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Abstract. We explore a two-dimensional kinematic solar dynamo model in a full sphere, based on the helioseismically de-
termined solar rotation profile and with an α effect concentrated near the solar surface, which captures the Babcock-Leighton
idea that the poloidal field is created from the decay of tilted bipolar active regions. The meridional circulation, assumed to
penetrate slightly below the tachocline, plays an important role. Some doubts have recently been raised regarding the abil-
ity of such a model to reproduce solar-like dipolar parity. We specifically address the parity issue and show that the dipolar
mode is preferred when certain reasonable conditions are satisfied, the most important condition being the requirement that the
poloidal field should diffuse efficiently to get coupled across the equator. Our model is shown to reproduce various aspects of
observational data, including the phase relation between sunspots and the weak, diffuse field.
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1. Introduction

Ever since Parker (1955) formulated the turbulent dynamo the-
ory, varieties of very different dynamo models for the Sun have
appeared in the literature. Within the last few years, however, a
concensus view seems to be emerging as to what should be
the basic characteristics of a solar dynamo model. The his-
tory of how this concensus view emerged is discussed in the
Introduction of Nandy & Choudhuri (2001), with citations to
important original papers. A more detailed account of the his-
tory can be found in the review by Choudhuri (2003a). We,
therefore, begin here by summarizing the main aspects of this
concensus view without getting into the details of history again.

One important ingredient of a solar dynamo model is the
differential rotation, which has now been mapped by helio-
seismology. The toroidal magnetic field must be produced
by the stretching of poloidal field lines primarily within the
tachocline – the region of concentrated vertical shear at the
base of the solar convection zone (SCZ). The toroidal field
produced in the tachocline would then rise from there due
to magnetic buoyancy to produce active regions. Simulations
of flux rise through the SCZ suggested that the toroidal field
at the bottom must be of order 105 G (Choudhuri & Gilman
1987; Choudhuri 1989; D’Silva & Choudhuri 1993; Fan et al.
1993; D’Silva & Howard 1993; Caligari et al. 1995). Since
such a strong field is expected to quench the usual mean field
α effect (Parker 1955; Steenbeck et al. 1966), one possibility

being considered by many researchers is that the poloidal field
is generated at the surface from the decay of tilted bipolar re-
gions – an idea that goes back to Babcock (1961) and Leighton
(1969). The poloidal component generated at the surface is
first advected poleward by a meridional circulation (Wang
et al. 1989a,b; Dikpati & Choudhuri 1994, 1995; Choudhuri
& Dikpati 1999). Finally, the poloidal component sinks with
the downward flow at the poles and is brought to the tachocline
where it can be stretched by the differential rotation to generate
the toroidal field – thus completing the full cycle. Since advec-
tion by the meridional circulation plays such a crucial role in
such a model, we would refer to this model as the circulation-
dominated solar dynamo or CDSD model.

Although the above view of the solar dynamo arose by as-
similating the ideas of many researchers over the years, Wang
et al. (1991), Choudhuri et al. (1995) and Durney (1995, 1996,
1997) were amongst the first to demonstrate the crucial role
which meridional circulation is expected to play in modern so-
lar dynamo models. It may be noted that an early paper by
Roberts & Stix (1972) already demonstrated that meridional
circulation affects the nature of dynamo solutions (they also
looked at the parity issue which we discuss in detail in the
present paper). While Choudhuri et al. (1995) modeled the
generation of poloidal field from the decay of active regions
by introducing a phenomenological α parameter concentrated
at the surface, Durney (1995, 1996, 1997) followed Leighton
(1969) more closely to capture this effect by taking two flux
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rings of opposite polarity at the surface. Afterwards, Nandy
& Choudhuri (2001) have demonstrated that these two ap-
proaches give qualitatively similar results. We shall develop our
models by prescribing an α coefficient concentrated near the
surface. Dikpati & Charbonneau (1999) and Küker et al. (2001)
presented CDSD models with solar-like internal rotation and
with such a specification of α effect. Since ∂Ω/∂r has a larger
amplitude at the high latitudes within the tachocline (where it
is negative) rather than at low latitudes (where it is positive),
solar-like rotation tends to produce strong toroidal fields at high
latitudes, in apparent contradiction to the observed fact that
sunspots always appear at low latitudes. Commenting on this
problem, Dikpati & Charbonneau (1999) write: “this is an un-
avoidable inductive effect . . . and no change in model parame-
ters can do away entirely with this feature”. Küker et al. (2001)
point out: “all recent dynamo models with the observed rota-
tion law are faced with this problem, even when the α effect
has been strongly reduced in the polar region by the relation
α ∝ sin2 θ cos θ, as we also did”.

Nandy & Choudhuri (2002) have recently shown in a brief
communication that this problem can be solved by postulat-
ing a meridional flow penetrating somewhat deeper than hith-
erto believed. If the meridional flow goes below the tachocline
near the poles, then the strong toroidal field produced within
the tachocline at high latitudes is immediately pushed under-
neath into the convectively stable layers and cannot emerge at
the high latitudes. The meridional flow then carries this toroidal
field through the stable layers to low latitudes. There the merid-
ional flow rises and the toroidal flux enters the SCZ to become
buoyantly unstable and produce active regions at low latitudes.
Such a penetrating meridional flow produces theoretical butter-
fly diagrams in remarkable agreement with the observed but-
terfly diagram. The conventional wisdom was that the toroidal
field which forms sunspots at low latitudes must have been
produced at the low latitude. With the helioseismically deter-
mined rotation profile, this seems unlikely and it may well be
that the toroidal field is actually generated at the high latitude,
even though it is not allowed to erupt there. Recent calculations
by Guerrero & Muñoz (2004) support the findings of Nandy &
Choudhuri (2002).

