — K. The characteristic
functions of the operators T¢ and Tp are the constant functions —C and —P
respectively, which coincide. Hence the cnu contraction T¢ is unitarily equivalent
to Tp by [8], Theorem 3.4, p. 257.

If either the dimension of £ or that of K is finite then both £ and X are
of the same finite dimension k. In this case, the positive operator P is unitarily
equivalent to a diagonal operator A. Another appeal to [8], Theorem 3.4, p. 257
shows that the operators Tp and T are unitarily equivalent. However, it is easy to
construct a unitary operator intertwining Tp and Ta explicitly using the unitary
implementing the equivalence of P and A. Let {};,..., Az} be the eigenvalues of
A arranged in decreasing order. Again, it is straightforward to verify that Tx and
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k

&P T, are unitarily equivalent. We point out that the operator 7, is the weighted
£=1

bilateral shift with wenght sequence {...,1,A,,1...}. Further, the characteristic

function of the operator @ T, 1s constant.
=1
Before we discuss the case where both the defect indices are possibly infinite,

it is good to record our observations so far as

COROLLARY 1.4. Let T be any cnu coniraction with at least one fintte defect
index. The operator T has constant characieristic funclion if and only if il s
unttaridy equivalent to

n k
= =1
for uniquely determined inlegers m,n, k 2 0, and uniguely determined positive
scalars 0 < Ay € - € A < .

Now we allow the possibility that both the defect indices for the operator T
may be infinite. If C is quasi invertible then the discussion preceeding Corollary 1.4
shows that the operator T¢ is unitarily equivalent to Tp for some positive operator
P. In the present situation P need not be a finite dimensional gperator. However,
the spectral theorem guarantees a direct integral decomposition for P. This will
allow us to obtain an analogue of Corollary 1.4 in case both defect indices are
infinite. First, we recall some relevant facts from the theory of direct integrals.

Let (A, m) be a measure space and for A € A, let ) be a non-zero separable
Hilbert space. A section is a map s : A — _) Hx such that s(A) € Hy. We will

denote the linear space of all sections by S We adopt the following definition
from [2].

DEFINITION 1.5. The pair (H, : A € A, T') is said to be a measurable ficld of
Hilbert spaces if T is a linear subspace of § such that
(1) for each : s(A)|| is measurable;
(i1) if s¢ is in 8 and for every s € I', the function A — (so(}A), s(})) is
measurable then sq 1s in T}

(iii) there exists a sequence s, € I' such that {s,(A)} spans H, for each
AeA.

Mackey (5], p. 91) calls such a sequence {s,} a pervasive sequence. It can be
shown that the existence of a pervasive sequence is equivalent to the measurability
of the extended integer valued function d on A defined by d(A)} = dimH,. The

direct integral [ @3, dm is the obvious Hilbert space on the set of sections s in
A



CONSTANT CHARACTERISTIC FUNCTIONS AND HOMOGENEOUS OPERATORS 57

[ such that [ ||5(A)[|%dm is finite (two such sections being identified if they are
A

almost everywhere (m) equal). We refer the reader to [2] for further details.
Suppose for each A € A, we have an operator T(X) on A, such that
(i) The function A — (T(A}s1, s3) is measurable for each pair of sections
51,50 € fe’HA dm;
A

(1) esssup||T(N)]| < co.
We then define [®T(X), the direct integral of {T'(})} by the formula
A

(1.1) (/6T(,\)(s)) () = T(Ws(u), s€ /e}m dm; A p€A.

A A

Define the multiplication operator (Ms)(A) = As(}A), s € fea’}i,\ dm. It 1s
A

convenient to use the suggestive notation fe))\ dm for the operator M. The spectral

A
theorem says that every normal operator is unitarily equivalent to a multiplication
operator for a suitable choice of a measure m on its spectrum. (m is the so called
scalar spectral measure of the given operator.) Thus we may write our positive

contraction P as such a multiplication operator, that is, P = fe)\ dm, where
A

A C [0,1] is the spectrum of P. It is easily seen that P is a pure contraction if
and only if m{1} = 0. One may verify directly that the operators Tp and Ty are
unitarily equivalent.

