ON CURVATURE AND SIMILARITY

Douglas N. Clark and Gadadhar Misra

1. Introduction. The purpose of this note is to shed some light on the rela-
tionship between the Cowen-Douglas curvatures X+ and Xg, for two similar
operators T, S of class B, (£2), by making use of recent results on the similarity of
Toeplitz operators [1].

To be specific, let @ be a planar region. We say a bounded operator 7 on a
Hilbert space H belongs to B, (Q) if T—\[I is onto and has 1-dimensional kernel
for A€, and if

V ker(T—A\I)
A€EQ
is dense in H. For T € B; (), the curvature X s is defined, for A €, by

0? s
K7 () == == logllkn?,
where { k) } is an analytic determination of the set of null vectors of T— NI, A €.

In [4], Cowen and Douglas introduce B, and X7 and prove, among other
things, that X+ is a complete unitary invariant for 7€ B, ({2). But for similar
S, T € B;(Q), the situation is not made so clear. In fact, the best analogue of the
result for unitary equivalent S and T is left as a conjecture for the case of simi-
larity. Let S, 7€ B,(D), D the unit disk, and suppose the closure D of D is a
k-spectral set for S and 7, for some k. The Cowen-Douglas conjecture ([4],
p. 252) states that if S and T are similar, then

lim X7(A)/Xs(h)=1,
AN ET
where T is the unit circle. (Actually, Cowen and Douglas also conjecture the con-
verse statement; we shall have no further comment concerning the converse,
however.)

In Section 2, using a ‘‘piece’’ of Toeplitz operator from [1], we show that the
Cowen-Douglas conjecture is false. In Section 3, we investigate our example
further, showing how the failure of the conjecture can be used to obtain a spec-
tral set estimate. In Section 4, we describe a class of Toeplitz operators for which
the Cowen-Douglas conjecture holds.

2. The example. Let Tr denote the Toeplitz operator with symbol
F(z)=z*(z—B) 3<B<I,
so that, for x€ H?,
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Trx=PF(e")x(e'),

where P is the projection of L2 on H?. The function F maps the unit circle T to a
““figure 8’’, sending the two arcs of T from wuy=(1++/482—1 i)/2B to i, to
simple closed curves. The image of the arc from u, to i, containing —1 has wind-
ing number +1 with respect to its interior, which we denote ¢, and the image of
the complementary arc has winding number —1, with respect to its interior £. By
the standard index theory for Toeplitz operators, Tr— Al has one dimensional
cokernel and is one-to-one (for A €f), and has one dimensional kernel and is
onto (for A€ £).

Let f(z) denote the rational function F(z~') so that Ty=TF, and let M
denote the closed span of the eigenvectors of 7y — N/, for A €( (which is equiva-
lent to A€¥). Let T denote the restriction T7= 7}]911. By [1, Theorem 1], T/ is
similar to the coanalytic Toeplitz operator 7;*, where 7 is the Riemann mapping
function from |z|<1 onto f. Therefore the operator 7=1"'(7¥) is well defined,
and is similar to S, the adjoint of the unilateral shift.

The fact that 7 is similar to S implies 7€ B, (D), since the intertwining simi-
larity must preserve essential spectrum, index and dimension of kernel. We also
use T=L"!SL to show that D is a k-spectral set for 7. In fact, for any polynom-
ial p, p(T)=L"'p(S)L, so that

oD <ILTILNP ()] =K] P,

where k=|L7Y||L]|.

In order to compute the curvature of 7, we note that, by Wiener-Hopf factori-
zation, the eigenvectors h)(z) of T; satisfying /,(0) =1 are given by
(2.1) h(z)=(1—-Bz)(1-Nz+A\BzH)~' \€L.

The eigenvectors of T are of course #,()), for A€ D. Factoring the denominator
in (2.1) and expanding in partial fractions, we have

1-Bz 1 (d+—6_d‘—B>
(1-d,(N)z)(1—d_(N)z) dy—d_\l1—-d,z 1-d_z)’

where d, (\)=28N/[A+ (A>—48\)?]. We compute the norm of 4, by taking
the inner product of the two expressions (2.1) and (2.2) and using the repro-
ducing property of (1—d, (N)z)!in H?. After rearrangement of terms, we have

~log||A\]|> =1log[B*(1—|BN|?) +]|1—=B\|?]1 —log(1—|d, (N)|?)
—log(1—|d_(N)|*) —log|1 —d, (\)d_ (M)~

We want to computé the asymptotic behavior of X 7(\), as A —>1/8, A real and
A€’ (i.e., A<1/B). For the first term in (2.3), it is easily seen that
2
IO
For the second two terms on the right of (2.3), we can verify directly that
|d5(1/8)|*=B*/(48%—1),and that, for \ real, 1—|d+ (A\)|>=1—BA\. This shows

2.2)  h(z)=

(2.3)

log[B2(1—|BA|*) +|1=BN|*1=B82(1-B*N) 2+ o[(1-BN) 21.
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2 .
5)%-); log(1—|ds (N)|*)=B%(482—1)"'(1=BN) > +0[(1-BN)*].
Since |1—d, (A)d_()\)| tends to a nonzero limit as N — 1/8 (in fact, d, — i1, and
d_ — uy), we see that the last term in (2.3) contributes o(1) to the curvature, and
we have
2

