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Abstract. We use different determinantal Hartree–Fock (HF) wave functions to calcu-
late true variational upper bounds for the ground state energy of N spin-half fermions in
volume V0, with mass m, electric charge zero, and magnetic moment μ, interacting through
magnetic dipole–dipole interaction. We find that at high densities when the average inter-
particle distance r0 becomes small compared to the magnetic length rm ≡ 2mμ2/�

2, a

ferromagnetic state with spheroidal occupation function n↑(�k), involving quadrupolar de-
formation, gives a lower upper bound compared to the variational energy for the uniform
paramagnetic state or for the state with dipolar deformation. This system is unstable to-
wards infinite density collapse, but we show explicitly that a suitable short-range repulsive
(hard core) interaction of strength U0 and range a can stop this collapse. The existence of
a stable equilibrium high density ferromagnetic state with spheroidal occupation function
is possible as long as the ratio of coupling constants Γcm ≡ (U0a

3/μ2) is not very small
compared to 1.

Keywords. Chargeless fermions; magnetic dipole–dipole interaction; Hartree–Fock
bounds; ferromagnetic ground state; neutrino-like gas.

PACS Nos 67.40.Db; 05.30.Fk

1. Introduction

Because of its great relevance to the properties of ordinary matter, the problem
of the nature of the ground state of many-particle electron systems, like the elec-
tron gas, has been studied extensively for more than seven decades now. However,
the nature of the ground state of quantum spin-half chargeless fermion systems,
like neutrinos, with finite magnetic dipole moment has not drawn too much at-
tention. In an earlier paper [1], we had tried to address this problem involving
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spin-dependent long-range noncentral interaction between particles with no electric
charge, without any short-range repulsive central hard core interaction. However,
that calculation was not done with an N -particle determinantal HF wave function.
We had used instead eigenvalues nσ(�k) of a positive semi-definite single particle
density matrix operator ρ(1) =

∑
�kσ nσ(�k)|�kσ〉〈�kσ|, with 0 ≤ nσ(�k) ≤ 1, as vari-

ational parameters. We discovered later that Lieb [2] had shown long back that
unless the interaction is purely repulsive everywhere, which unlike in the case of an
electron gas is not true in our problem, only a variational determinantal HF wave
function would give an upper bound to the ground state energy of such a system,
and not any arbitrary variational positive definite single particle density matrix.
In other words, our earlier result may not correspond to any variational bound to
the energy at all! In view of this, here we restrict ourselves to variational determi-
nantal Hartree–Fock (HF) wave functions to investigate the nature of the ground
state of such systems and calculate true variational upper bounds to their ground
state energy. At high enough densities, a ferromagnetic state with a spheroidal
shape of the boundary of occupied states in �k ↑-space (n↑(�k) = 1), to be referred
as the JM deformed ferromagnetic HF state to distinguish it from the state used
in [1], gives the upper bound to the ground state energy. This state, as expected
for dipole–dipole interaction (∼ r−3), is unstable towards a high density collapse.
However, we will explicitly show that this instability of the system is stopped by an
additional suitable short-range repulsive finite hardcore interaction. These results
may not be of direct relevance to the neutrino cosmology at this stage, because of
the tiny neutrino magnetic moment, but it may be a very interesting problem in
itself in the study of quantum many-particle systems.

In §2 of this paper, we first briefly present the calculation of variational de-
terminantal HF bounds for the ground state energy of N chargeless fermions of
mass m, spin-1/2 and magnetic moment μ in volume V0 ≡ (4π/3)r3

0N , interacting
through the long-range magnetic dipole–dipole interaction only. The quadrupolar
deformation represented by the JM ferromagnetic state gives a lower upper bound
compared to a HF ferromagnetic state with dipolar deformation. Then, we calcu-
late the effect of including a short-range repulsive hard core interaction of strength
U0 and range a between the chargeless fermions, in addition to the magnetic dipole
interaction. We find that if the hard core coupling constant U0a

3 is not extremely
weak compared to the magnetic coupling constant μ2, there is no infinite density
collapse of the JM ferromagnetic state. We thus show the possible existence of a
stable equilibrium high density JM ferromagnetic ground state for such a system.
Finally, we conclude with §3.