Let G denote the direct sum of infinitely many copies of Hy. Let I' be the
linear space of sections implicit in the direct integral representation of M. Define

T' to be the linear space of all sections s : A — |J G, such that A — s;(A)isin T
AEA
for all 4. (Here s;()) is the projection of s(A) into the i-th component of Gy.) The

pair (Gy : A € A,T) is easily seen to be a measurable field of Hilbert spaces. Let
oo
[® Gy dm be the associated direct integral. Define the map 7 : [®Hrdm —

~o0 A

A
f(b Gy dm by
A

1 D o - s0)) = (A= (_é s ().

i=-00

[t is easily seen that 7 is unitary. A simple calculation shows that nTyn* :

[ o]

P fe) Hydm — f@gA dm is the operator feBT,\.; dm. Let d(}) = dimH, and let
A A

—00 A
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dA)-Ty = déé) Ty. For each fixed ), the operator Ty.y : G5 — G Is unitarily equiv-
alent to d(/\)l- T». This unitary equivalence in turn effects an unitary equivalence
of the operators [®Ty.;dm and [®d(})- T} dm.

Before we é\ontinue, let us Areccrd all the different unitary equivalences we
have used so far. Let V = EnB Vi, © # 0, where V; be the unilateral shift or its

f=me—m

adjoint according as 1 > 0 or i < 0. We have

&
(12) Te 2 T5 =2 TpOV = Ty @V = /n,dmeav /d(z\)-TAdmeaV.
A

Note that if (A C [0, 1], m) is a measure space with m({1}) = andd: A —> N
is any measurable function then f ®d(A) Ty dm @ V is a cnu contraction with

A
constant characteristic function. Thus we have proved:

THEOREM 1.6. The operator T is a cnu contraction with constant charac-
teristic function if and only if

T=(Pv)e /d,\) Ty dm

i€l

where m is a Borel measure with support A C [0,1], m({1}}) =0, I is a countable
indezing set and each V; (i € I} is the untlateral shift or its adjoint, d is a (Borel)
extended inleger-valued dimension function on A, and d(X) - T\ denoles the direct
sum of d(A) copies of T).

COROLLARY 1.7. The only irreducible contraclions with constant charecter-
istic funclion are the forward shifi, the backward shift and the operators Ty, 0 <
A<l

Proof. If A is not a singleton then the operator [ eBd(,\) Ty dm is reducible

since any partition of A into two Borel sets of positivlta measure induces a direct
sum decomposition of the direct integral into two parts. On the other hand, if
A = {A}, this operator is a d(A) — fold direct sum of the operator T). So the
operator fe)d()\) - Ty, dm is irreducible only if A = {1} and d(}) = 1. To complete

A
the proof it suffices to note that the operator Ty is not irreducible (it is the direct
sum of the forward and backward shifts). 8
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2. HOMOGENEOUS OPERATORS

Let M6b(D) be the group of biholomorphic automorphisms of the unit disk D.
Mob(D) consists of the functions ¢ of the form ¢ = 4 4, where

z—a
1-az’
DEFINITION 2.1. A bounded operator T is homogeneous if its spectrum is

0o a(2) = € e} <1 and 6 €[0,27).

contained in the closed unit disc and T is unitarily equivalent to ¢(T) for each ¢
in Mob(D).

LEMMA 2.2. Let T be a bounded operator. Suppose that o(T) is unitarily
equivalent lo T for each @ in some neighbourhood of the identity in Mob(D). Then
T is homogeneous and the spectrum o(T) is either the undl circle or the closed uni
disk — according as T' is inveriible or nol.

(Note that however large the spectrum of a bounded operator T may be,
each p in a sufficiently small neighbourhood of identity has analytic continuation
to a neighbourhood of the spectrum — so that (T is defined for such ¢.)

