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ABSTRACT

We calculate helicities of solar active regions based on the idea that poloidal flux lines get wrapped around a
toroidal flux tube rising through the convection zone, thereby giving rise to the helicity. Rough estimates based
on this idea compare favorably with the observed magnitude of helicity. We use our solar dynamo model based
on the Babcock-Leightona-effect to study how helicity varies with latitude and time. At the time of solar
maximum, our theoretical model gives negative helicity in the northern hemisphere and positive helicity in the
south, in accordance with observed hemispheric trends. However, we find that during a short interval at the
beginning of a cycle, helicities tend to be opposite of the preferred hemispheric trends.

Subject headings: MHD — Sun: activity — Sun: magnetic fields — sunspots

1. INTRODUCTION

It has been recognized for some time that solar active regions
typically have some helicity associated with them and that the
preferred sign of helicity in the two hemispheres are opposite
(negative in the northern hemisphere and positive in the south-
ern), in spite of a very large statistical scatter. Hale (1927) and
Richardson (1941) noted the helical appearances of sunspots
in Ha images. More systematic studies based on vector mag-
netogram data have been carried out by Seehafer (1990), Pev-
tsov et al. (1995, 2001), Abramenko et al. (1997), and Bao &
Zhang (1998). Figure 2 of Canfield & Pevtsov (2000) is a
typical plot showing a variation of helicity with latitude, which
any theoretical model has to explain.

Solar magnetic fields are believed to be produced by the
dynamo process. One possibility is that the dynamo process
itself is responsible for the generation of helicity. The other
possibility is that the rising flux tubes, which eventually form
active regions, get the twist by interacting with the helical
turbulence in the surrounding convection. The second possi-
bility has been christened as theS-effect by Longcope et al.
(1998), who investigated it (see also Longcope et al. 1999).
Gilman & Charbonneau (1999) looked at the helicity generation
by an interface dynamo. The two possibilities mentioned above
need not be mutually exclusive: both may be simultaneously
operative. A careful comparison between observational data
and detailed theoretical models will be needed to ascertain the
relative importance of these two effects. In fact, a recent anal-
ysis of observational data of solar active regions indicates that
there must be some mechanism other than theS-effect, in the
lower half of the solar convection zone, for the creation of
helicity there (Holder et al. 2004).

We present here calculations of helicity based on our two-
dimensional kinematic solar dynamo model presented in Nandy
& Choudhuri (2002) and Chatterjee et al. (2004). In this dy-
namo model, the toroidal field is produced in the tachocline at
the bottom of the convection zone, whereas the poloidal field
is produced at the solar surface by the Babcock-Leighton pro-
cess (i.e., from the decay of tilted bipolar regions). Since a
meridional circulation, which advects the poloidal field first to
high latitudes and then down to the tachocline, plays a crucial
role in this model, we refer to this as a circulation-dominated

solar dynamo model. The important role played by meridional
circulation in such dynamo models was first demonstrated by
Choudhuri et al. (1995) and Durney (1995). We have taken a
meridional circulation penetrating slightly below the bottom of
the solar convection zone (SCZ). This ensures that the toroidal
field produced in the high-latitude tachocline (where the shear
is strong) is carried through a stable layer to the low latitudes,
where active regions are formed.

The dynamo equation deals with the mean magnetic field
(see, for example, Choudhuri 1998, chap. 16), whereas we want
to find helicities of active regions that form from flux tubes.
To make a connection between these two, we have to look at
the relation between dynamo theory and flux tubes. This has
been explored by Choudhuri (2003), who presents the quali-
tative idea of how the helicity is generated. We recommend
that the reader goes through § 5 of Choudhuri (2003) before
reading this Letter, which develops the ideas outlined there.
Basically, the toroidal and poloidal fields are generated in two
different regions (at the bottom and at the top of the SCZ,
respectively). When toroidal flux tubes move upward into the
region near the solar surface where the poloidal field already
exists, the poloidal field gets wrapped around the flux tube and
gives rise to the helicity. This is explained through Figure 4
in Choudhuri (2003). In the northern hemisphere, when a flux
tube rises in a region where a poloidal field has been created
from similar flux tubes by the Babcock-Leighton process, this
figure makes it clear that the helicity is negative (it has to be
positive in the southern hemisphere).