Recently it has been pointed out by Dikpati & Gilman
(2001) and Bonanno et al. (2002) that the CDSD model
with the Babcock-Leighton mechanism for producing the
poloidal field near the surface may not give the magnetic
configuration with the observed parity. Hale’s polarity law of
bipolar sunspots suggests that the toroidal magnetic field is
anti-symmetric across the solar equator, implying a dipolar
parity. A majority of the CDSD models were solved within one
hemisphere and the boundary conditions at the equator were
taken such that the dipolar mode was forced. Dikpati & Gilman
(2001) solved the dynamo problem in the full sphere and found
that the CDSD model with the α effect concentrated near the
top of the SCZ preferentially excites the quadrupolar mode in
which the toroidal field is symmetric across the equator – op-
posite to what is observed. Only when the α effect was con-
centrated near the bottom of the SCZ, they found the dipolar
parity in conformity with observations. Bonanno et al. (2002)
confirmed these findings.

The aim of the present paper is to provide the technical de-
tails of our dynamo models not given in the earlier brief paper
of Nandy & Choudhuri (2002), to check the parity of these dy-
namo models by extending our code from a hemisphere to a full
sphere and to address some related issues. In the dipolar mode,
the poloidal field lines have to connect across the equator. It is
necessary for the poloidal field to diffuse efficiently for this to
be possible. On the other hand, the diffusion of the toroidal field
has to be suppressed if we want to ensure that the toroidal field
has opposite signs on the two sides of the equator. Since the
toroidal component is much stronger than the poloidal compo-
nent, we expect the turbulent diffusion to be much less effective
on the toroidal component than on the poloidal component. On
using a high diffusivity for the poloidal field and a low diffu-
sivity for the toroidal field, we find that the dipolar parity is
preferred. There is no need to include an additional α effect at
the bottom of SCZ to ensure dipolar parity.

Since the nature of the meridional circulation plays such a
crucial role in our model, let us make a few comments on it.
Within the last few years, helioseismic techniques have given
us some information about the sub-surface meridional circula-
tion to a depth of about 15% of the solar radius (Giles et al.
1997; Braun & Fan 1999). So far there is no direct observa-
tional evidence for an equatorward counter-flow deeper down,
though it must exist to conserve mass. It is generally believed
that the turbulent stresses in the SCZ drive the meridional cir-
culation, although the details of how this happens are not un-
derstood (see, for example, Gilman 1986, Sect. 3.4.2). So the
meridional circulation is expected to be confined to the con-
vection zone. However, it is conceivable that an equatorward
meridional transport of material takes place in the overshoot
layer below the bottom of SCZ. This view is supported by re-
cent simulations of solar convection (Miesch et al. 2000). A
dynamo model with a meridional flow through the convec-
tively stable overshoot layer seems, at the present time, to be
the model with minimal extraneous assumptions which gives
satisfactory results.

In the next section, we describe the basic features of our
model. Then Sect. 3 focuses on the parity question and dis-
cusses the conditions to be satisfied to ensure the correct
parity. In Sect. 4 we present some more details of what we
consider our standard solar dynamo model, along with com-
parisons with observations. Finally our conclusions are sum-
marized in Sect. 6.

2. Mathematical formulation

2.1. The basic equations and boundary conditions

All our calculations are done with a code for solving the
axisymmetric kinematic dynamo problem. An axisymmetric
magnetic field can be represented in the form

B = B(r, θ)eφ + ∇ × [A(r, θ)eφ], (1)
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where B(r, θ) and A(r, θ) respectively correspond to the toroidal
and poloidal components. The standard equations for the so-
called αω dynamo problem are:

∂A
∂t
+

1
s

(u.∇)(sA) = ηp

(
∇2 − 1

s2

)
A + αB, (2)

∂B
∂t
+

1
r

[
∂

∂r
(rvrB) +

∂

∂θ
(vθB)

]
= ηt

(
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s2

)
B

+s(Bp.∇)Ω +
1
r

dηt

dr
∂

∂r
(rB) (3)

where s = r sin θ. Here u is the meridional flow, Ω is the inter-
nal angular velocity of the Sun and α is the coefficient which
describes the generation of poloidal field at the solar surface
from the decay of bipolar sunspots. We allow the turbulent dif-
fusivities ηp and ηt for the poloidal and toroidal components
to be different. We describe below how we specify u, Ω, ηp, ηt,
and α. Once these quantities are specified, we can solve Eqs. (2)
and (3) to study the behaviour of the dynamo. Apart from the
specification of these parameters, we also include magnetic
buoyancy in a way described below. We carry out our calcu-
lations in a meridional slab Rb = 0.55 R� < r < R�, 0 < θ < π.

The boundary conditions are as follows. At the poles (θ =
0, π) we have

A = 0, B = 0. (4)

For a perfectly conducting solar core, the bottom boundary (r =
Rb) condition should be

A = 0, B = 0. (5)

However, if the bottom of the integration region is taken well
below the depths to which the meridional circulation reaches
(and hence below the depths to which magnetic fields are
carried), then the solutions are rather insensitive to the bot-
tom boundary condition. We carried out some calculations by
changing the bottom boundary condition of the toroidal field
from B = 0 to

∂

∂r
(rB) = 0. (6)

The solutions remained virtually unchanged. At the top (r =
R�), the toroidal field has to be zero (B = 0) and A has to match
smoothly to a potential field satisfying the free space equation(
∇2 − 1

r2 sin2 θ

)
A = 0. (7)

Dikpati & Choudhuri (1994) describe how this is done.
We have used a finer grid resolution as compared to other

models existing in the literature, with 129 × 129 grid cells in
the latitudinal and radial directions. The algorithm used by us in
developing the numerical code is described in the Appendix of
Dikpati & Choudhuri (1994) and the Appendix of Choudhuri &
Konar (2002). If either the α coefficient has a quenching factor
or magnetic buoyancy is included to suppress the growth of
the magnetic field, then any arbitrary initial condition either
asymptotically goes to zero (sub-critical condition) or relaxes
to a steady dynamo solution (super-critical condition). We now
discuss how the various parameters are specified.