Proof. We first show that o(7") is contained in the closed unit disc. Suppose
not. Let K be the union of the spectrum with the closed unit disk. Then K is a
compact set properly containing the closed unit disk. Get hold of a neighbourhood
U of the identity in Mob(D) such that each element of U extends analytically to
some neighbourhood of K. Then ¢(T) is well-defined for ¢ € U. Replacing U
by a smaller neighbourhood if necessary, we may assume that @(7') is unitarily
equivalent to T for ¢ € U. By the spectral mapping theorem, each ¢ € U maps
a(T) into o(p(T)), but the latter is nothing but o(T). Thus each ¢ € U maps
o(T) into itself and of course, it maps the closed unit disk into itself. Hence cach
@ € U maps K into itself and is analytic in some neighbourhood of K. It follows
that the same is true of the subgroup generated by /. Cohnectedness of the group
Mob(D) implies that this subgroup is the whole of M&b(D). However, there is
no compact set K properly containing the closed unit disk such that each ¢ in
Mob(D) maps K into itself. This shows that ¢(T) is contained in the closed unit
disk. Thus (T is well-defined for all ¢ in M6b(D) and it is unitarily equivalent
to T for all ¢ € U. But for any operator 7' with the spectrum o(7T") contained
in the closed unit disc, the set of all ¢ for which ¢(T') is unitarily equivalent to
T is a subgroup of G. Since this subgroup contains a neighbourhood of identity,
it must be the whole of M&b(D) by connectedness. So, T is homogeneous. The
second half of the lemma is immediate since the above argument shows that the
closed set o(T) C D is invariant under Mob(D), while D and 8D are clearly the
only invariant closed subsets of D.
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Recall that a projective representation of a standard Borel group G on a
Hilbert space is a mapping 7 of G into the group () of unitary operators on H,
such that

(i) w(e) = 1, where e is the identity of G;

(it) m(g)m(h) = m(g, h)w(gh) for all g,h € G, where m(g, h) is in the unit
circle T;

(iii) g — (7(g){,n) is a Borel function for each ¢, 7 € M.

The function m is the multiplier associated with 7 and is uniquely determined
by 7. It has the following properties

(a) m: G x G — T is Borel;

(b) m{g,e) = 1 = m(e, g), where ¢ is the identity of the group G, ¢ € G;

(c) m(k,gh)ym(g, h) = m(k,g)m(kg,h), g,h, and k in G.

The set of all multipliers M on the group G is itself a group under point-wise
multiplication, called the multiplier group. If there is a Borel function f : G — T
such that

m(g, k) = f(g) f(R)f(gh)™",
then the multiplier m is said to be trivial. Note that in this case, if we set
o(g) = f(g)™' n(g),
then g — o(g) is a linear representation of the group G, that is a strongly contin-
uous homomorphism ([9], Lemma 5.28, p. 181).

It was shown in [7] that if T is an irreducible homogeneous operator then
there exists a projective represemtation = : Mob(D) — U(H) such that
m(p)"Tn(p) = p(T). We shall say that 7(g) is e representation associated with the
homogeneous operator T' whenever this holds — whether or not 7 is irreducible.

Let Q) be a standard Borel (7 space (cf. [9], p. 158), G being a fixed locally
compact second countable group. Let V be a normed linear space and let GL(V) be
the group of invertible bounded linear operators on V. A Borel map ¢: G x  —
GL(V) is said to be a (G,Q,GL(V)) cocycle ([9], p. 174), if the following two
properties are satisfied :

(1) e(e,z) = 1for all z € Q;

(ii) e(g192, 2) = m(g1, 92)c(g1, 922)c(g2, 2) for all (g1, g2, 2) € G x G x Q where
m: G x G — T is a multiplier on the group G.

Note that the above conditions are slightly different from those in [9].

Let H be a Hilbert space of functions on Q with values in V. For each ¢ in
G, let (m(g)f)(z) = c(97,2)  f(g7(2)), f € H, for a (G,Q,GL(V)) cocycle c. If
m(g) is unitary for each g € G then the fact that ¢ : G x @ — GL(V) satisfies the
cocycle identities implies that m is a projective representation of the group G on
H. 1t is called the multiplier representation with cocycle c.
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PRroOPOSITION 2.3. Let Q denote either the unit disk or the unit circle. If 7 s
any multiplier representation of Mob(D) on a Hilbert space H of functions defined
on 0 with values in V then the multiplication operator M defined by (M f)(2) =
zf(z) on 'H is homogeneous with associaled representation m — provided M is
bounded.

Proof. The proof merely consists of the verification:

(Mr(e=")f)(2) = (x(e™ (M) F)(2),

whenever p € Mob(D) is such that p(M) is defined (so that (M) is multiplication
by ¢). (In view of Lemnma 2.2 and the parenthetical remark following its statement,
this is sufficient for homogeneity.) But the left hand side of this equality evaluates
to z-¢(¢~1, 2)- f(¢~1(2)), whereas the right hand side is e(¢ ™!, 2)(¢- f)(p~(2)). 0

In [1], it was shown that any cnu contraction with a constant characteristic
function is homogeneous. (This is also immediate from Theorem 2.9 below.) In
view of Theorem 1.3 above, this means that the operator T¢ is homogeneous for
any pure contraction . We show next that, even if C is just a bounded operator,
Tc is homogeneous. We will verify the homogeneity of T in two steps. First,
we will assume that dimK = 1 = dim£. In this case, T¢ is one of the bilateral
weighted shift operators Ty, A > 0. Next, we will appeal to direct integral theory
to settle the general case.