We present an order-of-magnitude estimate of helicity in
§ 2 and show that it is in conformity with the observational
data. Then the detailed results from the dynamo simulation are
presented in § 3. Our conclusions are summarized in § 4.

2. ESTIMATING THE VALUE OF HELICITY

There are different ways of describing helicity mathemati-
cally, one of which is

(� � B)z
a p , (1)

Bz
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Fig. 1.—Theoretical butterfly diagram of eruptions from our standard dy-
namo model. Eruptions with positive and negative helicities are denoted by
plus signs and circles, respectively.

wherez corresponds to the vertical direction, which is along the
axis of the flux tube for active regions on the surface. The pa-
rametera (not to be confused with the dynamoa-effect tradi-
tionally associated with the poloidal field generation mechanism)
is a measure of the twist in the magnetic field lines. The twist
parameter is an indicator of how stressed the active region flux
system is, and it is known to play an important role in the flaring
and explosive activity of active region magnetic fields (Canfield
et al. 1999; Nandy et al. 2003). Several authors calculateda for
active regions from magnetogram data. Figure 2 of Canfield &
Pevtsov (2000) plotsa for the active regions against the latitudes
where they are seen, clearly showing a statistical tendency for
a to be negative in the northern and positive in the southern
hemisphere, respectively. The typical observed value of the twist
parametera, as seen in this figure, is about m�1.�82 # 10

To estimate the value of helicity theoretically, we have to
keep in mind that the flux of poloidal field through theBP

whole SCZ gets dragged by the toroidal flux tube rising under
magnetic buoyancy (see Fig. 4 of Choudhuri 2003). Ifd is the
depth of the convection zone, the flux dragged by the tube is

F ≈ B d. (2)P

This flux F gets wrapped around the tube of radiusa. In an
ideal-MHD situation, this fluxF would be confined to a narrow
sheath around the flux tube. In reality, however, we expect that
the turbulent disturbances around the flux tube would make
this flux F penetrate into the flux tube to some extent. Then
the magnetic field going around the tube can be taken to be of
order . The current density associated with thisF/a F� � BF
field is of order and is along the axis of the tube. If2F/a BT

is the magnetic field inside the flux tube, then it follows from
equation (1) that

2F/a B dP
a ≈ ≈ (3)2B B aT T

on substituting from equation (2) forF. We use G, theB ≈ 1P

depth of the SCZ m, and the field inside sunspots8d ≈ 2 # 10
G. On taking the radius of the sunspot kmB ≈ 3000 a ≈ 2000T

and km, we get m�1 and�8a ≈ 5000 a ≈ 2 # 10 a ≈ 3 #
m�1, respectively. Thus, from very simple arguments, we�910

get the correct order of magnitude. This suggests that our model
captures some amount of the real physics. If the fluxF that is
wrapped around the flux tube is confined to a shell of thickness

less thana (i.e., is not spread over the full radius), then the
current density also would be confined in the shell and would
have a value higher than , makinga higher than what is2F/a
estimated above. Using a fixed value ofa to describe the he-
licity of a sunspot is certainly an oversimplification from either
a theoretical or an observational point of view.

3. RESULTS FROM SIMULATION

In § 4 of Chatterjee et al. (2004), we have presented a par-
ticular dynamo model, which we refer to as ourstandard model.
This model settles into a solution with dipolar parity, produces
a butterfly diagram that matches with observations, and gives
the correct phase relation between sunspots and weak fields
outside active regions. We now present helicity calculations
based on this standard model. Full details of the model are
given in Chatterjee et al. (2004).

