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Abstract

Whether the upcoming cycle 24 of solar activity will be strong or

not is being hotly debated. The solar cycle is produced by a complex

dynamo mechanism. We model the last few solar cycles by ‘feeding’

observational data of the Sun’s polar magnetic field into our solar

dynamo model. Our results fit the observed sunspot numbers of cycles

21-23 extremely well and predict that cycle 24 will be about 35%

weaker than cycle 23.

Solar activity affects our space environment, thereby influencing various
aspects of human life [1]. So it is vitally important to develop capabilities
for predicting strengths of the 11-year cycles of solar activity. It has been
believed for some time that the Sun’s polar magnetic field at the preceding
minimum gives an indication of the strength of the next solar cycle [2]. The
weakness of the present polar field has already led to predictions that cycle 24
will be the weakest cycle in 100 years [ 3, 4]. Since the solar cycle is produced
by a dynamo mechanism, one would like to make a prediction of cycle 24
from a detailed solar dynamo model also. The only previous dynamo-based
prediction is that cycle 24 will be one of the strongest cycles [5]. Our aim is
to generate an independent prediction for cycle 24 from a different dynamo
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model by a different methodology. We identify the Babcock–Leighton process
for poloidal field generation as the main source of randomness in solar cycles.
A theoretical mean field model of the solar dynamo produces a poloidal field
at the end of a cycle which would be typical of an ‘average’ solar cycle. In
order to model actual solar cycles, a theoretical mean field model of the
solar dynamo has to be ‘corrected’ by feeding actual observational data of
poloidal field. Since such data are available only from the mid-1970s, this
method can be used to model solar cycles only from that time. We carry on
our calculations by feeding the DM (Dipole Moment) values of solar polar
field computed by Svalgaard et al. [3] into our already published solar dynamo
model [6, 7].

Current solar dynamo models combine three basic processes. (i) The
strong toroidal field is produced by the stretching of the poloidal field by
differential rotation in the tachocline at the base of the convection zone.
(ii) The toroidal field generated in the tachocline gives rise to active regions
due to magnetic buoyancy and the decay of tilted bipolar active regions
produces the poloidal field by the Babcock–Leighton mechanism. (iii) The
meridional circulation advects the poloidal field first to high latitudes and
then down to the tachocline. Two-dimensional mean field dynamo models
based on these three processes were first constructed about a decade ago
[8, 9]. We believe that the processes (i) and (iii) are reasonably smooth and
deterministic. In contrast, the process (ii) involves an element of randomness,
which presumably is the primary cause of solar cycle fluctuations. Firstly,
although active regions appear in a latitude belt at a certain phase of the
solar cycle, where exactly within this belt the active regions appear seems
random. Secondly, there is considerable scatter in the tilts of bipolar active
regions around the average given by Joy’s law. The action of the Coriolis
force on the rising flux tubes gives rise to Joy’s law [10], whereas convective
buffeting of the flux tubes in the upper layers of the convection zone cause
the scatter of the tilt angles [11]. Since the poloidal field generated from
an active region by the Babcock–Leighton process depends on the tilt, the
scatter in the tilts introduces a randomness in the poloidal field generation
process.

The poloidal field gets built up during the declining phase of the cycle
and at the minimum, when there are no sunspots, we have the polar field
cumulatively produced from the sunspots during the previous cycle. The
polar field at the solar minimum produced in a mean field dynamo model is
some kind of ‘average’ polar field during a typical solar minimum. The polar
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parameter Standard Model This Model
v0 −29 m s−1

−34 m s−1

Rp 0.61R⊙ 0.635R⊙

β2 1.8 × 10−8m−1 1.3 × 10−8 m−1

r0 0.1125R⊙ 0.1286R⊙

dtac 0.05R⊙ 0.03R⊙

Table 1: The original values of the parameters in the standard model (Sect.
4 of Chatterjee et al. [7]) along with the changed values we use now. The
first four parameters control the amplitude, penetration depth, equatorial
return flow thickness and the position of the inversion layer of the meridional
circulation, respectively. The tachocline width is denoted by dtac.

field during a particular solar minimum may be stronger or weaker than this
average field. We propose the following methodology for modelling the solar
cycles with a mean field dynamo model. We run the dynamo code in the usual
way from one solar minimum to the next. Then, at the time of the minimum,
we change the amplitude of the polar field suitably to make it agree with the
observed value of the polar field and run the code again to the next minimum.
Proceeding in this way, we can correct for the randomness introduced in the
Babcock–Leighton mechanism by using actual observational data.

Our calculations are based on the solar dynamo code Surya. This code,
along with a detailed guide [12], is freely available for use by solar physi-
cists. Anybody desirous of obtaining this code may send a request to Arnab
Choudhuri through e-mail (arnab@physics.iisc.ernet.in). Full details of the
two-dimensional kinematic dynamo model which is solved by Surya are avail-
able elsewhere [7, 12]. In what was referred to as the standard model in Sect.
4 of Chatterjee et al. [7], we change some parameters to make the period of
the solar cycle equal to 10.6 years (the period in the standard model was 14
years). The old values and changed values of the parameters are listed in
Table 1.