2.2. Internal rotation Ω

We use the following analytic form to represent the solar inter-
nal rotation (Schou et al. 1998; Charbonneau et al. 1999):

Ω(r, θ) = ΩRZ +
1
2

[
1 + erf

(
2

r − rt

dt

)]
[ΩSCZ(θ) −ΩRZ] . (8)

This analytical expression fits the results of helioseismology
fairly closely for the following values of parameters: rt =

0.7 R�, dt = 0.05 R� ΩRZ/2π = 432.8 nHz, ΩSCZ(θ) =
ΩEQ + α2 cos2(θ) + α4 cos4(θ), with ΩEQ/2π = 460.7 nHz,
α2/2π = −62.69 nHz and α4/2π = −67.13 nHz. A contour
plot of Ω generated by the above expression is shown in Fig. 1,
in which the tachocline is shown as a shaded region. Since he-
lioseismology has already determinedΩ, we do not have much
freedom to vary its parameters. At the present time, however,
there exist some uncertainties as to the exact location of the
tachocline and its thickness. These are indicated by the param-
eters rt and dt. Especially, it is still not completely clear how
the tachocline is located with respect to the bottom of the con-
vection zone (whether it is completely below the convection
zone or partly inside it). There are some indications that the
tachocline may actually have a prolate shape, such that more
of the tachocline comes within the convection zone at higher
latitudes than at the lower latitudes. Given the many other un-
certainties in the problem, we have not taken this effect into
account in our calculations.

We take the bottom of the convection zone at r = 0.71 R�,
which is marked in Fig. 1. By bottom of the convection zone,
we mean the depth at which the temperature gradient changes
from being sub-adiabatic below to super-adiabatic above. As
we point out later, magnetic buoyancy is assumed to be oper-
ative only above the bottom of the convection zone. Since the
strong toroidal field is generated in the tachocline, a tachocline
below the convection zone would imply a situation where the
toroidal field is created at a location which is immune to mag-
netic buoyancy. Hence, the location of the tachocline with re-
spect to the base of the convection zone is of considerable im-
portance in our problem. As seen in Fig. 1, we take part of the
tachocline above the bottom of the convection zone. All our
calculations are done with this analytic fit to the helioseismi-
cally deduced profile of Ω.

In some of our earlier work (Choudhuri et al. 1995; Nandy
& Choudhuri 2001; Nandy 2002), we had taken Ω to be in-
dependent of θ and used a radial variation appropriate for the
equatorial region. If Ω is taken to be a function of r alone, then
the behaviour of the dynamo is much simpler. On the other
hand, when Ω is a function of both r and θ as given by Eq. (8),
the problem becomes immensely more complicated.

2.3. Meridional circulation v

We now describe how the meridional circulation is specified in
the northern hemisphere. The circulation in the southern hemi-
sphere is simply obtained by a mirror reflection of the velocity
field across the equator. We get the meridional circulation from
the stream function ψ defined through the equation

ρu = ∇ × [ψ(r, θ)eφ]. (9)
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BCZ (= 0.71 R) 

Fig. 1. Contours of constant angular velocity as obtained from Eq. (8)
and used in all of our calculations. The tachocline is indicated as the
shaded region. The bottom of the convection zone (BCZ) is at 0.71 R�.
The differential rotation being symmetric about the equator, only one
quadrant is shown.

Fig. 2. Streamlines of meridional circulation obtained by taking pen-
etration radius Rp = 0.61 R�. The tachocline is shown as a shaded
region. Arrows denote the direction of flow.

Assuming a density stratification

ρ = C
(R�

r
− γ
)m
, (10)

we take

ψr sin θ = ψ0(r − Rp) sin

[
π(r − Rp)

(R� − Rp)

]

×
{
1 − e−β1rθε

} {
1 − eβ2r(θ−π/2)

}
e−((r−r0)/Γ)2

(11)

with the following values of the parameters: β1 = 1.36 ×
10−8 m−1, β2 = 1.63 × 10−8 m−1, ε = 2.0000001, r0 =

(R� − Rb)/4.0, Γ = 3.47 × 108 m, γ = 0.95, m = 3/2. It is the
parameter Rp which determines the depth to which the merid-
ional circulation penetrates. Figure 2 shows the streamlines of
the meridional circulation obtained by taking Rp = 0.61 R�,
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v θ

Fig. 3. Plot of vθ (in m s−1) as a function of r/R� at the mid-latitude
θ = 45◦.

which is used in all our calculations and which corresponds
to the meridional flow going slightly below the tachocline.
The amplitude of the meridional circulation is fixed by ψ0/C.
We choose it such that the poleward flow near the surface
at mid-latitudes peaks typically around v0 = 22 m s−1. The
equatorward counterflow peaks at the core-convection zone in-
terface and has a value of 1.8 m s−1, which is similar to what
observational analysis of sunspot drift suggests (Hathaway
et al. 2003). Since the form of the meridional circulation seems
crucial for the stability for the dynamo, let us make some com-
ments on it. On comparing Eqs. (11) with (9) of Nandy &
Choudhuri (2001), it will be found that we have now added
an extra factor (r − Rp) just after ψ0. This extra factor ensures
that vθ smoothly falls to zero at Rp. If this factor is not included,
then vθ has a finite value at Rp, leading to a discontinuity at Rp

if there is no flow below. Figure 3 shows the profile of vθ at
the mid-latitude obtained with the factor (r − Rp) included. It
should also be noted in Fig. 3 that vθ in our model decreases
monotonically below the bottom of the SCZ and becomes very
small in the tachocline. We want to emphasize that we need
very modest flows below the tachocline (presumably not much
beyond the region of overshooting) to make our model work.

We point out that we find well-behaved periodic solutions
only for certain forms of the meridional circulation. Küker et al.
(2001) also found oscillatory solutions only within limited re-
gions of parameter space. However, the dynamo becomes very
robust and stable with a sufficiently deeply penetrating merid-
ional flow having a smooth vθ profile.