2. Single determinant HF variational calculations of ground state energy
upper bounds

An N -particle determinantal HF wave function can be written in the form

ΨN (�r1s1, ..., �rNsN ) = 〈�r1s1, ..., �rNsN |ΨN 〉 =
(
1/
√

N !
)

det[f�kiσi
(�rjsj)]

(1)
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as constructed from any N single particle orthonormal functions f�kiσi
(�r, s), where

{�r, s} refer to space-spin variables. The actual choice of the complete set of single
particle orbitals f , in general, need not necessarily correspond to plane-wave states.
The N -particle HF density matrix operator ρ

(N)
HF = |ΨN 〉〈ΨN | corresponds to a pure

state. The matrix elements of the corresponding reduced single particle density
matrix is given by the expression [2]

〈�rs|ρ(1)
HF|�r ′s′〉 = ρ

(1)
HF(�rs, �r ′s′) =

∑
�kσ

n�kσf�kσ(�rs)f∗
�kσ

(�r ′s′), (2a)

where, in the particular case of plane-wave single particle orbitals and spin functions
χσ, to be used here throughout,

f�kσ(�rs) = 〈�rs|�kσ〉 = (V0)−1/2{exp(i�k · �r )}χσ(s) (2b)

and where n�kσ ≡ nσ(�k) = 1 for all the N orthonormal single particle states used
in constructing the determinantal HF wave function, and nσ(�k) = 0 for all the
other states in the complete set of single particle states in the Hilbert space. Let us
assume that we are dealing with a determinantal HF wave function ΨN of the type
given by eq. (1) to calculate the variational energy 〈ΨN |H|ΨN 〉, which is equivalent
to using the single particle density matrix operator ρ(1) = ρ

(1)
HF of eqs (2a) and (2b)

with nσ(�k) = 1(0) for the occupied(unoccupied) states.

2.1 Single determinant variational calculation with only magnetic dipole–dipole
interaction

First, let us consider the case with no hard core interaction. For the magnetic
dipole–dipole interaction, the total Hamiltonian [1] is given by

H =
N∑

i=1

p2
i

2m
+

N∑
i<

N∑
j

V (�risi, �rjsj), (3a)

V (�r1s1, �r2s2) =
(

μ2

r3

)
[�s1 · �s2 − 3�s1 · r̂�s2 · r̂], (3b)

�r = �r1 − �r2, r = |�r |, r̂ = �r/r, (3c)

V12(�q ) ≡
∫

d3re−i�q·�rV (�r1s1, �r2s2)

= μ2
+2∑

M=−2

h−MN
(M)
12 (�s1, �s2)Y2,−M (q̂){1 − δ�q,0}, (3d)
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where h−M are known numerical constants, N
(M)
12 (�s1, �s2) are spin operators corre-

sponding to two spin-1/2 particles, and Y2M (q̂) are spherical harmonics of order
2. The interaction matrix element vanishes for the momentum transfer �q = 0 and
is independent of the magnitude of the momentum transfer. The two-particle spin
operator N

(M)
12 connects only those states for which the total z-components of the

two spins differ by M . When one is taking the expectation value of V in any chosen
determinantal state, only M = 0 term contributes. In fact, the total variational
energy is then given by

E = 〈ΨN |H|ΨN 〉 = Ekin + Eexch, (4)

Ekin =
∑
�kσ

(
�

2k2

2m

)
nσ(�k), N ≡

∑
�kσ

nσ(�k), (5)

Eexch = −
(

μ2

2

)
h0

1
V0

∑
�k

∑
�q

∑
σ1

∑
σ2

nσ1(�k + �q )

×nσ2(�k)Y20(−q̂)N̄ (0)
12 (σ1, σ2), (6)

where

h0 =
4π

3

√
16π√
5

; N̄
(0)
12 (σ1, σ2) =

1
4
δσ1,σ2 −

1
4
(δσ1,↓δσ2,↑ + δσ1,↑δσ2,↓),

(7)

Y20(q̂) = Y20(−q̂) =
(

5
4π

)1/2

P2(cos θq̂) =
(

5
4π

)1/2

(1/2)(3 cos θ2
q̂ − 1).