The fact that T is homogeneous follows from the following general proposi-

tion which may be of some independent interest.

ProrosiTioN 2.4, Lel T be a homogeneous operator on a Hilbert space H
and suppose that 7 is a represeniation of the group Mob(D) on H which is asso-
ciated with T. Lel M be a reducing subspace for = and assume that T(M) C M.

Finally, let T = (7;1 792

the decomposition H = M* & M. Then T\, Ty are homogeneous with associated

) be the matriz of T and ®# = 7 & w2 with respect to

. . A _
representalions w1, my respectively. Also, for any scalar o 2 0, (a;' T ) s
2

homogeneous wilh associated represeniation .

Proof. This is immediate from the following lemma and the observation that

if S satisfies the condition of the Lemma 2.5 then so does aS. 1
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LEMMA 2.5. With notation as above, T' is homogeneous with associated rep-
resentation m if and only if both Ty and T, are homogeneous with associated rep-
resentation 7y and 73, and S salisfies the identity

e?(1— |a|?)(1 = aTy)~'S(1 — aTy)™" = 71 (p)Sma(e),

for all ¢ = @4 o in some neighbourhood of the identity in Mob(D).

Proof. If ¢ is in a sufficiently small neighbourhood of the identity so that
@(T) is defined, then

o(T1) 0
#(T) = i6 2 —m -1 =my—1
e’(1 — [a|®)(1 - aTr)~18(1 — aTy) e(Ty)
.. . Lo . . o I—-aly 0
(This is verified by multiplying the right hand side by /—aT'= ( _aS I-am ) )
T1(e) Timi(p) 0 )

Ti(p)* Sma(p)  ma{p) Tama(ep)
Now the lemma follows from Lemma 2.2 by equating the matrix entries on the

and

(o) T(p) = (

right hand side of these equations. &

COROLLARY 2.6. All the operators T, X > 0 are homogeneous. They are
irreductble for A # 1.

Proof. For A # 1, Ty is a bilateral weighted shift with an aperiodic weight se-
quence, so that it is irreducible ([4], Problem 129). Note that the unitary represen-
tation 7 of the group Mob(D) on L%(T) defined by (m(¢))(f) = ((¢~1))/2fopt
has the Hardy space as an invariant subspace. Also, Proposition 2.3 shows that
(@) M 7(p) = (M) for all ¢ in Mob(D). If we write the operator M, as

T1 1
S T AS Ty
neous. The multiplication operator M, is unitarily equivalent to the bilateral shift.

then by Proposition 2.4, the operators ( , A > 0 are homoge-

Consequently, the operators

weighted shifts Ty. &

1 .. . .
are unitarily equivalent to the bilateral
AS T2> yed

To show that T¢ is homogeneous, first assume that C : £ — K is quasi

invertible. We emphasize that C is not necessarily a pure contraction but merely
bounded. In this case, let € = W P be the polar decomposition, where W : £ — K
oQ

is unitary and P : £ — L is positive ([4], Problem 105). Let W = D Wi, where

WiisW:LoKorl:L—L according as 7 2 0 or 7 < 0. It is easily verified
that W conjugates T to Tp.
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Recalling the sequence of unitary equivalences in the display (1.2), we note
that all of them except for the second one remain valid even if C' is merely bounded.
The second equivalence was produced via the Sz.-Nagy—Foiag theory for contrac-
tions. However, as the preceding paragraph shows, even in this case we do not

require C' to be a pure contraction.

THEOREM 2.7. For any bounded operator C, the operator Tc is homoge-

neows.