_ 2_ 0201 _R232\=2_~pR44R2 _1\—l¢1_ -2 _ -2
anan log|| Aix[|*=B°(1=B"N") 28%(4B8°—1)" (1=BN)"“+ol[(1-BN)""]

=—B2(4B2+1)/[4(482—=1)(1—BN)*]1+o[(1—-BN) 2]
Selecting 7(\) to be real if A is real and using 4, (), we obtain
Kr(N)=—B(4B2+1)T(N)Y/[4(4B*=1)(1=Br(N\) 1 +o[7*(1-BT) 7).

As is well known, the curvature of the backward shift Sis — (1—|\|*)"?, and so
if A is real, we have, for the similar operators S and 7,

Kr/Ks=B*(482+1)T (N2 (1-N)*/[4(482 = 1) (1—BT(N))?]
+o[72(1-N)*(1-B7)"2).

A theorem of Warschawski [6] tells us the behavior of 7 and 7’ near a singularity
of 7(T). Indeed, if the inner angle of 9f at 1/8 is aw (0<a<2), and if 7(1) =
1/8, then, by [6],

lim(z—1)[7(z) =B~ "1 *=a lim[7(z) -8~ "1'"/7(2),
z—1 z—1
or

lim(z—1)"[7(z) =B ')/ (z)=a "\
z—1

It is a matter of elementary analytic geometry to check that aw =2 cos~!(1/28),
and so we have proved ‘

(2.4) lim X7/Xs=4m "*[cos ™1 (1/28)1% (482 +1)/(4B%—1).
A1

The right side of (2.4) cannot equal 1 for %<B < 1. Indeed, the limit as 3 —9% is
8/7 %<1 and the function is decreasing on (%, 1).

3. k-spectral sets. In this section we prove a proposition which sheds some
additional light on the example of the previous section. Recall that a compact
planar set I is called a k-spectral set for a bounded operator 3 if || f(3)| < k| fz
for all polynomials, f, where || ||z is the sup norm on E.

PROPOSITION 1. If Q is simply connected, if 3€B,(Q), and if Q is a k-
spectral set for 3, then
(3.1) : | K5 (0)/Ks(w)| 2k ™2

for w €Q, where 8 is the adjoint of multiplication by z on H*(Q).
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Proof. For the proof, we need to recall two facts which characterize the curva-
tures of 3 and 8 respectively. First, if w €1, the operator J, restricted to its invar-
iant subspace ker(3 —wI)?, has the 2 X 2 matrix representation

(3.2) :s|ker(3-w1)z=[ N H“ogw) ]
where

(3.3) H;(0)=—1/X;5(w)

(see [4], p. 195). Second, the curvature of 8 is given by
(3.4) Ks(w)=—sup|f'(w)]? w€Q

where the supremum is over the class Hol (2, D) of all holomorphic f having
supnorm 1 in @ and vanishing at « (see [5], ‘‘Schwartz Lemma,’’ preceding
Corollary 1.1°). ‘

Now let f€ Hol,, (2, D). Since f(3)|xer(3- w2 =S (3|ker(3-wn?), it follows from
(3.2) that

0 f(w) H (@) (w) f(w)H;(w)
[ 7 [ 7 Yo
Sf(w)
<[l /(3| <k
Therefore Hy(w) < k/sup|f'(w)|, for f€ Hol, (2, D) and, by (3.3) and (3.4),
K3 (w) < —k 2 sup|f"(0)]* =k Ks(w),

proving (3.1).

The result of the proposition is to be compared with an inequality of Cowen
and Douglas [4, C_orollary 4.30] which implies that if $ and J lie in B,({2), are
similar, and have ( as a k-spectral set for some k, then

3.5) (LI D2 < Ks(w)/Ks(w) < (LI L")
for any L satisfying
(3.6) 3=L"'SL.

If, in addition, 8 has Q as a 1-spectral set (as in the case for the S of the proposi-
tion), then (3.6) implies that 3 has Q as a ||L||||L~"|-spectral set. Therefore in-
equality (3.1) is sharper than the left inequality in (3.5).

As applied to the examples 7 and S of Section 2, the proposition implies that D
is a k-spectral set for T only if

kzw[2cos(1/28)] 7 (482 —1)/(4B2+1)]V2
In particular, D is not a 1-spectral set for 7.

4. A positive result. In this section, we show that the Cowen-Douglas con-
jecture holds for the class of Toeplitz operators considered in [3]. First, we need
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a version of the classical theorem on the angular derivative. In this case, we make
a strong /ocal hypothesis and obtain unrestricted approach to the derivative.