(8)

As in the case of the familiar electron gas problem with uniform positive ionic back-
ground, there is no contribution due to the direct dipolar term because V12(�q =
0) = 0. Note that in any variational paramagnetic state, with n↑(�k) = n↓(�k), the
exchange contribution goes to zero because of summations over spins σ1 and σ2,
due to the particular form of the spin matrix elements given in eq. (7). There is
a contribution only from the kinetic energy part, and the best variational para-
magnetic state is then nothing but the noninteracting uniform paramagnetic state
with energy E0. The exchange term of eq. (6) gives the maximum negative con-
tribution when σ1 = σ2, and the direction of the momentum transfer is such that
cos θ2

q̂ < 1/3, i.e., close to the spin quantization direction ẑ. Note that the summa-
tions over �k and �q give zero for the exchange contribution if the occupation function
is spherical. To proceed further, let us assume that all spins are parallel (say, in
the up-direction), with n↓(�k) = 0, but n↑(�k) depends on both the magnitude and
the direction of �k. For example, one may consider the form
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n↑(�k) = Θ(k2
F↑ − k2 + k2(δ1Y10(k̂) + δ2Y 20(k̂) + · · ·));

∑
�k

n↑(�k) = N

(9)

in which δ1, δ2, . . ., lead to deformation from the spherical surface. Before pro-
ceeding further, it has to be noted that following the usual procedure [3], a simple
calculation of the proper self-energy �Σ∗

↑(�k) can be easily done to the lowest order
in the dipole–dipole interaction for a system of particles with only up-spins, starting
with the unperturbed Green’s function of the noninteracting gas corresponding to
the occupation function n0σ(k) = Θ(kF↑ − k)δσ,↑. Such a calculation shows that
the resulting proper self-energy is proportional to (−)Y20(k̂) with a positive pro-
portionality factor which is a function of the magnitude k. This implies that in the
polar direction, the single particle energy (�2/2m)k2 + �Σ∗

↑(�k) is lower compared
to its value in the equatorial kx − ky plane for the same value of the magnitude of
the wave vector. Note, however, that the contribution to the total energy from this
proper self-energy goes to zero, as already observed, since it requires the integra-
tion over �k of the product of the self-energy and the unperturbed spherical function
n0↑(k). Thus, there is no alternative but to deform the occupation function from
the spherical shape to get any nonvanishing contribution to Eexch. However, the
simple self-energy calculation does suggest that it is more natural to consider the
deformation of the surface bounding the occupied states to be of the quadrupolar
type corresponding to a prolate spheroid. We consider this case first.

Let the occupied region of �k be a prolate spheroid (a symmetrical egg) pointed
towards the z-direction. The surface bounding the occupied region in the �k-space
is then given by the equation

(k2
x + k2

y)
k2
Fx

+
k2

z

k2
Fz

= 1, kFz > kFx (10)

so that

n↑(�k) = Θ

(
1 − (k2

x + k2
y)

k2
Fx

− k2
z

k2
Fz

)
= Θ(k2

F↑ − k2(1 − β2P2(cos θk̂)))

(11)

in this state (to be called the JM ferromagnetic state), where

k2
F↑ =

3k2
Fxk2

Fz

(2k2
Fz + k2

Fx)
; β2 ≡

(
5
4π

)1/2

δ2 =
2(k2

Fz − k2
Fx)

(2k2
Fz + k2

Fx)
, (12a)

k2
Fx =

k2
F↑

(1 + β2/2)
; k2

Fz =
k2
F↑

(1 − β2)
(12b)

and where the volume of the k-space spheroid is given by
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Vspheroid =
(

4π

3

)
k2
FxkFz =

(4π/3)k3
F↑

[(1 + β2/2)(1 − β2)1/2]
. (12c)

Using the fact that for only up-spins present in the system,∑
σ1

∑
σ2

N̄
(0)
12 (σ1, σ2) = 1/4. (13)

Eexch for different types of deformation can be calculated from the expression

Eexch = −
(

μ2

2

)
h0

1
4V0

∑
�k

∑
�q

n↑(�k + �q )n↑(�k)Y20(−q̂). (14)

For the value of the deformation parameter such that 0 < β2 < 1, the form (11) for
the JM state leads to the expression for the number density as