2.4. Diffusion coefficients ηp and ηt

The toroidal fields at the bottom of SCZ, from which the ac-
tive regions form, have values of order 105 G. We expect
these strong fields to be confined in limited regions (Choudhuri
2003b). Much of the remaining space would be filled with
much weaker magnetic field which would primarily contribute
to the poloidal component. We expect the turbulent diffusivity
to be highly suppressed in the regions of strong field. An ap-
proximate way of taking account of this is to take a lower dif-
fusion coefficient for the toroidal component (which is mainly
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Fig. 4. Plots of ηp(r)(solid) and ηt(r) (dashed) as given by Eqs. (12)
and (13) as functions of the fractional radial distance (r/R�).
The y-axis is in units of cm2 s−1.

associated with the concentrated strong fields) compared to the
poloidal component (which is associated with the more widely
dispersed weak field).

We expect the turbulent diffusivity inside the convection
zone ηSCZ to be much larger than the diffusivity ηRZ in the
radiative interior, the overshoot layer being the region within
which the value of diffusivity makes a transition from ηRZ

to ηSCZ. Since the poloidal component is weak, the turbulent
diffusivity acts on it without any difficulty. We take the diffu-
sivity for the poloidal component to be

ηp(r) = ηRZ +
ηSCZ

2

[
1 + erf

(
r − rBCZ

dt

)]
· (12)

Figure 4 shows a plot of ηp with the following values of the pa-
rameters: ηSCZ = 2.4 × 1012 cm2 s−1, ηRZ = 2.2 × 108 cm2 s−1,
rBCZ = 0.7 R�, dt = 0.025 R�. The toroidal component inside
a flux tube, however, has a value larger than the equipartition
value till it rises to about 30 000 km or 40 000 km below the so-
lar surface (Longcope & Choudhuri 2002, Sect. 2). Only in the
top layers of the SCZ, the diffusion coefficient of the toroidal
component should be equal to the usual turbulent diffusivity
value ηSCZ. Within the main body of SCZ, the action of tur-
bulent diffusivity on the toroidal component must be consider-
ably suppressed. In view of this, we take the diffusivity ηt of
the toroidal component as shown in Fig. 4, which is generated
from the expression

ηt(r) = ηRZ +
ηSCZ1

2

[
1 + erf

(
r − r′BCZ

dt

)]

+
ηSCZ

2

[
1 + erf

(
r − rTCZ

dt

)]
(13)

with ηSCZ1 = 4 × 1010 cm2 s−1, r′BCZ = 0.72 R� and rTCZ =

0.95 R�, the value of ηSCZ being 2.4 × 1012 cm2 s−1 as specified
earlier. As we shall see below, ηp and ηt specified in this way
gives solutions with dipolar parity. Except Sects. 3.2–3, every-
where else in our paper we use ηp and ηt as specified above.

Simulations of the evolution of the weak, diffuse field on
the solar surface (Wang et al. 1989a,b), as well as observational
estimates from sunspot decay, point out that ηSCZ must be of
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Fig. 5. Plots of ηp(r)(solid) and ηt(r) (dashed) in cm2 s−1 used in
Sect. 3.2, as function of the fractional radial distance (r/R�).

the order of 1012 cm2 s−1 in the upper layers of the convection
zone. We have taken a value of this order on the higher side
and find that it allows sufficient diffusion of the poloidal com-
ponent across the equator to enforce the dipolar mode. A low
value of diffusivity below the bottom of the convection zone is
very important in dynamo models with meridional flow pene-
trating below the tachocline. A low diffusivity in the tachocline
and the overshoot layer ensures that the toroidal field which is
produced in the high latitudes within the tachocline does not
decay much while being transported to low latitudes by the
meridional flow (Nandy 2002). The assumed value of ηRZ es-
sentially ensures that the magnetic field is frozen for time scales
of the order of dynamo period. By taking a low ηt at the bot-
tom of SCZ, we also make sure that there is not much cross-
diffusion of the toroidal component across the equator and it is
possible for the toroidal component to have opposite values in
the two hemispheres. It may be noted that there is a term in-
volving dηt/dr in the evolution Eq. (3) for the toroidal compo-
nent. This term has the form of an advection term, with dηt/dr
corresponding to a downward velocity. We discovered an er-
ror in the original code which produced the results of Nandy &
Choudhuri (2002). The error made this term involving dηt/dr
somewhat smaller than what it should have been. However, on
incorporating the suppression of ηt in the body of the SCZ as
we do here, the gradient dηt/dr is moved to the upper layers
(which can be seen from Fig. 4) and the results essentially re-
main the same as earlier.

For the sake of comparison, we present in Sects. 3.2–3
some results obtained with a lower diffusivity for the poloidal
field. The profile of this η is shown in Fig. 5. This low diffu-
sivity does not allow the poloidal components in the two hemi-
spheres to connect across the equator and usually the quadrupo-
lar mode is preferred, as we shall see in Sects. 3.2–3.

2.5. The α coefficient

The α coefficient is taken in the form

α = α0 cos θ
1
4

[
1 + erf

(
r − r1

d1

)]

×
[
1 − erf

(
r − r2

d2

)]
· (14)
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Fig. 6. The Babcock-Leighton α used for most of our calculations
(solid line) and also in our standard model described in Sect. 3.1. The
dashed line shows the α used in Sect. 3.3, as a function of fractional
radial distance r/R�. Units are in m s−1.

The parameters we use are r1 = 0.95 R�, r2 = R�, d1 = d2 =

0.025 R�, making sure that the α effect is concentrated in the
top layer 0.95 R� ≤ r ≤ R�. The solid line in Fig. 6 shows
the variation of α with r. The amplitude α0 is taken such that
the dynamo is super-critical. We had taken α0 = 25 m s−1 in
most of our calculations, where the solutions are found to be
super-critical for such a value of α0. We use this form of α co-
efficient in all our calculations except in Sect. 3.3, where an ad-
ditional α effect within the SCZ is included. The dashed line in
Fig. 6 shows the radial profile of α used in Sect. 3.3, the angular
variation being taken as cos θ as used elsewhere in the paper.

