
RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 95, NO. 2, 25 JULY 2008 188

*For correspondence. (e-mail: sekar@physics.iisc.ernet.in)

An algorithm to find all identical internal
sequence repeats

Nirjhar Banerjee1, N. Chidambarathanu1, Daliah Michael1, N. Balakrishnan2
and K. Sekar1,2,*
1Bioinformatics Centre (Centre of Excellence in Structural Biology and Bio-computing) and
2Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560 012, India

Proteins containing amino acid repeats are considered
to be of great importance in evolutionary studies. The
principal mechanism of formation of amino acid re-
peats is by the duplication or recombination of genes.
Thus, repeats are found in both nucleotide and protein
sequences. In proteins, repeats are involved in protein–
protein interactions as well as in binding to other
ligands such as DNA and RNA. The study of internal
sequence repeats would be helpful to scientists in vari-
ous fields, including structural biology, enzymology,
phylogenetics, genomics and proteomics. Hence an al-
gorithm (Finding All Internal Repeats, FAIR) has
been designed utilizing the concepts of dynamic pro-
graming to identify the repeats. The proposed algorithm
is a faster and more efficient method to detect internal
sequence repeats in both protein and nucleotide se-
quences, than those found in the literature. The algo-
rithm has been implemented in C++ and a web-based
computing engine, IdentSeek, has been developed to
make FAIR accessible to the scientific community.
IdentSeek produces a clear, detailed result (including
the location of the repeat in the sequence and its length),
which can be accessed through the world wide web at
the URL http://bioserver1.physics.iisc.ernet.in/ident/

Keywords: Dynamic programing, evolutionary studies,
internal sequence repeats, structure–function relationship.

INTERNAL repeats occur in approximately 14% of all
known proteins available in the literature. In fact, eu-
karyotic proteins are three times more likely to contain
internal sequence repeats than prokaryotic proteins, be-
cause eukaryotic repeats have unique functions1. In addi-
tion, eukaryotic genomes have undergone a higher degree
of gene duplication. Since gene duplication and recombi-
nation events are thought to be responsible for the exis-
tence of sequence repeats, they are found in both genes
and non-coding genomic regions. In protein sequences,
repeats can range from a single residue to complete do-
mains consisting of hundreds of amino acid residues. Re-
peats that are separated by intermediate sequences of
constant length occurring in clusters are referred to as short

regularly spaced repeats (SRSRs)2. Since most of these
are identical repeats, they can be effectively applied to
protein secondary-structure prediction.
 Earlier studies indicated that the topology of trans-
membrane proteins3 evolved by internal gene duplica-
tion4,5 and a large number of them have been detected to
contain internal sequence repeats5–7. As stated earlier, the
secondary structures of such internal repeats in proteins
are regular8. A classic example of internal repeats is the
zinc-finger domain, which is a commonly repeated motif
in most DNA-binding proteins. Internal sequence repeats
also have important implications in evolution and func-
tions of proteins. In his book, Of Flies, Mice and Men,
Francois Jacob has put forth that evolution has arisen
from nature’s tinkering, implying that nature makes new
genes with new functions from existing genes. Kachroo et
al.9 suggested that the formation of internal sequence re-
peats could be the major cause of evolutionary genome
variability. Furthermore, in evolutionary studies, the dis-
tance of the constituent repeats can use information from
internal repeats to estimate the age of a genome or an in-
dividual protein10. In addition, insights into evolution and
phylogenetic relationships can be derived from the distri-
bution of repeats. For instance, Koonin et al.11 concluded
that the distribution of repeats in archaea indicates that
they have an intermediate relationship between prokaryotes
and eukaryotes. Earlier studies indicate that repeats play a
major role in protein and nucleotide stability, thus being
responsible for protein function10. Internal repeats not
only ensure the proper functioning of proteins, but some-
times cause malfunction and hence are important in the
study of diseases10,12, such as Alzheimer’s disease, Creut-
zfeldt–Jacob disease and Gerstmann-Straussler–Schein-
ker disease13,14.
 In the case of DNA sequences, short repeats indicate
the position of deletion and precise removal of transpos-
able elements15. Longer repeats are responsible for class
switching in immunoglobulins16. Further, WD40 repeats
in CARD4 act as regulators for the activation of caspases
in apoptosis pathways17. The activity of enzymes can also
be controlled to some extent by internal sequence repeats.
For example, decay accelerating activity is reduced if re-
peats between sites 1 and 2 are deleted in C5 converta-

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 95, NO. 2, 25 JULY 2008 189

ses18. Further, in the case of cGMP-binding phospho-
diesterases there are two repeats, each of which is a cata-
lytic site and an invariant Aspartate residue is essential
for interaction19. Furthermore, in case of nucleotide re-
peats, telomeric repeats are essential to ensure correct
function of telomeres and for maintaining the integrity
and stability of the chromosome20. Thus, the significance
of internal sequence repeats is clear.