We now discuss how we change the value of the polar field during succes-
sive solar minima to feed the relevant information about the past cycles into
the code. Reliable data about polar fields from Wilcox Solar Observatory
(WSO) and Mount Wilson Observatory (MWO) exist only for the minima
at the ends of the cycles 21, 22 and 23. Additionally, MWO data exist for
one previous minimum (at the end of cycle 20), though the quality of data
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was not so good at that time. Svalgaard et al. [3] have analyzed these data
carefully and came up with a parameter for the solar minima, which they
call ‘Dipole Moment (DM)’. Although we think that this name is somewhat
misleading, we keep using it in this paper. This DM, which is a good mea-
sure of the polar field during the solar minimum, has its values for the last
3 solar minima listed in Table 1 of Svalgaard et al. [3]. From Fig. 3 of their
paper, we estimate DM for the previous minimum at the end of cycle 20 to
be about 250 µT, although the data appear noisy. According to Table 1,
values of DM at the ends of cycles 21, 22 and 23 are respectively 245.1 µT,
200.8 µT and 119.3 µT. The next question we have to address is: what value
of DM corresponds to the polar field of an ‘average’ cycle? This question
is not so straightforward to settle, given the fact that there is a trend of
cycle amplitudes steadily increasing since the Maunder minimum [13]. We
tentatively take cycle 23 as an average cycle and the value of DM before its
beginning (which is 200.8 µT) denoted by DM as the average for a typical
average solar minimum. If we divide the DM value of a particular minimum
by DM=200 µT, we get a numerical factor which we would call γ. The values
of γ at the ends of cycles 20, 21, 22 and 23 are respectively 1.25, 1.23, 1.0
and 0.60.

The poloidal field in a two-dimensional dynamo problem is described by
a scalar function A(r, θ). From a regular run of the dynamo code, we can
find out the value of the amplitude of A at the solar minimum, which would
correspond to an ‘average’ value for a typical solar minimum. Let us call this
Amin. Suppose we run the dynamo code till a solar minimum for which we
know the value of γ from observational data. At all grid points above 0.8R⊙,
we multiply A by a constant factor such that the amplitude of A becomes
γAmin. We do not make any changes in the values of A below 0.8R⊙. This
ensures that the poloidal field in the upper layers, which has been created
by the Babcock–Leighton mechanism operating during the last cycle, gets
corrected to the observed value, whereas the poloidal field at the bottom of
the convection zone, which may have been created during the still earlier
cycles, is left unchanged. After changing A above 0.8R⊙ in this fashion, we
run the code till the next minimum when this procedure is repeated.

Since we have values of γ at the ends of cycles 20–23, our procedure for
generating a forecast for cycle 24 is now straightforward. We take a relaxed
solution of our dynamo code which has been stopped at a solar minimum. We
identify this minimum as the minimum at the end of cycle of 20 and change
the the values of A above 0.8R⊙ in accordance with the value of γ (which
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Figure 1: A snapshot of streamlines of the poloidal field given by constant
contours of Ar sin θ just after correcting by the DM value for the poloidal field
at the minimum before cycle 24. The dashed lines correspond to r = 0.7R⊙

and r = 0.8R⊙.

is 1.25). Then we run the code till the next minimum and again change the
values of A above 0.8R⊙. Doing this thrice, we come to the minimum at
the end of the cycle 23. The next run after this generates the forecast for
cycle 24. It may be noted that the poloidal field lines become somewhat
discontinuous at r = 0.8R⊙ after we change the values of A above 0.8R⊙ in
accordance with observational data. This discontinuity can be seen in Fig. 1
where we plot the poloidal field lines at the minimum before cycle 24 just
after updating the values of A. However, we find that this discontinuity gets
smoothed out within a time scale of weeks.

Before presenting results obtained with actual observed values of DM fed
into the code, we present some results obtained by changing the poloidal
field arbitrarily during a solar minimum and then running the code without
any further interruptions. Fig. 2 gives sunspot number plots obtained by
increasing and decreasing the poloidal field by 30% above 0.8R⊙ at a solar
minimum. We find that the next two solar minima are both affected, after
which the memory of the poloidal field change seems to get lost. Svalgaard
et al. [3] suggest a simple relation that the maximum International Sunspot
Number Rmax of cycle n will be proportional to the value of DM at the end
of cycle n − 1, i.e.

(Rmax)n = k(DM)n−1. (1)
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Figure 2: Monthly smoothed sunspot number plots by increasing (dashed
line) and decreasing (solid line) the poloidal field by 30% above 0.8R⊙ at a
solar minimum (indicated by the vertical line), based on our model. The polar
field takes some time to be advected to the mid-latitudes in the tachocline
where a strong toroidal field is produced during the solar maxima. In our
model, this advection time is of the order of 10 yr. After a minimum at the
end of cycle n, the maxima of the next two cycles n+1 and n+2 come about
5 yr and 16 yr later respectively. Since the advection time in our model is
almost an arithmetic mean between these two, the two next maxima are both
affected in our model. Dikpati & Gilman [5] point out that the advection time
in their model is somewhat longer (mainly because of the different profiles of
meridional circulation assumed in the two models), which implies that the
poloidal field of cycle n will primarily affect the cycle n + 2 rather than the
cycle n + 1.