N

V0
=

1
V0

∑
�k

n↑(�k) =
Vspheroid

8π3
=

k3
F↑

6π2

[
1

(1 + β2/2)(1 − β2)1/2

]

→ k3
F↑

6π2

(
1 +

3
8
β2

2 + · · ·
)

, (15)

where the noninteracting gas ferromagnetic state Fermi wave vector kF↑ =
21/3kF0, kF0 being the Fermi wave vector for the non interacting particles in the
uniform paramagnetic state, with N/V0 = k3

F0/3π2. For the kinetic energy in this
state one finds

E
(Q)
kin (JM) = N

�
2k2

F↑
2m

(3/5)
(1 − β2/2)

(1 + β2/2)(1 − β2)

→ E0{22/3[1 + (1/4)β2
2 + · · ·]}, (16)

where

E0 = (3/5)
�

2k2
F0

2m
=
(

2.21
r2
0

)
�

2

2m
(17)

is the energy of the best variational paramagnetic state with nσ(k) = Θ(kF0 − k),
which is just the ground state energy of noninteracting spin-half Fermi gas. For a
general value of β2 between 0 and 1, it is not easy to obtain the exchange energy
contribution analytically. However, for small deformations one can expand the
expression (11) for the occupation function in powers of β2. As we have seen
already, to the order linear in β2 there are no corrections to the number density
and to the kinetic energy. But, to the lowest order the exchange energy is linear in
β2, and a straightforward calculation to this order then leads to the expression of
the total variational energy per particle

E(Q)

N
(JM) =

E
(Q)
kin

N
+

EQ
exch

N
=

E0

N

{
22/3 −

(
3
40

)
β2

rm

(2.21)r0

}
, (18)
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Figure 1. Comparison of the variational energy E in the ferromagnetic state
calculated using determinantal HF wave functions with purely quadrupolar
and purely dipolar deformations of the occupation function, as a function of
the density parameter rsm = (2.21)r0/rm, in the absence of any hard core in-
teraction. The solid curves represent the ratio E(Q)/E0 for different quadrupo-
lar deformation parameters β2 in the JM state, whereas the dash-dot curves
represent the ratio E(dip.)/E0 for the square of different dipolar parameters
β2

1 .

where rm ≡ 2μ2m/�
2. For different allowed positive values of the quadrupolar

deformation parameter β2, figure 1 shows a plot of E(Q)/E0, as a function of the
dimensionless density parameter rsm = (2.21)r0/rm. The total energy becomes
less than E0 of the uniform variational paramagnetic state for

rsm <
3
40

[
β2

(22/3 − 1)

]
, i.e., r0 <

3
40

β2rm

(22/3 − 1)(2.21)
. (19)

When we increase the density further, the total energy becomes negative for

r0(critical) ≤ 3
40

β2rm

(22/3)(2.21)
(20)

and eventually the system will collapse to an infinite density state.
Although, the quadrupolar deformation was the most natural choice, it is in-

structive to consider also a purely dipolar deformation of the surface bounding the
occupied spin-up only states in the �k-space. In this case, let us assume

n↑(�k) = Θ(kF↑ − k

√
1 − δ1Y10(k̂)) = Θ(k2

F↑ − k2 + k2β1P1(cos θk̂)),

(21)

where

Pramana – J. Phys., Vol. 68, No. 5, May 2007 825



Sudhanshu S Jha and S D Mahanti

β1 =
√

3/4πδ1, 0 < β1 < 1; P1(cos θ�k) = cos θ�k. (22)

When the above form of n↑(�k) is used to calculate the number density, the kinetic
energy and the exchange energy respectively, we find that the total energy correct
to the order β2

1 is then given by

E(dip.)

N
=

E0

N

[
22/3

(
1 +

(
5
12

)
β2

1

)
− β2

1

20(2.21)
rm

r0

]
. (23)

The above energy is lower than the uniform paramagnetic state energy E0/N , for

r0 <
20β2

1rm

22/3(2.21)[1 + (5/12)β2
1 ]

. (24)

As the density is increased further, the total energy with dipolar deformation also
becomes negative, and eventually collapses to the infinite density state. However,
note that the comparison of expressions (18) and (23) shows that at the same
density E(dip.)/N is higher than E(Q)/N of the JM state, even if one takes |β1|
high enough so that β2

1 ≈ β2. In fact in figure 1, we have also plotted E(dip.)/E0

for an easy comparison. For small deformations, the result that the JM state
involving quadrupolar deformation gives a lower energy is of course valid exactly,
and one cannot really give too much importance to the fact that a comparison of
these approximate expressions even for higher allowed values (close to 1) for the
respective deformation parameters β2

1 , β2 gives lower energy for the quadrupolar
case. But, it seems very likely that the quadrupolar deformation of the surface
bounding the occupied spin-up states in the JM state gives a better upper bound
to the ground state energy.