Existing algorithms

Many algorithms have been developed to search for se-
quence repeats in protein sequences. These methods use
different methodologies and protocols to detect internal
sequence repeats. According to Söding et al.21, there are
three general classes among the existing methods to de-
tect repeats in protein sequences. SMART22 and REP23
belong to the first class, which construct repeats by utiliz-
ing their own database of profile-hidden Markov models
or sequence profiles generated from known repeat fami-
lies and comparing each profile with the query sequence.
REPPER24 belongs to the second class which is special-
ized for the detection of periodic patterns in proteins.
This class does not allow gaps within or between repeats
and is applicable mostly to the large class of fibrous pro-
teins. Although REPwin in REPPER is similar to other
tools, it detects short repeats by aligning the sequence
against itself and deploying a sliding window protocol.
However, these short repeats are detected only if they oc-
cur consecutively in sufficient number in the sequence to
be detected by Fourier transformation. The third class
consists of REPRO25, RADAR26 and TRUST27. These do
not rely on any a priori knowledge about repeat families,
but look for internal similarities by aligning the sequence
with itself. RADAR results in short composition-biased
repeats together with gapped approximate repeats. TRUST
generates only those repeats that are statistically signifi-
cant. The program REPuter28 finds repeats only in nucleo-
tide sequences by implementing suffix trees.
 Most of these methods concentrate on homology and
produce repeats more than 15 residues that frequently
contain gaps. Thus, small repeats may be missed by some
of these programs. While some programs allow mis-
matches to account for the mutations in sequences, and
are a good design choice for the detection of domain re-
peats across different proteins, they have the disadvantage
of sometimes showing completely unrelated sequences as
repeats. Additionally, the main limitation of these algo-
rithms is the limit imposed on the maximum number of
amino acid residues that can be given as input. RADAR
web-interface permits a maximum of 1000 amino acid
residues, Internal Repeats Finder29 permits 2000 amino
acid residues and REPRO allows a maximum of 6000
amino acid residues. However, REPPER has no limits on
the number of amino acid residues in a given sequence,
but permits only one protein sequence at a time, completely

ignoring any later sequences provided in the input. Fur-
ther, in case of RADAR, TRUST and REPRO, when mul-
tiple protein sequences are entered, the algorithm treats
the entire set of sequences as a single sequence.
 To address these issues, an algorithm FAIR (Finding
All Internal Repeats) has been proposed to search for all
identical internal sequence repeats. In contrast to the al-
gorithms described earlier, the proposed algorithm utilizes
the concepts of dynamic programing rather than simple
sequence alignment to find the internal identical repeats
in both protein and nucleotide sequences. Unlike BLAST,
which is a local alignment search tool and whose output
must be heavily parsed to find internal repeats in se-
quences, the proposed algorithm finds and individually
lists all the internal repeats present in the sequence. Fur-
ther, the algorithm runs well for finding precise results
from extremely large sequences, as described in later sec-
tions.

The proposed algorithm

The algorithm to find identical internal sequence repeats
in protein and nucleotide sequences is described below.
The time taken for execution and the memory utilized
while running the program have been optimized and are
explained in the following sections. As the number of
strings repeated and the number of times one particular
string is repeated are not known, size allocation of arrays
is not preferred, and thus the simple dynamic programing
concepts are utilized in this algorithm. The algorithm
consists of three parts and is explained in detail in the
subsequent sections.

Finding the repeats using two vectors, ‘current’ and
‘previous’

The uploaded sequence or string of length y is named a1
and an identical string a2 is created for calculation pur-
poses. Two vectors named ‘previous’ and ‘current’ of
y + 1 elements each are created and initialized to zero.
The [y + 1]th element in the vector is required in order to
check for the end of the string. Although there is no
alignment involved, the procedure to find identical inter-
nal repeats in a given sequence can be visualized using a
graph, where the string a1 is along the y-axis and a2 is
along the x-axis (Figure 1). For each character of a1, the
algorithm checks all the characters of a2. In effect, a match
between the character denoting the row (in string a2) and
the one denoting the column (in string a1) is searched.
Since the matrix is symmetrical, it is sufficient to check
only the upper half of the main diagonal. In other words,
if i denotes the position of the pointer in a1, the algorithm
checks from the [i + 1]th element of a2 till the end of the
corresponding row and whenever a match is found, the
following operation is performed:

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 95, NO. 2, 25 JULY 2008 190

 if (a1[i] equals a2[j]){
 set current[j] to previous[j – 1] + 1;}

The above step assigns the current length of the repeat to
the jth element of vector ‘current’. While performing the
next iteration, the vector ‘previous’ is assigned the value
of vector ‘current’ and the above step is repeated. For ex-
ample, if the string ‘ABC’ (position 6–8) is repeated
twice, with the second repeat from positions 11 to 13 in
the vector, the changes in the required elements of both
vectors will be as shown below:

1. Initially, current = 0; previous = 0.
2. After the first match A: current[10] = 1; previous=0.
3. Then, previous is assigned the value of current:
 previous[10] = 1; current[10] = 1; rest = 0.
4. After the character B is found: current[11] = 2; no

other changes.
5. Similarly, after the character C is found: cur-

rent[12] = 3.