For simplicity, let us assume that all flux tubes have the same
radiusa. It then follows from equation (3) that the helicity of
the flux tube is essentially given by the fluxF through the
SCZ. A flux eruption takes place in our model whenever the
toroidal field at the bottom of the SCZ exceeds a critical value.
Details of how we do this are discussed in Nandy & Choudhuri
(2001) and are summarized in § 2.6 of Chatterjee et al. (2004).
Whenever an eruption takes place in our dynamo simulation,
we calculate the poloidal fluxF through the SCZ at the eruption
latitude by integrating from the bottom of the SCZ (B r pv

) to the top ( ), i.e.,R r p Rb ,

R,

F p B dr.� v

Rb

Since the poloidal field is obtained from a scalar function
by the relation , it is easy to see thatA(r, v) B p � � (Ae )p f

R,
A

F p � A(r p R ) � dr . (4)[ ], � rRb

The value ofF calculated at the eruption latitude at the time
of eruption gives the amplitude of helicity associated with the
eruption. The sign is obtained from the following convention:
if the sign ofF is opposite to the sign of the toroidal fieldB
at the bottom of the SCZ, then the helicity is taken as negative
(otherwise it is positive). This should be clear from a perusal
of Figure 4 of Choudhuri (2003).

Figure 1 shows the simulated butterfly diagram, indicating
active regions of positive and negative helicity. During the solar
maximum, the helicity is negative in the northern hemisphere
and positive in the southern, as we expect. However, at the
beginning of a cycle, there is a short duration when the sign
of helicity is “wrong,” i.e., opposite of the preferred helicity.
Basically, when a flux tube erupts in a region where the poloidal
field has been created bysimilar flux tubes that erupted earlier,
we get the “correct” (i.e., preferred) helicity. At the beginning
of a cycle, flux tubes emerge in regions where the poloidal
field was produced by flux tubes of the earlier cycle, thereby
giving rise to “wrong” helicity. We find that 67% of the erup-
tions in our simulation have “correct” helicity. This percentage,
however, depends on the parameters of the model. By varying
parameters, we have succeeded in producing cases in which
78% of the eruptions have “correct” helicity, although the but-
terfly diagrams for these cases match observations less well.
We are now in the process of introducing stochastic fluctuations



No. 1, 2004 HELICITY OF ACTIVE REGIONS L59

Fig. 2.—Helicity a (plotted along the vertical axis in arbitrary units) for
eruptions at different latitudes, denoted by open circles: (a) for an entire solar
cycle; (b) for 4 years during the maximum and the declining phases of the
solar cycle; and (c) for the first 4 years of the solar cycle. The solid lines in
(b) and (c) are least–squares fits to the model results.

Fig. 3.— as a function of time covering the equivalent of two sunspotda/dl
cycles. To find out the values of time that correspond to maxima or minima,
look at Fig. 1, which has the same horizontal axis.

in our dynamo model, which is needed to model the irregu-
larities of the solar cycle. The helicity results obtained with
our present regular dynamo code also may get slightly modified
on introducing the stochastic fluctuations. We plan to carry out
a more complete parameter space study after incorporating the
fluctuations.

In an analysis of solar active region data, Bao et al. (2000)
find evidence that, during the beginning of Cycle 23, the current
helicity (an alternative parameter to describe helicity) had the
opposite of the preferred sign, lending support to our prelim-
inary theoretical results. However, Pevtsov et al. (2001) do not
find such a reversal in their analysis of active region data from
the first 4 years of Cycle 23, and Bao et al. (2000) also do not
find this reversal in thea parameter. More detailed analyses
of both observational data and theoretical models are clearly
needed.

Figure 2a is a plot of helicity associated with eruptions at
different latitudes. This is the theoretical plot that has to be
compared with observational plots like Figure 2 of Canfield &
Pevtsov (2000). We notice that the theoretical plot has consid-
erably less scatter compared to the observational data. This is
expected to change on introducing stochastic fluctuations,
which should increase the scatter. However, even the present
model without stochastic fluctuations reproduces the broad fea-
tures of observational data reasonably well.

