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Abstract. It is pointed out that a term was overlooked in the
derivation of the equation of motion for a thin flux tube by Spruit
(1981). The correction to be applied in an inertial frame and in a
rotating frame are discussed. This correction makes the formula-
tion self-consistent, though it does not invalidate the qualitative
results obtained by various investigators who have used Spruit’s
equation.
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1. Introduction

The equation of motion for a thin flux tube moving in an ambient
atmosphere was derived in a paper by Spruit (1981). Since
Spruit’s equation is generally believed to be the basic equation
for studying the dynamics of magnetic flux tubes in the solar
convection zone, it has been used by several investigators (Spruit
and van Ballegooijen, 1982; van Ballegooijen, 1983; Moreno-
Insertis, 1986; Choudhuri and Gilman, 1987; van Ballegooijen
and Choudhuri 1988; Chou and Fisher, 1989; Choudhuri, 1989).
In this paper, we wish to point out a small correction that should
be applied to this equation. This correction seems to have been
overlooked so far. Since the calculations done by the above
authors were mainly aimed at elucidating broad qualitative
features of the dynamics of flux tubes, their conclusions still
remain valid in spite of this small correction being overlooked.
However, application of this small correction makes the equation
completely satisfactory at a conceptual level. We shall point out
that the equation may lead to some inconsistencies if this correc-
tion is not applied.

It is well-known that an object of cylindrical shape accelerat-
ing through a fluid imparts kinetic energy to the surrounding
fluid, and hence the transverse component of motion involves an
effective mass instead of just the mass of the cylinder (Lamb,
1945, p. 77). In the case of a right circular cylinder, the effective
mass turns out to be its own mass plus the mass of fluid displaced
by it. This effect is introduced through Eq. (12) of Spruit (1981),
which is

(dv) _F 1)
(ptpd| =k ,

where p is the density inside the flux tube and p, the density of the
surrounding fluid, and the subscript L used throughout this

paper refers to components of vectors transverse to the local
tangent at any point of the flux tube. This equation is certainly
true for a cylinder with a straight axis. However, in the case of a
flux tube with a curved axis, even when the fluid inside the flux
tube just moves parallel to the axis of the flux tube without
causing any displacement of the surrounding fluid, there is a
transverse acceleration arising out of the fact that the fluid inside
the flux tube is constrained to move in a curved path. Hence
some correction has to be applied to (1) such that the part of
transverse acceleration merely arising out of curvature is not
associated with any extra effective mass. Failure to do so may
lead to inconsistensies, as can be seen in some of the equations of
Choudhuri and Gilman (1987) where this correction was over-
looked. They obtained the equation of motion in spherical co-
ordinates for a flux ring symmetric around the rotation axis. The
r-component of the equation of motion for the flux ring is given
in Eq. (4) of Choudhuri and Gilman (1987), which is

A [(d0N:  [do)? d
(m,+m,) [#"(E) —r<d—‘f> sin? 0—2r9(d—‘f> sin? 0] =

@)

Since the effective mass m;+m, approximately equals 2m; for a
flux tube in the convection zone, Choudhuri and Gilman (1987)
actually write 2m; instead of m;+m,. The r-component of the
total force due to magnetic buoyancy, magnetic tension and drag
is denoted above by f.. We are, however, going to neglect the drag
term throughout this paper, since it is not relevant for our
discussions and can be put easily in the equations if the need
arises. It is possible to have a situation where the forces balance
in such a way that there is no motion in the (r, §) plane, though
there may be a flow in the ¢-direction. Such possibilities are
discussed in detail in van Ballegooijen and Choudhuri (1988). It
seems that (2) should reduce in such situations to

do\? d
—(m,~+me)|:r<d—(f) sin2 0+2rQ (d_(f> sin? 0]—_-ﬁ,

Though there is flow only in the ¢-direction and the surrounding
fluid is not disturbed at all, we seem to be still stuck with the
effective mass when we would expect only the actual mass of the
flux ring to appear.

We derive the correct equation in an inertial frame in the next
Section. Then Sect. 3 is devoted to transforming the equation to a
rotating frame of reference. The conclusions are summarized in
the last Section.
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2. Correct equation in an inertial frame

Let us use the same notation as Spruit (1981). I 7 be the tangent
vector at a point of the flux tube where internal density is p and
magnetic field B, then the curvature vector is

k=o]

where 9,=1- V. The fluid velocity parallel to the flux tube axis is
i v, and one would naively think that the transverse acceleration
due to curvature is (I v)? k. However, this is not so, since I v is not
in general the velocity with which the fluid turns around the
curvature. This becomes clear if we consider a bent part of the
flux tube to undergo uniform translation through the surround-
ing fluid. Such translation certainly does not involve any turning
around of the fluid inside the flux tube, though 1-v will not in
general be zero at an arbitrary point of the flux tube. This forces
us to conclude that I+ v may correspond to translation also, and
we have to isolate that part of fluid velocity parallel to the local
axis which corresponds to the fluid turning around the curvature
there. This is done in the following way.