Thus, the ‘current’ vector stores both the position and length
of the repeat. In this case, we find that 3 is the length of
the repeat and the 13th position is the ‘end point’. The al-
gorithm first checks whether the last length of the repeat
(if there is one) that is stored in the ‘previous’ vector, is
greater than the minimum length (min1) of the repeat de-
fined by the user. If this condition is satisfied, the position
and length of the repeat are pushed into another vector,
‘vsparse’. Subsequently, the vector ‘vsparse’ stores the

Figure 1. Visualization of the procedure to detect internal repeats
(ABC) from a sequence. a1 and a2 are the two vectors containing the
substring ABC, which is repeated between positions 6 and 8 as well as
11 and 13. ‘Startd’ and ‘endd’ contain the starting and ending positions
of the substring respectively.

user-defined data-type structure called ‘SparseEntry’ which
in turn stores three variables, corresponding to the posi-
tion, end (row_value and column_value) and length
(length_value) of the repeat. Thus, the algorithm performs
the following operation whenever a match is not found
and if the end of a row is not reached:

 if(previous[j – 1] is greater than or equal to min1){
 set sparse_entry_column_value to j – 1;
 set sparse_entry_row_value to i – 1;
 set sparse_entry_length_value to previous[j – 1];
 push sparce_entry into vector vsparse;
 }

Once the end of the row is reached and the condition pre-
vious[j-1]>=min1 is satisfied, the algorithm stores the
values in the vector as mentioned earlier. Thus, the values
of the ‘end-points’ and the length of the repeats have
been computed and stored at the end of the first part of
the algorithm. When more than one sequence is given as
input, the repeat is stored and the vector current is reset to
0. Further, whenever a new sequence is encountered, the
vector ‘previous’ is set to the value of ‘current’; hence it is
also reset to zero.

Storing subsequences and repeat positions

When the length of the repeat (stored in vsparse.value) is
greater than the minimum length, the vectors ‘startd’ and
‘endd’ are created based on the contents of vsparse. This
can be explained using the string ‘ABC’, which is repeated
between positions 6 and 8 as well as 11 and 13 (Figure
1). Thus, the vector ‘startd’ contains the positions of the
starting point of the ‘first’ and the ‘second’ sequences.
Similarly, the vector ‘endd’ contains the positions of the
end-points of the two sequences. If there are more than
two occurrences of a particular string, the ‘startd’ and ‘endd’
values of the ‘second sequence’ for further occurrences
need to be stored, but not those of the ‘first sequence’. To
accomplish this, the algorithm uses a Boolean variable
append_first, which is false unless it encounters a new
repeat.

 if ((endd of first sequence is not equal to lrow) OR
 (seqlen is not equal to vsparse[i].value)) {
 set append_first to true;
 set seqlen to vsparse[i].value;
 set lrow to endd[firstseq];
 }

 if(append_first is true){
 set sub_sequence.start_point to startd[firstseq];
 set sub_sequence.end_point to endd[firstseq];
 push sub_sequence into vsubseq;
 }

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 95, NO. 2, 25 JULY 2008 191

 set sub_sequence.start_point to startd[secondseq];
 set sub_sequence.end_point to endd[secondseq];
 push sub_sequence into vsubseq;

Whenever either the end-points of two consecutive re-
peats or their lengths are different, append_first is set to
true. A new vector ‘vsubseq’ stores a data structure called
‘SubSequence’ containing three elements: sequence (to
store the repeat) and start_point and end_point (for the
initial and terminal points of the repeat respectively). Thus,
when a new repeat is encountered, the positions of both
the ‘first’ and ‘second’ sequences are pushed into the vector
‘vsubseq’. In other cases, only the positions of the ‘sec-
ond’ sequence are pushed.

Sorting the vector and removing identical entries

The entries of the vector ‘vsubseq’ are entered as and
when the repeats are encountered. Thus, the results must
be sorted to make the output non-redundant. This is per-
formed using the built-in-function STL sort (NlogN), im-
plemented in C++. Further, in order to remove redundant
entries from the sorted output every element is checked
with the previous one and if two subsequent entries are
found to be the same, the second one is removed. The
non-redundant entry is pushed into a vector called
‘unique_entry’, which displayed as the output. Interest-
ingly, none of the generated sets of repeats is a subset of
another. To illustrate this aspect, suppose the sequence
‘ABCDE’ is repeated three times, it would also mean that
the sequence ‘ABCD’ is repeated three times. However, this
second repeat (‘ABCD’) will not be shown unless there is
an independent repeat of ‘ABCD’. Thus, the algorithm is
designed to show only non-redundant repeats. However,
in the case of low-complexity repeats the algorithm gen-
erates all subsets as repeats, irrespective of whether they
occur independently in other parts of the sequence.
 While FAIR follows O(N2) time complexity in the gen-
eralized case, where N is the number of amino acids present
in the sequence, TRUST follows O(N2 + NA2 + TLN)
time complexity, which takes less than a minute to find
repeats in 2000 residues27. While the algorithm used in
RADAR takes not more than 180 s to find repeats in 5179
amino acid residues (e.g. MUC2_HUMAN) and 72 s to
identify repeats in a sequence of length 2265 residues
(e.g. FINC_BOVIN)26, the proposed algorithm takes less
than a second to find repeats from these sequences.
Further, FAIR takes only 32 s to find repeats in the larg-
est protein sequence ‘Titin’ from Homo sapiens
(gi|17066105|emb|CAD12456.1), which contains 34,350
amino acid residues. Thus, the time taken by the proposed
algorithm is less compared to those available in the litera-
ture. However, keeping in mind the time complexity, the
algorithm (and web-based computing engine) performs
best with a minimum repeat length of three amino acids.

Implementation: IdentSeek, a web-based computing
engine

In order to make the proposed algorithm freely available
to the scientific community, a web-based computing en-
gine, IdentSeek, has been developed. The computing en-
gine is written in Perl/CGI and can handle extremely
large sequences (FASTA format). It has been success-
fully tested with the nucleotide sequence of the parallel
β-helix repeat containing protein from Chlorobium chloro-
chromatii CaD3 (gi|78188592; approximately 37,000
amino acids; 110,000 nucleotides). In addition, it is pos-
sible to distinguish between different protein sequences
when multiple such sequences are uploaded and to detect
all identical repeats irrespective of restrictions on their
composition or alignment. Further, it is flexible and al-
lows the user to set the required length of the repeat. Fi-
nally, it produces a complete and comprehensive output
for each of the sequences.