To see the variation of helicity with the cycle, Figures 2b
and 2c present plots of helicity for eruptions during 4 years of
solar maximum and 4 years at the beginning of the cycle,
respectively. The straight lines represent the least-squares fits.
For “correct” helicity (negative in north and positive in south),
the gradient of the straight line has to be negative, asda/dl
we see in Figure 2b corresponding to solar maximum (l is the

latitude). The gradient, however, is positive at the start of the
cycle. To find out how this gradient varies with the cycle, we
divide the cycle period into 16 equal intervals and then find
the gradient for each of the intervals by using eruptionsda/dl
during that interval. Figure 3 shows how the gradientda/dl
varies with the solar cycle. If theS-effect makes a significant
contribution in the production of helicity, then the variation
with the cycle may be less pronounced compared to what we
find in our model without this effect, since theS-effect is cycle
independent (Longcope et al. 1998).

Since it is in principle possible to determine from obser-
vational data how actually varies with the solar cycle,da/dl
a plot like Figure 3 provides a powerful tool for comparison
between theory and observations. There is some indication in
the existing data that may be varying in accordance withda/dl
our model; but the data are noisy and the results from different
instruments often diverge widely, so it is difficult to draw firm
conclusions at this point in time (A. A. Pevtsov 2004, private
communication).

4. CONCLUSION

We have shown how helicity can be calculated from a dy-
namo model. There are different mathematical ways of de-
scribing helicity. We have made use of the parametera defined
through equation (1). Another way of describing it is through
the magnetic helicity . It is well known that magneticA · B
helicity changes much more slowly than magnetic energy (see,
for example, Choudhuri 1998, § 15.3). It has been suggested
that the dynamo creates magnetic helicities of opposite signs
at the large and small scales so that there is no net change in
magnetic helicity (Seehafer 1996; Blackman & Brandenburg
2003). Thea-effect associated with the dynamo (different from
a defined in eq. [1]) is positive in the northern hemisphere and
produces positive helicity of the mean field (see the Appendix
of Choudhuri 2003). Choudhuri (2003, § 5.2) has explained
how positive helicity is produced in the large scale, with a
simultaneous generation of negative helicity at small scales to
be identified with the helicity of active regions. These subtle
issues were not recognized in the early attempts of calculating
helicity from dynamo models (Gilman & Charbonneau 1999).

Two clear theoretical predictions follow from our model:

1. Since the helicity goes as as seen from equation (3),�2a
the smaller sunspots should statistically have stronger helicity
(i.e., higher values of twista).

2. At the beginning of a cycle, helicity should be opposite
of what is usually observed.

The alternative model for the generation of helicity, theS-
effect proposed by Longcope et al. (1998), also makes the
prediction 1 but not 2. Since helicity is imparted to the flux
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tubes by helical turbulence of the SCZ in this model, the helicity
is not expected to vary with the solar cycle. A careful analysis
of any possible variation of helicity with the solar cycle would
be the best way of ascertaining relative contributions of theS-
effect and the dynamo (the process studied in this Letter) in
generating helicity. As already noted, Bao et al. (2000) noticed
indications of opposite helicity at the beginning of Cycle 23
in conformity with our preliminary theoretical results, although
other groups have not confirmed this result. More careful anal-
ysis of observational data is needed to establish any possible
cycle dependence of helicity. We hope that this will be done
in the near future. Also, there are indications in observational
data that helicities of “wrong” sign—that do not follow the
hemispheric trend—often persist at certain latitudes and lon-

gitudes over several months (see Pevtsov & Balasubramaniam
2003 for a review of suchhelicity nests). More complicated
theoretical models, perhaps with stochastic fluctuations and de-
partures from axisymmetry, will be needed to explain these
details.
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