Since there is some confusion in the literature as to what is
meant by a Babcock-Leighton dynamo, let us clarify that we use
this term to mean a solar dynamo in which the poloidal field is
created near the surface from the decay of tilted active regions.
It should be noted that α coefficient in a Babcock-Leighton dy-
namo is not given by the mean helicity of turbulence as in con-
ventional mean field MHD (see, for example, Choudhuri 1998,
Sect. 16.5). In our approach as well in the approach of several
other authors (Choudhuri et al. 1995; Dikpati & Charbonneau
1999; Nandy & Choudhuri 2001; Küker et al. 2001), the α coef-
ficient phenomenologically captures the effect of poloidal field
generation from the decay of tilted active regions near the solar
surface. Since this α arises from the averaging over many ac-
tive regions, what we provide is essentially a mean field formu-
lation of a Babcock-Leighton dynamo. The angular factor cos θ
arises from the angular dependence of the Coriolis force which
causes the tilts of active regions. Several groups suppressed
α artifically at high latitudes to reduce the strength of the
toroidal field at high latitudes. Dikpati & Charbonneau (1999)
used the angular factor cos θ sin θ, whereas Küker et al. (2001)
used cos θ sin2 θ. Flux tube simulations which calculate the
tilts of emerging active regions (D’Silva & Choudhuri 1993;

Fan et al. 1993) give us some clues about the angular depen-
dence of the α coefficient. If the Coriolis force could freely
produce the tilt without any opposing force operative, then the
tilts at different latitudes would have been proportional to the
Coriolis factor cos θ and the α coefficient would have the same
angular dependence. However, the Coriolis force is opposed by
magnetic tension which tries to prevent the tilt from becoming
very large. We thus find that the tilt does not increase with lat-
itude as fast as the Coriolis factor cos θ. On these grounds, we
expect that α will not increase with latitude as fast as cos θ, but
taking the angular dependence to be cos θ sin θ or cos θ sin2 θ
may be unrealistic.

We also point out that we have eliminated the α-quenching
factor typically taken to be of the form (1 + B2/B2

0)−1. If
magnetic buoyancy is not included, then such a factor is the
only source of nonlinearity in the model and is essential to
allow the simulation to relax to steady solutions. We found
the α-quenching to be redundant in presence of magnetic
buoyancy which limits the toroidal field to values <105 G
(see Sect. 2.5). On theoretical grounds also, the removal
of α-quenching is quite logical in the Babcock-Leighton dy-
namo models. In mean field MHD, the α effect comes from
helical turbulence which is quenched when the magnetic field
is super-equipartition. In our model, however, the α effect is
due to the decay of tilted bipolar regions. Flux tube simula-
tions do show that the tilt is less for stronger magnetic fields
at the bottom of the SCZ (see D’Silva & Choudhuri 1993). So
the α effect should depend on the magnetic field at the bottom
of SCZ, but not on the local value of the magnetic field at the
surface where the α effect is operative. Since our formulation
of magnetic buoyancy (see Sect. 2.6) makes the toroidal field
erupt only when it is of order 105 G, we do not expect much
variation in α with the magnetic field.

2.6. Magnetic buoyancy

We prescribe magnetic buoyancy in a way which has been dis-
cussed in detail by Nandy & Choudhuri (2001) and Nandy
(2003). We search for toroidal field B exceeding the critical
field Bc = 105 G, above the base of the SCZ taken at r = 0.71
at intervals of time τ = 8.8 × 105 s. Wherever B exceeds Bc, a
fraction f = 0.5 of it is made to erupt to the surface layers, with
the toroidal field values adjusted appropriately to ensure flux
conservation. The parameter f measures the strength of mag-
netic buoyancy. It was found by Nandy & Choudhuri (2001)
that, when f was still small compared to 1 ( f has to be less
than 1), magnetic buoyancy already reached saturation and the
character of the dynamo did not change any more on increas-
ing f . The value f = 0.5 used throughout our paper already
puts the dynamo in the buoyancy-saturated regime.

Although A and B in general evolve according to Eqs. (2)
and (3), we allow abrupt changes in B after intervals of τ to
take account of magnetic buoyancy. While our treatment of
magnetic buoyancy may not be fully satisfactory, note that un-
certainties remain in the way buoyancy has been handled ear-
lier by other groups, e.g. by treating buoyancy as a simple loss
term (Schmitt & Schüssler 1989) or by treating it in a non-local
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manner by making the poloidal source term near the surface
proportional to the toroidal field strength at the bottom of the
SCZ (Dikpati & Charbonneau 1999).

3. The parity question

All our calculations are done with internal rotation Ω, merid-
ional circulation u and magnetic buoyancy as specified in
Sects. 2.2, 2.3 and 2.6. We first present results in Sect. 3.1
obtained with the diffusion coefficients shown in Fig. 4 and
an α effect concentrated near the surface as shown in Fig. 6 by
the solid line. The dipolar mode is the clearly preferred mode
and the results qualitatively match the observational data quite
well. Some authors (Dikpati & Gilman 2001; Bonanno et al.
2002) obtained anti-solar quadrupolar modes in their calcula-
tions. We believe that this was due to the low diffusivity of
the poloidal component which did not allow this component
to connect across the equator. We present results in Sect. 3.2
in which the diffusion coefficients are as shown in Fig. 5, i.e.
the diffusivity of the poloidal component is reduced compared
to what we use in Sect. 3.1 and that of the toroidal field is in-
creased. We end up with the anti-solar quadrupolar parity in
this case. Then we show in Sect. 3.3 that we get back the dipo-
lar parity if we include an α effect within the SCZ (as shown
by dashed line in Fig. 6), while keeping all the other things
the same as in Sect. 3.2. This is again in agreement with what
Dikpati & Gilman (2001) and Bonanno et al. (2002) found.
We are thus able to reproduce the results of Dikpati & Gilman
(2001) and Bonanno et al. (2002). However, we do not agree
with their conclusion that a pure Babcock-Leighton α effect
concentrated near the solar surface cannot give the dipolar par-
ity. As we show in Sect. 3.1, the dipolar parity is the preferred
parity if the diffusivity of the poloidal component is sufficiently
high, even when the α effect is concentrated near the solar
surface.