Case studies

To test the efficiency of the proposed algorithm, an inva-
sion from Yersinia pestis Nepal516 containing 4270
amino acid residues was taken in FASTA format. The
minimum number of amino acid residues in a given repeat
was set to greater than or equal to 60. For clarity, only a
portion of the input protein sequence is shown in Figure
2. It is evident from the output that there are two distinct

>gi|108813752|ref|YP_649519.1| invasin [Yersinia pestis Nepal516]
MLNYFRAILISWKWKLSHHTSRPHDVKEKGHPRKIKVVAWITLFFQFAFPLSLSFTPAIAAANTTNSAPT
SVITPVNASILPPAARATEPYTLGPGDSIQSIAKKYNITVDELKKLNAYRTFSKPFASLTTGDEIEVPRK
..
..

Number of residues in the repeat = 64

DGIATATLTNTVAGTSNVVATIDTVNANIDTAFVAGAVATITLTAPV
NGAVADGADTNQVDALV
[1002 to 1065]
[2452 to 2515]
--

Number of residues in the repeat = 248

DGIATATLTNTVAGTSNVVATIDTVNANIDTAFVAGAVATITLTAPV
NGAVADGADTNQVDALVEDANGNPITGAAVVFSSANGATILSSTMNT
GVNGVASTLLTHTVAGTSNVVATVDTVNANIDTTFVAGAVATITLTT
PVNGAVADGANSNSVQAVVSDSDGNPVTGAAVVFSSANATAQITTVI
GTTGADGIATATLTNTVAGTSNVVATIDTVNANIDTAFVAGAVATIT
LTAPVNGAVADGA
[1002 to 1249]
[2259 to 2506]
--

Figure 2. Output of FAIR for protein sequence using an invasion
from Yersinia pestis.

Sequence Start Size

LGAGSQAHGSQSLALGAGATASQANSIALGASSVTTVGAESDYSAYGLTAPQTSVGEVGMGTAQG

NRKITGVAAGSADYDVVNVAQLTAVGDKVEQNTADITSLGGRVTNVEGGMTRITNGGGIKYFHTH
STEPDSVASGSDSVAIGPNAQASGTTSIA

1 159

MGAGSTAQGAQSLALGAGAAASQANSIALGASSVTTVGAESDYSAYGLTAPQTSVGEVGVGTAQG

NRKITGVAAGSADYDAVNVAQLTAVGDKVDQNTADITSLDGRVTNVEGEMASITNGGGVKYFHTH

STESDSVASGSDSVAIGPNAQASGTASVA

160 159

Figure 3. Output of TRUST server for part of the hypothetical pro-
tein from Y. pestis.

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 95, NO. 2, 25 JULY 2008 192

Figure 4. Panel depicting the results of REPPER for part of the hypothetical protein from Y. pestis.

identical repeats containing 64 and 248 amino acid resi-
dues respectively. The same sequence was submitted to
the existing algorithms. The servers RADAR, TRUST
and Internal repeat finder did not accept the input se-
quence due to the limitations in the number of amino acid
residues. Further, REPPER server did not produce any
significant results. In addition, there was a problem in ob-
taining results from REP and REPRO due to internal
server error. The algorithm REPuter was not used for this
sequence, since it has been developed for nucleotide se-
quences.
 Since the algorithms RADAR, TRUST and Internal re-
peat finder have limitations in the number of amino acid
residues given in the input, the protein fragment from
residue numbers 251 to 575 (325 amino acid residues) of
the hypothetical protein YPN_1947 from Y. pestis Ne-
pal516 (>gi|108812109|ref|YP_647876.1|) was given as
input. TRUST yielded the first 159 residues as a repeat,
occurring in succession and hence allowing for mismatches
(Figure 3). REPwin in REPPER resulted in composition-
based repeats (Figure 4). RADAR produced gapped
repeats, also allowing a certain degree of mismatch in the
repeats. It also generated sequences which are subsets of
a larger repeat, hence resulting in redundancy (Figure 5).

In contrast, IdentSeek, the computing engine implement-
ing the algorithm FAIR gave 11 non-redundant identical
sequence repeats (Figure 6). In contrast to FAIR, which
takes one or more sequences simultaneously, the com-
mercially available Sequence Analysis Software Package
of the University of Wisconsin Genetics Computer
Group30 (UWGCG) ‘repeat’ function can be run for only
one sequence at a time. Each time the function is in-
voked, the minimum window size, stringency and other
relevant parameters must be set. Thus, utilization of this
program requires some initial time for learning. In addi-
tion, the FASTA format files must be converted to GCG
format using the function ‘fromfasta’. Additional parsing
of the output, which allows mismatches depending on the
stringency criteria (Figure 7) is necessary to obtain the
location of the repeats. In this particular case, it is clear
that the default criteria are insufficient to find identical
repeats as the protein fragment mentioned above yields
100 repeats of lengths starting from two residues, not all
of which are identical. On the other hand, although
BioSuite31 has a repeat analysis function in the pattern
identification and matching sub-menu, this function does
not appear to work for a large number of proteins or for
protein sequences containing a large number of amino

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 95, NO. 2, 25 JULY 2008 193