In Fig. 1, let s be the distance of the point A measured along
the flux tube from some reference point, and let the correspond-
ing distance for a neighbouring point B be s+ ds. Suppose the arc
AB has a curvature k with the centre of curvature at the point O,
ie.

OA~0B~1Jk.

If i(s) is the tangent vector at 4 and v(s+ds) the velocity at B,
then the component of velocity at point B in the direction of the
tangent at the neighbouring point 4 is

Is) v(s+ds)=I-v+d i~dv+dszi d2v+0 ds?)
s):-v(s+ds)=1-v+ds FPRET R (ds
N Ldv . d%
=1-v+dsl-——k™21-—(cos kds— 1)+ O(ds*) (3)
ds ds?

(Here it is to be noted that d/ds is the same thing as 0,.) There is a

Fig. 1. A segment of a flux tube:
i(S) is the tangent vector at A, and
O is the centre of curvature of the
arc AB

term in this Taylor series expansion which is proportional to cos
kds. Note that kds is just the angle subtended by the arc AB at the
centre of curvature O. If v, be the part of the axial velocity which
corresponds to the fluid turning around this arc, then the com-
ponent of this velocity parallel to i(s) (i.e. the tangent vector at A)
at a distance ds from A is v, cos kds, since kds is also the angle
between I(s) and the tangent vector at s+ds. Hence we identify
the coefficient of cos kds in (3) as the velocity of the fluid turning
around the arc, i.e.

ve=—k~ 2 8v. @)

Since the transverse acceleration corresponding to this velocity of
turning around is v?k, we have to subtract p,v2k from the left
side of (1), which then becomes

dv dv
— | +p,| | — ) —v2k |=F,.
p<dt>l p[(dt>l i ] .

The expression for the transverse force F, was given in (10) of
Spruit (1981). On substituting this expression,

() o) -} Ersieat
o\z) e \a ) %k =0 +(p—p) (Ix g)x1. ©)

The equation for acceleration parallel to I remains the same as (5)
of Spruit (1981):

dv

) ==-0 - 6
p<dt>“ \p+ P9 (6)

On adding (5) and (6), and using the fact that

BZ
V<p +8_>=Vpe= P9,
/i

we find

— — ] —v
Pt \ar) o

B? B%\.
=—k+0,| — )JI+(p—p.
ym ;<8n> (p—p.)g

= V( +B2>+ ! (B VIB W)
h 4 8n/ 4n trg

which can be regarded as the basic equation. One can also divide
(5) by (p+p,) and (6) by p, and then add them to obtain

dv 1. . . pvi+p,0? —Pe = .
—= ——6,pl+g-ll+pA Pel k+p p(lxg)xl 8)
a p p+pe P+ pe

where v,=B/(4np)* is the Alfvén speed inside the tube. This
equation should be compared with (14) of Spruit (1981). Since
most calculations on the dynamics of thin flux tubes begin with
(14) of Spruit, we suggest that the above equation (6) should be
used instead.

3. Correct equation in a rotating frame
3.1. General considerations

In order to study the evolution of flux tubes in the solar convec-
tion zone, it is necessary to write down our equations in a
rotating frame of reference. In order to go from an inertial to a
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rotating frame, we have to replace v and dv/dt in the equations in
the inertial frame by the following expressions

vov+2xr )
B axvrax@ 10
—_——— X X

dt dt ’ xr) (10

To find out the replacement for v,, we substitute from (9) in (4), i.e.
v, —k 2L[0Fv+ 2 x d7r].

Since —k~21.0%v is v, in the rotating frame and 8?r =k, we write
o0, —k 21 (Q x k). 11
Substituting (9), (10) and (11) in (7), and using the fact that

BZ
V(p+g>=vpe=pe[g—gx(gxr)]

in a rotating frame, we find
l:dv+29 ]+ [dv+29
— X — X v
Pl a Pel dt

2
+9x({)xr)] —pe[vc—k"zi.({)xk)] k
1

1
=(p—pJlg— 9><(”><f)]+ (B V)B. (12)
This is the general equation. Since the rotation period in the sun
is slow compared to the typical dynamical period for the evolu-
tion of a flux tube, we can neglect terms of the order £22 in our
equations. Neglecting such terms in (12), we write down the

parallel part of the equation of motion

<d"+zn ) (p—p.) i+a<32>
. X = — . _
ol v) =le=pdg.l+a

=—dp+pg.l, (13)
whereas the transverse part turns out to be
(p+ )<d" +20 )
Il — X v
prp\ o )
—po[v2 =20,k 2.2 x k) ]k
B? " -
=—k+(p—p.)Uxg)xL 14