. Proof. The discussion preceding the theorem shows that T¢ is unitarily
equivalent to V & f$d(A) - Tyxdm. The operator V, being the direct sum of

copies of the unilatgral shift and its adjoint, is homogeneous. This follows from

homogeneity of the unilateral shift and the obvious fact that homogeneity is pre-

served by taking adjoints and direct sums. The fact that the unilateral shift is

homogeneous was first noted in [6]. This fact also follows from Lemma 2.3 by

restricting the natural representation of the group Mob(D) on L?(T) to the Hardy

space H*(T). We need to verify that [®d()) - T) dm is homogeneous. There is a
A

representation my such that () intertwines the two operators Ty and ¢(7)). It

is then easy to verify that the representation ¢ — [ e)d(/\) -mx(¢) dm intertwines
A

the operators fead()‘) - Ty dm and (,o(fﬁ)d(,\) -Thdm). 8
A A

CoROLLARY 2.8. For any bounded operator C, the specirum of T¢ is the

unit circle or the unit disc according as C is invertible or nof.

Proof. 1t i1s clear from the definition of T that it is invertible if and only if

C is invertible. Therefore this is immediate from Lemma 2.2 and Theorem 2.7. 1

REMARK 2.9. It was pointed out in [8], p. 262, that if the characteristic
function of a cnu contraction T is the constant function 4 where 0 K A< I and 0
and 1 are not eigenvalues of A then the spectrum of T is either the unit circle or
the closed unit disk according as A is invertible or not. Since the operators {7¢ :
C bounded} include all cnu contractions with constant characteristic function,

Corollary 2.8 is a significant extension of this result of Sz.-Nagy and Foias.

The following characterisation of homogeneity is implicit in the proof of The-

orem 2.1 in [1]:
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THEOREM 2.10. Let T be a cnu contraction with characteristic function ©.
Then T ts homogeneous if and oly if Qo' coincides with © for each ¢ € Mob(D).

Proof. By [8], p- 240, ©1 o ¢! coincides with the characteristic function of
@(T) for ¢ in Mob(D), for any cnu contraction T. Further, T is homogeneous iff
the characteristic function of ¢(T") coincides with ©r, i.e., iff @7 coincides with
Or o p~! for any » in Mob(D).

THEOREM 2.11. Let T be ¢ homogeneous cnu coniraction. Then T]’DT is in
the Hilberi-Schmidl class if and only if T is unitarily equivalent lo T for some
pure condraction C in the Hilbert-Schmidl ciass.

Proof. By the previous theorem Or o p~! coincides with O for each ¢ €
Mob(D). Since Mab(D) is transitive on D this implies that ©7(z) coincides with
O7(0) for all z € D. Also our assumption on T means that ©7(0) is in the Hilbert-
Schmidt class. This implies that the Hilbert-Schmidt norm of ©(z) is constant.
That is, viewed as a map into the Hilbert space of Hilbert-Schmidt operators, @7
is a Hilbert space valued analytic function of constant norm. Now, an appeal to
the strong maximum modulus principle (see [3], Corollary 1I1.1.5, p. 270} yields
that ©7 is a constant, so that Theorem 1.3 completes the direct part of the proof.

The converse is immediate from the fact (proved in the course of the proof
of Theorem 1.1) that for T = T¢, ©r(0) coincides with —C. &

COROLLARY 2.12. The only irreductble homogeneous contractions with al
least one defect indez finite are the operators Th, 0 < A < 1, and the unweighted
forward and backward shifts.

If one of the defect indices of a cnu contraction is infinite then the mini-
mal unitary dilation is a bilateral shift of infinite multiplicity ([8], Chapter II,
Theorem 7.4 (a)). Thus we have:

COROLLARY 2.13. Ezcept for the operators in the previous corollary, the
minimal unitary dilation of any irreducible homogeneous contraciion is the direct
sum of infinttely many copies of the bilateral shifl.

REMARK 2.14. Let {e, : n € Z} be the standard orthonormal basis in the
Hilbert space ¢2(Z). Fix A, 0 < A < I, and put p = +/T— AZ. Let K be the closed
subspace, in £2(Z) & £2(Z), spanned by the vectors Ae, @ pen, n < 0 and e, @ 0,
n 2 0. Let U be the bilateral shift acting on ¢2(Z). An easy verification shows
that the compression of the operator U @ U to K is the bilateral shift with weight
sequence {...,1,1,A,1,1,...}, which is the homogeneous operator Ty. Thus U @U
is a unitary dilation for the operator Ty. It is not hard to verify that / @ U is
minimal. We conclude that the minimal unitary dilation of the operator T} is
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a bilateral shift of multiplicity 2. Thus the exceptions made in the statement of

Corollary 2.13 are truly exceptional.
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