LEMMA. Letzo €T, 6>0, g(z) analyticin A= {|z—zy| <6}, |g(z)]=1on TNA
and |g(z)|<1on DNA. Then

@.1 lim (1—|g(2)|%)/(1—|z|*) =|g"(z0)|

72
Jfor unrestricted approach from z €D.
Proof. First we claim that
4.2) 208(20) &'(zp) is a real number.
Let zo=e'%, g(zo) =e'% and g(e’’) =e', for e’ € ANT. We have

g'(z9) = lim (eYo—e™)/(e'f0—e')

8 — 0,
= lim exp[3i(Yo+y—0—0p)]sin 3(Yo—¥)/sin 3(6y—0)
=Zp&(2o) lim sin 3(yYo—y)/sin 3(6p—0),

6 -6,
which proves (4.2).

To prove the lemma, we note that the quotient on the left of (4.1) can be
written as

llg(e™)*~|g(re™)?1(1=r*) " =g(e”) e~ (1+r) (", re")
+g(reye’’(1+r) 'h(e’, re'),
where h(z,w) is defined by h(z,w)=[g(z) —g(w)]/(z—w), if Z,wWEA, 7#w
(and h(z,z)=g’'(z)). Since h(z,w) is uniformly continuous on compact sub-
sets of AXA, the right side of (4.3), as r —1, approaches the real part of

208(20) &'(z9) which, by (4.2) and its proof, is equal to |g’(zo)|, proving the
lemma.

4.3)

Now let F(z) be a rational function mapping T in an orientation preserving
manner to a simple closed curve F(T), and assume F is 1-to-1 in some annulus
{r<|z|<1}. By [3, Theorem 1], T is similar to 7,, the Toeplitz operator asso-
ciated with the mapping function 7 from D to the interior of F(T). In order to
work in the disk D, we set T=7"!(Tr)*. Then T€B,(D) and T is similar to the
backward shift S. Our result is:

PROPOSITION 2.

Ao N ET

Proof. Let f(z) =F(Z ') be the rational function satisfying Ty =T, and write,
for A interior to f(T),

f(@)=A=a(\) [T 1—d;(M)2) [T (1—e:(N)2)/[TT (z—=8) TT (z—7)],
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where |d;(N)|<1<|e;(N)| and |y;|<1<]é;|. The eigenvectors of T are given by
kn(2) =TI (1-87"'2)/TI (1-d;(7(A)z)

[3, Corollary 2.1] and the d; can be renumbered so that |d;(7(N\))|=>1 as
A= Ny €T if and only if i=1 [3, Lemmas 3.1 and 4.1]. Expanding &, in partial
fractions and computing the norm as we did for 4,’in Section 2, wé obtain

IT; [(d; (F(N) =&Y (1=87"d; (FOM)]
, ILi; [d; (F(N) = d; (F(A)IIL; (1= (F(A) & (F(N)]

If we rewrite the right side of (4.4) with a common denominator, we have that
(1) the products over i#/ (in (4.4)) divide the numerator, and
(2) the numerator tends to a nonzero limit as A > Ay € T.

To prove (1), fix p # g and note that in the resolution of (4.4) into a single frac-
tion exactly two terms in the numerator fail to contain a factor of d, —d,: those
coming from the terms on the right of (4.4) with j=p and j=gq. It is easy to see
that d, —d, divides the numerator of the sum of these two terms.

To prove (2), note that all terms in the numerator of the resolution of (4.4) into
a single fraction tend to 0 except the one arising from the term j =1 (and the term
arising from that one does nof tend to 0).

By (1) and (2), we can write

(4.4) ENES

liall?=AM) [TT [1=d;(FR) dj (7R,
i,j

where A(N\) £ 0as A > Ny ET. Therefore
2 2

P
2 __
~anon loglmll®= oy

log[1—|d; (T(A))|?1+0(1)

|—*d1(7(?\)) [1=]dy (FOM)? 172+ 0(1).

By [3, Lemma 3.2], g(\) =d;(7(X\)) satisfies the lemma in a sufficiently small
neighborhood A of Ay and we have

d -
~—d,(r(>\» [1=|A2P[1=]d) (FN)P] 72 =1

Kr/Ks=1"an

as A = \q. This proves Proposition 2.

REMARK 1. If F(z)=z%*(z—a)/(1—az), a>1, then the hypotheses of Propo-
sition 2 are satisfied if @ > 3. If a=3, the annulus hypothesis is violated but it can
be shown that the conclusion of Proposition 2 is still valid.

_ REMARK 2. By Proposition 1, the Cowen-Douglas conjecture remains open if
D is a 1-spectral set for both S and 7. On the other hand, Proposition 2 gives
examples where the conjecture is true but D is not a 1-spectral set for 7" [2, §3].
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REMARK 3. A local version of Proposition 2 is easily obtained and implies, for
the examples S and 7 of Section 2, that the ratio of the curvatures tends to 1 if A
tends to Ag €T, Ag#1.

REMARK 4. It is evident that our results on the Cowen-Douglas conjecture
have relied heavily upon the behavior of the mapping function 7 from D to
certain planar regions. Conversely, a proof of some reasonable modification of
the conjecture, say, for a Toeplitz operator similar to an analytic function 7 of
the backward shift, would supply information about the derivative of the func-
tion 7.
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