8n
These two parts can again be combined to give the equation

dv 1
—4+2Qxv= ——6,p+g'l+p
p p

—Pe 2 4
1 )
dt +pe( x9)x

+pu§ + P[220,k 21.(R x k)] X
p+p. '

(15)

3.2. Application to a symmetric ring

In order to understand the implications of these equations, let us
consider an application to a flux ring symmetric around the
rotation axis. The equation of motion for such a flux ring was
derived in Choudhuri and Gilman (1987) by associating the
effective mass with the whole of transverse acceleration. To find
out the departures from their equations, we have to evaluate the
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correction term
—p 2 =20,k (2% k)] k
in (14). The velocity at a point of the symmetric flux ring is
v=d—ré,+rﬁé'g+rd—(psin0é¢ (16)

dt dt dt
whereas the curvature is given by
k=rsin0(—sin06,-coseéo). (17)
Since 0,=(r sin 0) 19/, (4) reduces to

. 0%
v, = —e,‘,'é?. (18)
Using the relations
Z—Z:sin 0é,, (Z—i;’:cos fe, %%”:l—,,:—l-
it trivially follows from (16) and (18) that
do .
vc=rgt— sin 6. (19)
Since
k=21 (2 x k)= —Qr sin 6,
using (17) and (19), the correction term becomes
—p 02 =20,k 2L.(2x k) 1k
=pe[r<j—(f>2 sin? 0+ 2rQ (2—?) sin? B]é,
+ p{r(i—f)z sin 6 cos 6+ 2rQ (%) sin 6 cos O]é,,, (20

If we now integrate over the whole ring as was done in
Choudhuri and Gilman (1987) and apply the correction term,
then the 3 components of our equation turn out to be

d?r do do\*
et o) o () oo

\}12
—2rQ< )sm2 0:] (m;—m,)g— sin 0, 1
2ng?
drd0 do\? .
(m;+m,)| r t2 dtd_t +m| —r s sin 0 cos 0
2
—2rQ( )sm 0 cos H:I 5 cos 6, (22)
no
drd dod
m,-[ (Psm0+2——(psm6+2r——(pcos(9
dr? dt dt dt dt
+29< 40 0+dr in 0 0. (23)
— cos 0+ —sin =0,
rdt dt !

where o is the radius of cross-section of the flux tube and ¥ is the
flux through it. Comparing these equations with (4), (5) and (6) of
Choudhuri and Gilman (1987) shows that the terms involving
(dep/dt) in the r and 6 components of the equation are now
associated with just the mass of the flux ring rather the effective
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mass m;+m,. This ensures that we are not led into the sorts of
inconsistencies that we found on putting

dr do

—=—=0

dt dt

in (2).

In addition to giving correct results when the flux ring is held
in a fixed position in the (r, 6) plane, our equations should also
give the correct dynamics when the flux ring moves through the
surrounding fluid. To demonstrate that this is so, we have
considered a hypothetical problem in the Appendix. All forces
acting on a flux ring (including magnetic bouyancy and magnetic
tension) are assumed to be suddenly switched off at an instant
until which the ring was made to rotate uniformly at a fixed
position by the application of various forces. We have shown that
it is necessary to use corrected equations in order to conserve
energy.

4. Conclusion

We thus find that our corrected equations are free from the
conceptual difficulties mentioned in the Introduction. However,
the general mathematical character of the equations has re-
mained the same, and hence we expect the qualitative results
obtained by the previous investigators to remain valid. In fact, we
repeated some calculations presented in Choudhuri and Gilman
(1987) by using the corrected Egs. (21), (22) and (23). Comparing
these equations with (4), (5) and (6) of Choudhuri and Gilman
(1987), we find that the Coriolis force terms in the r and 0
components have now effectively become weaker by a factor of 2
with respect to the other force terms. Consequently, a slightly
smaller value of magnetic buoyancy is now needed to overcome
the Coriolis force. But when we make runs for values of magnetic
buoyancy either substantially smaller or larger than the critical
value needed to suppress the Coriolis force, then the results
appear essentially the same.