On the basis of our model, we expect a more complicated functional rela-
tionship

(Rmax)n = f [(DM)n−1, (DM)n−2]. (2)

As we shall see below, the results of our dynamo run for the last few cycles are
in qualitative agreement with what would be expected from (1). However,
if values of DM during the two previous minima are widely different, it is
in principle possible that our method based on our dynamo model would
generate a forecast for the next cycle significantly different from what is
expected from (1).

Fig. 3 now presents our results for cycles 21–24 generated by our method-
ology. The top panel superposes the sunspot number generated from our
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Figure 3: Results for cycles 21–24. (a) The theoretical monthly smoothed
sunspot number (solid line) superposed on the monthly smoothed sunspot
numbers from observation (dashed line). (b) A plot of Br at the surface at
a latitude of 70◦. (c) The theoretical butterfly diagram, with contours of Br

at the surface in the time-latitude plot. In the middle panel, it is interesting
to note that, even though we change Br abruptly at a minimum, by the next
minimum its value relaxes to values close to what would be the ‘average’ value
for a typical cycle. The cycles 21 and 22, which are of comparable strength,
are easy to model as we see in the top panel, since they follow solar minima
having DM of comparable values. The cycle 23, which follows a minimum of
low DM, is weak, although we find that the theoretically calculated cycle is
not as weak as the observed cycle. The cycle 24 is clearly very weak. The
theoretical plot in the top panel was generated by using DM= 200 µT. The
theoretical plots are found to be qualitatively similar when we take DM in
the range 150–220 µT.
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model on the observational data. The middle panel gives the Br at a lati-
tude of 70◦ obtained from the dynamo model, showing the jumps at the solar
minima when we change the poloidal field in accordance with the observed
value of DM. The bottom panel shows the butterfly diagram produced by
our model. We see in the top panel that the theoretical plot is in quite good
agreement with the observational data for cycles 21–23. whereas cycle 24
comes out as the weakest cycle in a long time. Since the value of DM during
the minima at the ends of cycles 22 and 23 are lower than the values of DM
in the two preceding minima, the weakness of cycle 24 appears like a very
robust result, which does not change with small changes in the parameters
of the problem such as the chosen value of DM. We may point out that
the absolute value of the theoretical sunspot number from our numerical
code does not have any particular significance, since this value changes on
changing such things as the grid spacing. To generate Fig. 3a, we scaled the
theoretical sunspot number suitably to make it fit the observational plot.

We are now carrying on calculations in which instead of DM we feed
magnetogram data at different latitudes during solar minima into our model.
The results will be presented in a future paper. While the use of more detailed
polar field data may lead to more realistic predictions, the attractiveness of
the scheme presented in this paper is that it is extremely straightforward
to implement and is probably reasonably reliable, as we have been able to
model cycles 21–23 very well.

Since the dominant processes during the rising phase of a cycle from
a minimum to a maximum are fairly regular processes like the magnetic
field advection and toroidal field generation by differential rotation, a good
knowledge of magnetic configurations during a minimum should enable a
good theoretical model to predict the next maximum reliably. On the other
hand, the dominant process in the declining phase of a cycle is the poloidal
field generation by the Babcock–Leighton process which involves randomness
and cannot be predicted in advance by theoretical models. In other words,
we suggest that the rising phase of the cycle is predictable (enabling us to
predict the strength of the maximum a few years ahead of time), but the
declining phase is not predictable. Consequently, it may never be possible to
make a realistic prediction of a solar maximum more than 7–8 years ahead
of time, even when we have better theoretical models and better magnetic
data.

Although our forecast is in agreement with physical intuition as well as
forecasts based on polar field strength [3, 4], it is completely opposite of the
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only other forecast based on a detailed dynamo model [5]. The methodology
used by Dikpati & Gilman [5] for feeding the observational data in the theo-
retical model differs from ours at a fundamental conceptual level. They use
the sunspot area as the source term for the generation of the poloidal field,
whereas the tacit assumption behind our methodology is that the poloidal
field generation involves randomness and cannot be calculated deterministi-
cally from the past sunspot data. Cycles with many sunspots do not neces-
sarily produce strong poloidal fields at the end. This is clearly seen in the
analysis of Makarov et al. [14] (see their Fig. 1) who have used the positions
of Hα filaments to estimate polar fields for the better part of a century. They
find that the polar field during a minimum is correlated with the strength of
the next cycle, but the strength of the cycle has no good correlation with the
polar field produced at its end. If our identification of the poloidal field gen-
eration by the Babcock–Leighton process as the main source of randomness
in the solar dynamo is correct, then the methodology of Dikpati & Gilman
[5] should in principle not work, although they claim to ‘predict’ many past
cycles correctly. Since their forecast for cycle 24 is completely opposite of
ours, it should become apparent in the next 4-5 years as to which forecast
comes closer to truth.
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