3.1. Solution with dipolar parity

We first present a purely Babcock-Leighton dynamo (α effect
concentrated near the surface as shown in Fig. 6 by solid line),
which settles into dipolar parity. As we discussed above, the
preferred parity depends on the diffusion coefficients. Various
experiments with the parameter space of the model tell us that
there are two important conditions for getting the right parity.

1. The term ηRZ representing the molecular diffusivity in the
overshoot layer and the radiation zone below must be suf-
ficiently small (∼2.2 × 108 cm2 s−1) to prevent the toroidal
field from diffusing across the equator.

2. The diffusivity of the poloidal field ηp within the SCZ must
be sufficiently large (∼2.4× 1012 cm2 s−1) to allow diffusive
coupling of the poloidal field between two hemispheres.

Further, we have to avoid a large gradient dηt/dr at the bot-
tom of the SCZ in order to obtain well-behaved solutions. The
particular solution we present here is obtained with the diffu-
sion coefficients as given in Fig. 4. To ensure that the dipo-
lar parity is the dominant mode in the model, we start from
a pure quadrupolar initial condition and find that the solution
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Fig. 7. a) A time-latitude plot showing the evolution of the toroidal
field B at the bottom of the convection zone (r = 0.71 R�). Regions
shaded in white show positive B, whereas black regions denote nega-
tive B. The magnetic configuration makes a transition from an initial
quadrupolar (anti-solar) mode to a pure dipolar (solar-like) mode in
about 3000 years. We show the intermediate phase during the tran-
sition (1500–2500 years). This figure is for the case presented in
Sect. 3.1. b) The variation of the correlation coefficient P(t) with time
during the 4000 years of the model run. The initial value P(t) = 1
corresponds to quadrupolar parity, whereas the final relaxed value
P(t) = −1 corresponds to dipolar parity.

eventually relaxes to a pure dipolar parity. Figure 7a shows the
intermediate phase in the evolution of the initial quadrupolar
field into a dipolar field. Let us consider the toroidal field B at
two symmetric points in the two hemispheres. We arbitrarily
choose two points at latitudes 25◦ and −25◦ (i.e. at θ = 65◦ and
θ = 115◦), both at r = 0.71 R�. Let us write B(r = 0.71 R�, θ =
65◦, t) = BN(t) and B(r = 0.71 R�, θ = 115◦, t) = BS(t). We
must have BS(t) = −BN(t) for a purely dipolar field, whereas
BS(t) = BN(t) for a purely quadrupolar field. Hence the nature
of the field can be found from the correlation between BN(t)
and BS(t) defined in the following way:

P(t)=

∫ t+T/2

t−T/2

(
BN(t′)−BN

) (
BS(t′)−BS

)
dt′√∫ t+T/2

t−T/2

(
BN(t′)−BN

)2
dt′
√∫ t+T/2

t−T/2

(
BS(t′)−BS

)2
dt′

(15)

where BN, BS denote the averages of BN(t) and BS(t) fields re-
spectively within a dynamo period T and are both equal to
zero. This correlation function P(t) should be −1 and +1 for
dipolar and quadrupolar fields respectively. Figure 7b shows
the evolution of this correlation function for 4000 years, dur-
ing which the magnetic field clearly relaxes from a quadrupo-
lar to dipolar configuration. We carried out the simulation for
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(a) (b)

Fig. 8. A snapshot of a) the contours of toroidal field B and b) stream-
lines of the poloidal field, given by contours of constant Ar sin θ, for
the case of dipolar parity solution presented in Sect. 3.1. The solid
lines denote positive B or A, whereas dashed lines denote negative B
or A.

another 2000 years after the initial run of 4000 years shown
in Fig. 7b. The solution remained in the solar-like parity state
during the entire run. Figure 8 gives a snapshot of the relaxed
magnetic field configuration which is dipolar. We find that the
poloidal field lines have connected across the equator, whereas
the toroidal field within the tachocline has opposite signs on
the two sides of the equator. We shall provide further details of
this solution in Sect. 4.

3.2. Solution with quadrupolar parity

We now present a solution obtained by keeping all the param-
eters the same as in Sect. 3.1, except that we change the dif-
fusion coefficients to what is shown in Fig. 5 rather than what
is shown in Fig. 4 (as used in Sect. 3.1). The lower diffusiv-
ity of the poloidal field does not allow it to connect across the
equator and we find that the quadrupolar mode is preferred.
To make sure that indeed the dominant mode in this case is
the quadrupolar mode, we started with an initial condition hav-
ing dipolar parity and found that it relaxed to a quadrupolar
parity. Figure 9 shows the evolution of the correlation coeffi-
cient P(t) during this transition, whereas Fig. 10 illustrates the
magnetic field configuration after the dynamo has settled into
a quadrupolar mode. We find that the poloidal field has not dif-
fused enough to connect across the equator, but has remained
separated on the two sides of the equator. On the other hand,
the toroidal field in the tachocline has the same sign on the two
sides of the equator and makes up a patch of a common sign
across the equator. We have made many runs for other values
of diffusion coefficients. As we already mentioned, a low diffu-
sivity ηRZ below the bottom of the SCZ is an essential require-
ment to obtain the dipolar parity (to ensure that the toroidal
field in the tachocline cannot diffuse much across the equator).
When we take ηRZ larger than about 2 × 109 cm2 s−1, we found
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Fig. 9. The evolution of the correlation coefficient P(t) defined in
Eq. (15), for the case presented in Sect. 3.2. A transition from dipolar
to quadrupolar parity is seen.