Perhaps it would not be out of place to mention another
limitation of Spruit’s equation. It has been assumed by most
authors using this equation that it holds for flux tubes moving
through the convection zone. In fact, the very title of Spruit’s
paper (1981) is “Motion of Magnetic Flux Tubes in the Solar
Convection Zone and Chromosphere”. However, the ambient
medium is assumed to be in static equilibrium in the derivation,
as seen from Eq. (9) of Spruit (1981). Not only the convection
zone is not in static equilibrium, but the turbulence present there
may interact with the moving flux tubes in complicated ways.
This is obviously a very complex process. A phenomenological
study of how the turbulence may interact with the flux tubes is
presented in a forthcoming paper by Choudhuri and D’Silva
(1989). If this interaction is not taken into account, then it seems
that the magnetic flux starting from the bottom of the convection
zone appears at rather high latitudes on the solar surface instead
of appearing where sunspots are seen (Choudhuri and Gilman,
1987; Choudhuri, 1989). This unphysical result is probably due to
the fact that the equation of motion for the thin flux tubes was
used for motions in the convection zone without taking any
account of the turbulence present there (Choudhuri and D’Silva,
1989). Hence we conclude that Spruit’s equation is strictly valid
for motions of thin flux tubes in ambient atmospheres in stable
equilibrium. It is only a rough approximation when applied to

flux tubes in the convection zone, though one may try to make it
more realistic by incorporating the influence of turbulence in the
phenomenological way proposed by Choudhuri and D’Silva
(1989).
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Appendix: evolution of a rotating ring

Let us consider a flux ring of radius r, which is made to rotate
uniformly in an inertial frame due to the application of external
forces, and let the linear velocity of rotation at any point of the
ring be v,. The external forces are supposed to suddenly ‘switch
off” at time t=0 and we want to find out the subsequent evolu-
tion of the ring. Equation (1) would imply

<dv> 0 (A1)
),
whereas it follows from the corrected Eq. (5) that
d
<_"> =P 2k (A2)
dt 4 p+pe

where we have put v, =, since v, for a circular ring turns out to
be just the parallel component of velocity (see Eq. [18]). We want
to show that (A2) is the correct result.

If each fluid particle of the ring moves with a tangential
velocity vy, then the ring as a whole will expand in radius.
Though v, =0 at t=0, if (A1) is obeyed, the value of v, at the
moment when the ring attains a radius r starting from ry is

s
v, =0y l-r—z—.

As v, increases from zero, the ring will have to impart kinetic
energy to the surrounding fluid. If (A1) were true, then there
would have been no source from which this kinetic energy could
come. Hence (A1) cannot be true and the outward expansion of
the ring must slow down in order to compensate for the kinetic
energy gained by the surrounding fluid. Equation (A2) represents
a deceleration of magnitude

(A3)

_pe i
ptp. 1

directed radially inwards. We now proceed to show that the
presence of this deceleration would conserve the total kinetic
energy.

As the ring expands, the ring will in general have both
transverse velocity v, ; and longitudinal velocity v}, ; at time
t=t, when the radius of the ring is r, . If the velocity v, is inclined
to the radial direction at angle 6,, as shown in Fig. 2, then

vl'1=vlcosf)1}

. (A4)
v),1 =v;Sin0,

Let us first consider how the ring would evolve if (A1) were
true. Afterwards we shall include the effect of deceleration as
given by (A2). If each fluid particle of the ring moves with uniform
velocity, as implied by (A1), then the magnitude of velocity still
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Fig. 2. A segment of a flux ring
which has moved from the position o
1 to the position 2

remains v; when the ring expands to radius r,, whereas the
radius vector of the fluid particle sweeps through an angle « (see
Fig. 2). If At is the time taken by the ring radius to expand from r,
to r,, then

v

a=—"L At +O(AF?) (AS)
ry

It is also easy to see that

vl,2=vlc.os(92} A6)

vy, 2 =0, sind,

Noting the fact that 8, =0, —a and keeping terms up to the first
order in At, we find from (A4), (AS5) and (A6) that

vl
Ui,2=vl,l+—r,_At+O(At2)
1
(A7)
v v
o2 =01 ————L At 0(Ar?)
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Instead of each fluid particle moving uniformly, if a deceleration
took place, as given by (A2), then we have to subtract

p € Uﬁ ,1
ptpe 1 1
from the expression of v, , in (A7). Hence, if (A2) were the

governing equation instead of (A1), then the expressions for v, ,
and v, would have been

At

p

vfi
—— At+O(At?)

Uy,2=0, 1+
pe rl

(A8)

v 40
U”‘2=U”, 1 bkt 1.1 At+ O(Atz)
ry
The kinetic energy density within the ring would be 1p(v?
+vﬁ). When the motion of the surrounding fluid is also taken
into account, then the effective kinetic energy density becomes

2(p+p)ol+3pvf.
When the ring radius expands from r, to r, without any external

force acting, the effective kinetic energy density is expected to be
conserved, i.e.

Hp+p)vi 2 +3o0f 2 =3(p+p.)vi  +3p0] 1 (A9)

It is easy to check that (A7) would not satisfy (A9), whereas (A8)
satisfies (A9) to order At as we want. Hence (A2), from which (A8)
follows, gives the correct expression of deceleration caused by
imparting kinetic energy to the surrounding fluid.
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