No. of Repeats|Total Score|Length |Diagonal| BW-From| BW-To| Level
 6| 405.16| 47| 54| 35| 81| 1

 3- 59 (67.47/27.52) AG....SqAHGSQSL.ALGAGATASQAnsialgassvTTVGAESDYSAYGLTA...PQTSVGEVG
 60- 112 (71.40/29.53) MG....T.AQGNRKITGVAAGSADYDV....vnvaqlTAVGDKVEQNTADITS...LGGRVTNVE
 113- 161 (64.12/25.79) GGmtriT.NGGG..IKYFHTHSTEPD............SVASGSDSVAIGPNAqasGTTSIA.MG
 162- 218 (68.96/28.28) AG...sT.AQGAQSL.ALGAGAAASQAnsialgassvTTVGAESDYSAYGLTA...PQTSVGEVG
 219- 271 (72.98/30.34) VG....T.AQGNRKITGVAAGSADYDA....vnvaqlTAVGDKVDQNTADITS...LDGRVTNVE
 272- 320 (60.23/23.80) GEmasiT.NGGG..VKYFHTHSTESD............SVASGSDSVAIGPNAqasGTASVA.SG
--
--
No. of Repeats|Total Score|Length |Diagonal| BW-From| BW-To| Level
 2| 39.07| 10| 157| 25| 34| 2
--
 25- 34 (19.54/11.20) NSIALGASSV
 184- 193 (19.54/11.20) NSIALGASSV
--

Figure 5. Results provided by the server, RADAR for part of the hypothetical protein from Y. pestis.

Total number of sequences uploaded = 1
Number of sequences having repeats = 1
**
>seq1
LGAGSQAHGSQSLALGAGATASQANSIALGASSVTTVGAESDYSAYGLTAPQTSVGEVGMGTAQGNRKI
TGVAAGSADYDVVNVAQLTAVGDKVEQNTADITSLGGRVTNVEGGMTRITNGGGIKYFHTHSTEPDSVA
SGSDSVAIGPNAQASGTTSIAMGAGSTAQGAQSLALGAGAAASQANSIALGASSVTTVGAESDYSAYGL
TAPQTSVGEVGVGTAQGNRKITGVAAGSADYDAVNVAQLTAVGDKVDQNTADITSLDGRVTNVEGEMAS
ITNGGGVKYFHTHSTESDSVASGSDSVAIGPNAQASGTASVASGKGTLA
Number of residues in the repeat = 39
ASQANSIALGASSVTTVGAESDYSAYGLTAPQTSVGEVG
[21 to 59]
[180 to 218]
--
Number of residues in the repeat = 21
DSVASGSDSVAIGPNAQASGT
[135 to 155]
[294 to 314]
--
Number of residues in the repeat = 8
GRVTNVEG
[106 to 113]
[265 to 272]
--
Number of residues in the repeat = 20
GTAQGNRKITGVAAGSADYD
[61 to 80]
[220 to 239]
--
Number of residues in the repeat = 6
ITNGGG
[118 to 123]
[277 to 282]
--
Number of residues in the repeat = 9
KYFHTHSTE
[125 to 133]
[284 to 292]
--
Number of residues in the repeat = 9
QNTADITSL
[96 to 104]
[255 to 263]
--
Number of residues in the repeat = 9
QSLALGAGA
[11 to 19]
[170 to 178]
--
Number of residues in the repeat = 5
SDSVA
[141 to 145]
[293 to 297]
[300 to 304]
--
Number of residues in the repeat = 5
SVASG
[136 to 140]
[295 to 299]
[316 to 320]
--
Number of residues in the repeat = 13
VNVAQLTAVGDKV
[82 to 94]
[241 to 253]
--
**

Figure 6. Output display of the proposed algorithm, FAIR for the
same 325 residue protein fragment from Y. pestis.

Window: 3 Stringency: 10 Range: 50
Repeats: 100 April 23, 2008 12:39 .

 1 LGAG 4
 |||| 4 20
 15 LGAG 18

 1 LGA 3
 ||| 3 14
 29 LGA 31

 1 LGA 3
 || 3 11
 37 VGA 39

 4 GSQ 6
 ||| 3 15
 9 GSQ 11

 5 SQA 7
 ||| 3 13
 22 SQA 24

 7 AHG 9
 ||| 3 12
 45 AYG 47

 10 SQ 11
 || 2 9
 22 SQ 23

 12 SLALGA 17
 |||||| 6 24
 26 SIALGA 31

 16 GA 17
 || 2 10
 38 GA 39

Figure 7. Output of UWGCG for the 325 residue protein fragment
from Y. pestis. Only part of the output is shown for clarity.

acid residues (e.g. Titin). Furthermore, although it gives
the location of the repeat like FAIR, with the default para-
meters, it found only three repeats in the 325 residue
fragment (Figure 8).
 Furthermore, FAIR (and thus, IdentSeek) can be used
to perform analysis on both protein and nucleotide se-
quences, whereas the other tools can only work for either

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 95, NO. 2, 25 JULY 2008 194

Figure 8. Output of BioSuite for the 325 residue protein fragment
from Y. pestis.