(a) (b)

Fig. 10. A snapshot of a) the contours of the toroidal field and b)
streamlines of the poloidal field, for the quadrupolar parity solution
presented in Sect. 3.2.

that we always got quadrupolar solutions and it was not possi-
ble to get dipolar solutions even by increasing ηp in the SCZ to
facilitate the coupling of the poloidal field across the equator.
We have shown in Fig. 9 a transition from a dipolar parity to
a quadrupolar parity in a case in which the quadrupolar parity
is preferred. How fast such a transition takes place depends on
the value of ηRZ. On using ηRZ ∼ 2 × 1010 cm2 s−1, the change-
over takes place within just 300 years, whereas decreasing ηRZ

by two orders of magnitude stretches the time scale of transi-
tion to the quadrupolar parity to 2000 years.

3.3. Solution with α effect inside the SCZ

Finally we consider what influence an additionalα effect within
the SCZ has on the parity of the solution. For this purpose, we
change the radial profile of the α effect to what is shown in
Fig. 6 by a dashed line rather than the solid line in the same
figure, keeping the other things the same as in Sect. 3.2 (includ-
ing the diffusion coefficients which are as shown in Fig. 5). We
find that the solution relaxes to dipolar parity even if we start
from quadrupolar parity, as shown in Fig. 11. A snapshot of
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Fig. 11. The evolution of the correlation coefficient P(t) defined in
Eq. (15), for the case presented in Sect. 3.3 (with an additional α intro-
duced inside the SCZ). A transition from quadrupolar to dipolar parity
is seen.

the field configuration is presented in Fig. 12. This is a case
in which the quadrupolar parity would have been preferred if
the additional α effect inside the SCZ were not present, as we
saw in Sect. 3.2. However, this additional α effect, even though
its value inside the SCZ is much smaller than the value of the
Babcock-Leightonα at the surface, can make the solution dipo-
lar. This is in agreement with what has been found by Dikpati
& Gilman (2001) and Bonanno et al. (2002). One has to keep in
mind that the α coefficient has to be multiplied by the toroidal
field B to provide the source term for the poloidal field. Since
B is very large at the bottom of the SCZ, even a very small
α there can make αB as large as what it is near the surface.
That is why we find that even a very small α inside the SCZ
or at its base can affect the nature of the solution so drastically.
Presumably, an α effect within the SCZ creates some poloidal
field there which can diffuse across the equator more efficiently
than poloidal field created near the surface (where there is a
meridional flow diverging away from the equator), thereby en-
forcing the dipolar parity. Note that in the presence of a small
α inside the SCZ the magnitude of the Babcock-Leighton α re-
quired at the surface for steady oscillating solutions decreases
by almost a factor of 10 (dashed line in Fig. 6).

Choudhuri (2003b) has argued that the strong toroidal field
at the bottom of the SCZ would be highly intermittent and the
α effect may be operative in the intervening regions of weak
field. Several other authors (Ferriz-Mas et al. 1994; Dikpati
& Gilman 2001) argue that the various instabilities associated
with the strong field or the differential rotation also can produce
something like an α effect. So an additional α effect within the
SCZ or at its bottom is certainly a realistic possibility. However,
our knowledge about it at the present time is very incomplete
and uncertain. On the other hand, we see tilted active regions
decay on the solar surface and we directly know from obser-
vations that there is an α effect at the solar surface. By the
Occam’s razor argument, we feel that it is desirable to first
construct solar dynamo models with this Babcock-Leighton α
alone – especially since we have shown in Sect. 3.1 that it
is possible to get solar-like dipolar parity with such dynamo
models. We present a more detailed discussion of such pure
Babcock-Leighton dynamo models in Sect. 4.

(a) (b)

Fig. 12. Snapshots of a) the toroidal field contours and b) streamlines
of the poloidal field, for the solution presented in Sect. 3.3.

4. Towards a standard model

We have seen in Sect. 3.1 that a CDSD model with an α effect
concentrated near the surface and with appropriate values of
various parameters can give a solution with the dipolar parity.
We would refer to this solution as our standard model. We have
focused primarily on the parity of this solution in Sect. 3.1.
Now we discuss other aspects of this solution and show that
this solution matches observational data quite well. We have
already discussed in Sects. 2 and 3.1 how the various parame-
ters of this particular case are specified. The amplitude of the
Babcock-Leighton α effect used to generate our standard so-
lution is 25 m s−1. For this standard case, we refined our grid
to have 257 × 257 points, and the results remained unchanged
with this finer resolution.

Figure 13 shows the time-latitude contour plot of the radial
field at the solar surface, with the theoretical butterfly diagram
superimposed upon it. The butterfly diagram is produced by
marking the locations of eruption, “+” indicating the positive
value of B at the bottom of the SCZ which erupts and “o” in-
dicating the negative value. The sunspot eruptions are confined
within ±40◦ and the butterfly diagrams have shapes similar to
what is observationally found (see, for example, Fig. 6.2 in
Choudhuri 2003a; Hathaway et al. 2003). The weak radial field
migrates poleward at higher latitudes, in conformity with ob-
servations. One of the important aspects of observational data
is the phase relation between the sunspots and the weak diffuse
field. See Sect. 1 of Choudhuri & Dikpati (1999) for a detailed
discussion of this (especially note Fig. 1 there). The polar field
changes from positive to negative at the time of a sunspot max-
imum corresponding to a negative toroidal field B at the base
of SCZ. This is clearly seen in the theoretical results shown
in Fig. 13. In Fig. 14 we show four snapshots of the toroidal
field contours and poloidal field lines taken successively at an
interval of 1/8th the solar cycle period which happens to be
about 25 years in this case. In all the snapshots we see that the
poloidal field lines are symmetric about the equator. The ηp in
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Fig. 13. Theoretical butterfly diagram of eruptions for our stan-
dard model. The background shows contours of diffuse radial field.
Eruption latitudes are denoted by symbols “o” and “+”, indicating
negative and positive toroidal field respectively. The dashed contours
are for negative Br, whereas the solid contours are for positive Br. Note
that negative toroidal fields give rise to negative radial field near the
poles after decaying and vice versa in accordance with Hale’s polarity
law. The time is in years from the start of the run.

the convection zone is sufficiently high (∼2.4 × 1012 cm2 s−1)
to ensure that the poloidal fields connect smoothly across the
equator. On the other hand, the toroidal fields on the two sides
of the equator, which have opposite signs, cannot diffuse to-
gether due to the low ηt near the base of SCZ.