>gi|51593846|ref|NC_006153.1| Yersinia pseudotuberculosis IP 32953 plasmid
pYV, complete sequence
GGGGGCACTTGTCACATCCATTCCCGCTCCAACCGGTTCAGTCGCTCGGCGATGGTCGTCAGCTCTCGCA
ACTTTTCTCTCTGTTCAACCAAATGCTCATCCATTAAACTGCTTCGTCCAAGTTGAATCAGTAGTGGAAT
AGAGTCCACTGTAAAGTTTCGCATATCATCAGTAAACTCCGATACCTCCTGTAGCGTAATAGCTGCATGG
GCCGCCATCATCTGACGGTGAATTGCGGTATACTGCTCAGTGCCGAATTTCACTACAGGCCGGGTACTGT
..
..

Number of residues in the repeat = 219
CCATTCACCGATATCTCGTACCGCATGATGGACATCCATATAGCCCC
CTACAGGCAGCCATTCACTTTTCAGGCTTCGGAACACTCTTTCCATT
GGTGAGTTATCCAGGCAGTTACCCCTGCGGCTCATACTCTGCATCAC
TCCGGTCCTCCACAGTAACTGCCTGGATTTCTTACTCCTGTACTGCC
CTCCCTGATCCGAATGAAACAGCAGCCTCTT
[3018 to 3236]
[26108 to 26326]
--

Number of residues in the repeat = 126
CCCCATCAAAAAATTGGTAAACGCGGCCGGGGATTTCAAACGGCCAA
ACCGTGCCTGGTCAACGCTTCAGGGATTTGAAACATTGCGACGACTG
AATAAAGGTCAATTTGATATTTGGTTACGCCG
[31355 to 31480]
[35938 to 36063]
--

Number of residues in the repeat = 143
CTCTGCGGTAATTCTGGCAGATCAGTTAAATCATTTTCTCTGACATG
AAGTTTTTTCAGGGAAGGGGGTAAATCGGGTAATGTTTCCAGTAAAT
TGTTATCAGCATAAATCGCAGCCAAGAAGGGCAAGTTTTGCAACTCT
GG
[33629 to 33771]
[34121 to 34263]
--

Number of residues in the repeat = 434
GAATGTCTGGCGCTCGAGGTCGGTCAGGGGTTACGTGGAGATGATGT
TGTGGCTGTCATGGACAGATTAAAACATTCGCTGGGGCGTATTCCAC
AAAGGCTGCAGACAGATAACGGCAGCGAATTCATCTCGAAGTCGATG
GACCGATGGGCGTATGAAAACAGGGTCACGATGGACTTTTCACGCCC
CGGAAAGCCTACAGATAATGCCTTTATCGAGTCATTTAATGGCAGTC
TGAGGGATGAATGTCTGAACGTGCACGGGTTCCTTTCTCTGGAAGAT
GCTCAGGAGAAAATTGAACAATGGCGGCAAGAATATAATCATTTTCG
TCCGCATTCTTCGTTAAATAACCTGACTCCGGCAGAATTTGCCCGAA
GTCATCAAAAAGGTCCGGATCTCTGATTTAGCCTGGTACGGATATTG
GGGAGGGATCA
[16165 to 16598]
[66289 to 66722]
--

Number of residues in the repeat = 542
GAGTAAAGGTCAATCACCAGTGCCAGGTAGCACCAGCCACCATTGAC
TTTGATATAGCTGATATATCCACTCCACACACGATTGGGCTCCGACG
GCTTAAACTGCCTTTTCAGTAAGTCTGGCGATGCCAGTGACACCTCC
CGTTCGCCACGGTAACGAGGTTTTCCGGGTTGGCGACTCGCCAGACC
ACATTCCCGCATCAGCCTGCCAGCCAGCCAGCGACCCACGTTATAAC
CCGACTGACGCATCAGCAGACTCAGTGTTCTGTTGCCGGCTGCTCCC
CGGCTCTGTTGATGCAATTCACGCAGTTGCAGACGTTTTACATCAAC
CCGCAAATTCAGCGAAGCAGAGTAAACACTGCGCGTTATTTTGAGCA
GGCGGCACAATTCGACCACTGGCCATTTTGTTTTCAGCCGTGTGATT
AACGCAAAGATTTGATGGGGAACTCGCTCATCAACACGGCTGCCTGC
TTTAGTATTTCTTTTTCCATTTCCAGCCGTTTAATCTGCGCCCTGAG
CGACTGGATTTCACGTTGCTCTGGT
[7068 to 7609]
[26421 to 26962]
--

Number of residues in the repeat = 111
GCTCAATAGCTTCCAGTTTGAATTCAGGAGAAAAACGGCGTTTGGTC
TGTTTAGGTTGAGTCATTATCAATTACCTCAATTGGCTGTCATTAAA
TTAACAGGCTATTGAGG
[7743 to 7853]
[27097 to 27207]
--

Number of residues in the repeat = 265
GGGGGTAAATCGGGTAATGTTTCCAGTAAATTGTTATCAGCATAAAT
CGCAGCCAAGAAGGGCAAGTTTTGCAACTCTGGCAATTCTTCCAGCT
TATTACTACTAGCAGTAAGATATTCCAGTGAAGGAGGTAAATCGGAT
AATGCCTTCAGATTGTTATTATCAACTCGAAGTGATTCCAGGCTCTG
CGGTAATTCTGGCAGATCAGTTAAATCATTTTCTCTGACATGAAGTT
TTTTCAGGGAAGGGGGTAAATCGGGTAATG
[33938 to 34202]
[34184 to 34448]
--

Number of residues in the repeat = 116
TGTAGTGGATCACAAAATCAGGACACCTTCGTAGCCTTTTTCCCCTG
CTCTTCGTATTCACAGGGCGGTAATCCACCATTGTGCCGATGGGGGT
GTGTTGTAATAACTTTGTATCC
[2902 to 3017]
[25994 to 26109]

Figure 9. Part of the output of FAIR for the entire plasmid sequence
from Yersinia pseudotuberculosis, showing several large repeats.

--
68526 -3 100 reputer_bibiserv_1168227935_1555652638.xmlrpc
--
676 7067 F 676 26420 -3 0.00e+00 **
558 16040 F 558 66164 -3 0.00e+00
522 16077 F 522 66201 -3 0.00e+00
474 16124 F 474 66248 -1 7.89e-274
434 16164 F 434 66288 0 6.71e-253 *
265 33937 F 265 34183 0 3.76e-151 *
260 33628 F 260 34120 -3 3.01e-140 **
219 3017 F 219 26107 0 1.86e-123 *
197 33691 F 197 33937 -3 1.11e-102
193 6640 F 193 25993 -3 2.67e-100
172 22716 F 172 22806 -3 8.29e-88
147 6686 F 147 26039 -1 1.83e-77
131 7610 F 131 26963 -1 7.00e-68
126 31354 F 126 35937 0 1.82e-67 *
137 15986 F 137 66110 -3 4.92e-67
137 22761 F 137 22851 -3 4.92e-67
116 2901 F 116 25993 0 1.91e-61 *
127 22806 F 127 22851 -3 4.11e-61
111 7742 F 111 27096 0 1.96e-58 *
117 2900 F 117 6639 -2 2.92e-57
116 33772 F 116 34264 -2 1.15e-56
116 33772 F 116 34018 -2 1.15e-56
116 22712 F 116 22847 -3 1.31e-54
107 22798 F 107 22888 -3 2.69e-49
104 22739 F 104 22874 -3 1.58e-47
--

Figure 10. Output of REPuter for the nucleotide sequence, a plasmid
from Y. pseudotuberculosis.

protein or nucleotide sequences. The proposed algorithm
was also tested for nucleotide sequences using the plas-
mid pYV from Yersinia pseudotuberculosis IP32953
(gi|51593846 |ref| NC_006153.1) in FASTA format. As
the input sequence contains 68,532 nucleotides, only a
part of the input sequence is shown in Figure 9 and the
minimum number of nucleotides per repeat was set as
greater than or equal to 100. The program produced eight
independent identical repeats containing between 116 and
542 nucleotides. REPuter, the only freely available pro-
gram for finding repeats in nucleotide sequences (other
than FAIR), displayed six unique repeats (marked as * in
Figure 10), similar to that of the repeats produced by
FAIR. However, the REPuter server did not show the re-
maining two repeats (marked as ** in Figure 10) contain-
ing 542 and 142 nucleotides as produced by FAIR, as it
displayed them (marked as ** in Figure 10) with mis-
matches, which are denoted by negative scores, whereas
the exact repeats are denoted by a score 0. Since the pro-
posed algorithm is designed to show only identical re-
peats, the program FAIR produces eight unique identical
repeats.

Conclusion

The proposed algorithm identifies all the identical se-
quence repeats in both protein and nucleotide sequences
and produces a comprehensive output by displaying the
number of repeats with their start and end positions. Due
to dynamic allocation of memory, the memory required
for the program is exactly equal to the memory required
to store the repeats and thus, the algorithm is more effi-

RESEARCH ARTICLES

CURRENT SCIENCE, VOL. 95, NO. 2, 25 JULY 2008 195

cient in dealing with sequences having a large number of
amino acid residues. This algorithm is unique in its utili-
zation of dynamic programing rather than local alignment
and in its speed compared to other algorithms. Further-
more, the algorithm has been implemented as a web-based
computing engine, IdentSeek, designed for giving the
user a precise, clear and usable output. This would help in
the analysis of protein sequences, especially to facilitate
the study of evolutionary history of proteins and diseases
related to genes and proteins. The computing engine is
available on the world wide web at http://bioserver1.iisc.
ernet.in/ident/.

1. Marcotte, E. M., Pellegrini, M., Yeates, T. O. and Eisenberg, D.,
A census of protein repeats. J. Mol. Biol., 1999, 293, 151–160.

2. Mojica, F. J. M., Diez-Villasenor, C., Soria, E. and Juez, G., Bio-
logical significance of a family of regularly spaced repeats in the
genomes of archaea, bacteria and mitochondria. Mol. Microbiol.,
2000, 36, 244.

3. Fernando, S. A., Selvarani, P., Das, S., Kiran Kumar, Ch., Mon-
dal, S., Ramakumar, S. and Sekar, K., THGS: A web-based data-
base of transmembrane helices in genome sequences. Nucleic
Acids Res., 2004, 32, D125–D128.

4. Arai, M., Ikeda, M. and Shimizu, T., Comprehensive analysis of
transmembrane topologies in prokaryotic genomes. Gene, 2003,
304, 77–86.

5. Saier Jr, M. H., Tracing pathways of transport protein evolution.
Mol. Microbiol., 2003, 48, 1145–1156.

6. Saaf, A., Baars, L. and Von Heijne, G., The internal repeats in the
Na+/Ca2+ exchanger-related Escherichia coli protein YrbG have oppo-
site membrane topologies. J. Biol. Chem., 2001, 276, 18905–18907.

7. Taylor, E. W. and Agarwal, A., Sequence homology between bac-
teriorhodopsin and G-protein coupled receptors: Exon shuffling or
evolution by duplication? FEBS Lett., 1993, 325, 161–166.