4.1. The effect of velocity quenching

One important question is whether the equatorward meridional
circulation at the base of SCZ should be able to advect the
strong toroidal field, working against the magnetic tension. It
has been argued by Choudhuri (2003b) that this should be pos-
sible if the strong toroidal field is highly intermittent. However,
Choudhuri (2003b) concluded that the meridional flow may be
barely strong enough to advect the toroidal field. If B becomes
larger than some critical value, then the meridional flow may
not be able to carry it. We try to capture this effect by check-
ing at intervals of 10 days if the toroidal field exceeds a critical
value of 1.5 × 105 G in a region of thickness 0.11 R� below a
depth of 0.73 R�. Whenever B is larger than this critical value,
we reduce the velocity at that grid point by a factor of eight.
A butterfly diagram similar to Fig. 13 is produced in this case
and is shown in Fig. 15. On comparing Figs. 13 and 15, we
find that this velocity quenching improves the appearance of
the butterfly diagram. We saw in Fig. 13 that eruptions for a
new half-cycle began at high latitudes before the eruptions at
low latitudes stopped for the previous half-cycle, leading to a
tail-like attachment in the butterfly diagram. We see in Fig. 15
that this is gone and a new half-cycle begins at the high latitude
at about the time when the old half-cycle dies off at the low

t = T / 8

t =  T / 4

t = 3 T / 8

t =  T / 2

Fig. 14. Four snapshots of the toroidal field contours (left panel), and
the poloidal field lines (right panel) separated by 1/8th of the dynamo
period T . The case t = 0 is shown in Fig. 8. The line styles are same
as in Fig. 8.

latitude – in conformity with observational data (see Fig. 6.2 of
Choudhuri 2003a).
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Fig. 15. Theoretical butterfly diagram of eruptions for the case pre-
sented in Sect. 4.1. The various conventions used are the same as in
Fig. 13.

5. Conclusion

We show that a CDSD model with an α effect concentrated
near the surface and a meridional circulation penetrating be-
low the tachocline provides a satisfactory explanation for vari-
ous aspects of the solar cycle. The helioseismically determined
differential rotation is strongest at high latitudes within the
tachocline and there is little doubt that the strong toroidal field
should be produced there, to be advected by the meridional
flow to low latitudes where it erupts. This view, which was first
put forth by Nandy & Choudhuri (2002), is a departure from
the traditional viewpoint that the toroidal field is produced ba-
sically at the same latitude where it erupts. Ironically, this new
viewpoint makes the original motivation of Choudhuri et al.
(1995) in introducing the meridional circulation somewhat re-
dundant. A standard result of dynamo theory (without any flow
in the meridional plane), which was first derived by Parker
(1955), is that the product of α and ∂Ω/∂r should be negative
in the northern hemisphere, to ensure the equatorward propa-
gation of the dynamo wave (see, for example, Choudhuri 1998,
Sect. 16.5). The tilts of bipolar regions on the solar surface
suggest that α should be positive in the northern hemisphere,
whereas helioseismology found ∂Ω/∂r also to be positive in the
lower latitudes. If the strong toroidal field is produced within
the tachocline at low latitudes where it erupts, then the sim-
ple sign rule would suggest a poleward propagation. Choudhuri
et al. (1995) introduced the meridional circulation primarily to
overcome this tendency of poleward propagation, forcing the
dynamo wave to propagate equatorward. If the toroidal field is
produced at high latitudes where ∂Ω/∂r is negative, then the
dynamo wave should propagate equatorward even in the ab-
sence of meridional circulation. Although the original motiva-
tion of Choudhuri et al. (1995) in introducing the meridional
circulation may no longer be so relevant, it has become increas-
ingly clear in the last few years that the meridional circulation

plays a crucial role in the solar dynamo. There are indications
that the meridional circulation may actually be the time-keeper
of the solar cycle (Hathaway et al. 2003). We hope that within
the next few years helioseismology will discover the equator-
ward return flow of meridional circulation and may even be
able to establish if this return flow really penetrates below the
tachocline, as required by us.

Dikpati & Gilman (2001) and Bonanno et al. (2002) had
earlier argued that a pure Babcock-Leighton dynamo with α
concentrated near the surface may not give the correct dipolar
parity. We have clearly demonstrated that this is not the case. If
the poloidal field has sufficient diffusivity to get coupled across
the equator, whereas the toroidal field is not able to diffuse
across the equator (since turbulent diffusion is suppressed for
the strong toroidal field), then we find that the dipolar mode
is preferred. We saw in Sect. 3.3 that an additional α effect
in the interior of SCZ would help in establishing dipolar par-
ity. However, in view of the fact that our knowledge about
such an α effect is very uncertain, we felt that it is first nec-
essary to study pure Babcock-Leighton dynamo models with
α effect concentrated near the surface alone. Accordingly, we
have taken such a dynamo model which gives the correct dipo-
lar parity as our standard model. We have shown in Sect. 4
that this standard model explains many aspects of observational
data very well. We are right now exploring whether this stan-
dard model can explain some other aspects of observational
data not discussed by us here. For example, active regions in
the northern hemisphere are known to have a preferred nega-
tive helicity. A theoretical explanation for this has been pro-
vided by Choudhuri (2003b). Our preliminary investigations
based on the idea of Choudhuri (2003b) show that our stan-
dard model presented in this paper would give the right type
of helicity (Choudhuri et al. 2004). We are now carrying out
more detailed calculations, which will be reported in a forth-
coming paper. We may mention that our code can be used for
other MHD calculations besides the solar problem. A modi-
fied version of the code has been used to study the evolution
of magnetic fields in neutron stars (Choudhuri & Konar 2002;
Konar & Choudhuri 2004; Choudhuri & Konar 2004).
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