8. Andrade, M. A., Perez-Iratxeta, C. and Ponting, C., Protein re-
peats: Structures, functions, and evolution. J. Struct. Biol., 2001,
134, 117–131.

9. Kachroo, P., Ahuja, M., Leong, S. A. and Chattoo, B. B., Organi-
zation and molecular analysis of repeated DNA sequences in the
rice blast fungus Magnaporthe grisea. Curr. Genet., 1997, 31,
361–369.

10. Heringa, J., Detection of internal repeats: How common are they?
Curr. Opin. Struct. Biol., 1998, 8, 338–345.

11. Koonin, E. V., Mushegian, A. R., Galperin, M. Y. and Walker, D. R.,
Comparison of archeal and bacterial genomes: Computer analysis of
protein sequence predicts novel function and suggests chimeric ori-
gins for the archaea. Mol. Microbiol., 1997, 25, 619–637.

12. Djian, P., Evolution of simple repeats in DNA and their relation to
human diseases. Cell, 1998, 94, 155–160.

13. Benvenga, S., Campenni, A. and Facchiano, A., Internal repeats of
prion protein and A beta PP, and reciprocal similarity with the
amyloid-related proteins. Amyloid, 1999, 6, 250–255.

14. Perutz, M. F., Glutamine repeats and neurodegenerative diseases:
Molecular aspects. Trends Biochem. Sci., 1999, 24, 58–63.

15. Van de Lagemaat, L. N., Gagnier, L., Medstrand, P. and Mager, D.
L., Genomic deletions and precise removal of transposable ele-

ments mediated by short identical DNA segments in primates. Ge-
nome Res., 2005, 15, 1243–1249.

16. Wu, T. T., Miller, M. R., Perry, H. M. and Kabat, E. A., Long
identical repeats in the mouse gamma 2b switch region and their
implications for the mechanism of class switching. EMBO J.,
1984, 3, 2033–2040.

17. Bertin, J. et al., Human CARD4 protein is a novel CED-4/Apaf-1
cell death family member that activates NF-B. J. Biol. Chem.,
1999, 274, 12955–12958.

18. Krych-Goldberg, M., Hauhart, R. E., Subramanian, V. B., Yurcisin,
II B. M., Crimmins, D. L., Hourcade, D. E. and Atkinson, J. P.,
Decay accelerating activity of complement receptor type 1 (CD35):
Two active sites are required for dissociating C5 convertases. J.
Biol. Chem., 1999, 274, 31160–31168.

19. McAllister-Luca, L. M. et al., An essential aspartic acid at each of
the two allosteric cGMP binding sites of a cGMP specific phos-
phodiesterase. J. Biol. Chem., 1995, 270, 30671–30679.

20. Blackburn, E. H., Switching and signaling at the telomere. Cell,
2001, 106, 661–673.

21. Söding, J., Remmert, M. and Biegert, A., HHrep: de novo repeat
detection and the origin of TIM barrels. Nucleic Acids Res., 2006,
34, W137–W142.

22. Schultz, J., Milpetz, F., Bork, P. and Ponting, C. P., SMART, a
simple modular architecture research tool: Identification of signal-
ling domains. Proc. Natl. Acad. Sci. USA, 1998, 95, 5857–5864.

23. Andrade, M. A., Ponting, C. P., Gibson, T. J. and Bork, P., Homo-
logy-based method for identification of protein repeats using sta-
tistical significance estimates. J. Mol. Biol., 2000, 298, 521–537.

24. Gruber, M., Soding, J. and Lupas, A. N., REPPER – Repeats and
their periodicities in fibrous proteins. Nucleic Acids Res., 2005,
33, W239–W243.

25. Heringa, J. and Argos, P., A method to recognize distant repeats in
protein sequences. Proteins, 1993, 17, 391–411.

26. Heger, A. and Holm, L., Rapid automatic detection and alignment
of repeats in protein sequences. Proteins, 2000, 41, 224–237.

27. Szklarczyk, R. and Heringa, J., Tracking repeats using signifi-
cance and transitivity. Bioinformatics, 2004, 20, i311–i317.

28. Kurtz, S., Choudhuri, J. V., Ohlebusch, E., Schleiermacher, C.,
Stoye, J. and Giegerich, R., REPuter: The manifold applications of
repeat analysis on a genomic scale. Nucleic Acids. Res., 2001, 29,
4633–4642.

29. Pellegrini, M., Marcotte, E. M. and Yeates, T. O., A fast algorithm
for genome-wide analysis of proteins with repeated sequences.
Proteins, 1999, 35, 440–446.

30. Devereux, J., Haeberli, P. and Smithies, O., A comprehensive set
of sequence analysis programs for the VAX. Nucleic Acids Res.,
1984, 12, 387–395.

31. NMITLI-BioSuite team, BioSuite: A comprehensive bioinforma-
tics software package (A unique industry–academia collaboration).
Curr. Sci., 2007, 92, 29–38.

ACKNOWLEDGEMENTS. We acknowledge the use of the Bioin-
formatics Centre, the Interactive Graphics Based Molecular Modeling
facility and the Supercomputer Education and Research Centre at IISc.
We thank the Department of Information Technology for funding this
project. Part of this work is supported by the Department of Biotech-
nology sponsored Institute wide computational biology programme.

Received 16 November 2007; revised accepted 11 June 2008