2.2 Variational HF ground state energy in the presence of a hard core potential

Now, we consider the situation in which the chargeless fermion system with mag-
netic dipole interaction has also a short-range repulsive hard core interaction be-
tween the particles. This is to explore the condition under which the inclusion of
this hard core interaction can stop the high density collapse of the JM ferromag-
netic state. The most general form of the velocity-independent interaction between
spin-half particles can be written in the form [3]

V12(�r ) = Vc(�r ) + Vs(�r )�s1 · �s2 + VT(�r )[�s1 · �s2 − 3�s1 · r̂�s2 · r̂]. (25)

The last term (tensor interaction) has the form of the magnetic dipole–dipole in-
teraction in our problem, with VT = μ2/r3. We had no other interaction until now.
We will now add a very short-range (finite) repulsive interaction for calculating its
expectation value in the following chosen determinantal states:

(a) The uniform paramagnetic state (PARA):

nσ(�k) = n0(k) = Θ(kF0 − k). (26)
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(b) The fully polarized ferromagnetic state with quadrupolar deformation (JM
state):

nσ(�k) = n↑(�k)δσ,↑; n↑(�k) ≡ Θ(k2
F↑ − k2 + k2β2P2(cos θ�k)). (27)

We can choose the central short-range repulsive part, of the form as in the first
or in the second term of eq. (25). In the PARA state, the second term does
not contribute to the direct term, because of the spin summations. The exchange
term has a factor of 1/2 due to spin summations. In the JM state, except for an
additional factor of 1/4 due to the spin part, the contribution will be similar to the
first term. Thus it is enough to consider the form of the only first term in eq. (25)
for the repulsive short-range part, to get all the results. Therefore, let

Vc(�r ) = U0(large & positive) for r ≤ a, Vc(�r ) = 0, r > a. (28)

The range a is assumed to be small but finite. The Fourier transform in the �q-space
of the above interaction is

Vc(�q ) =
∫

d3re−i�q·�rVc(�r ) = Vc(q = 0)
[
3(sin qa − qa cos qa)/q3a3

]
,

(29)

where

Vc(q = 0) ≡ Vc(0) =
(

4π

3

)
U0a

3; U0a
3 ≡

(
�

2

2m

)
6a0. (30)

Note that there are two parameters in the potential, the strength U0 and the range
a. Sometimes, one replaces the coupling constant U0a

3 by the actual low-energy
scattering length a0 [3], as indicated in eq. (30).

In general, the expectation value of the hard core interaction (29) in any HF
state is

Ec =
V0

2

∫ (
d3k1

8π3

)∫ (
d3k2

8π3

)

×
∑
σ1

∑
σ2

nσ1(�k1)nσ2(�k2)[Vc(0) − δσ1,σ2Vc(�k1 − �k2 ≡ �q )]. (31)

(a) In the PARA state, this gives

Ec(PARA) =
V0

2
× 2

∫ (
d3k1

8π3

)∫ (
d3k2

8π3

)
[2Vc(0) − Vc(q)]. (32)

This leads to the usual result valid for any potential not depending on the direc-
tion of �q:

Ec(PARA)
N

=
1
2
× 1

2π3

∫
d3q

(
1 − 3

2
x +

1
2
x3

)
Θ(1 − x)[2Vc(0) − Vc(q)];

x ≡ q

2kF0
. (33)
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(b) In the JM state, we have the general result

Ec(JM) =
V0

2(2π)6

∫
d3k

∫
d3qn↑(�k)n↑(�k + �q )[Vc(0) − Vc(q)]. (34)

To the linear order in the quadrupolar deformation parameter β2 of the JM state,
there is no need to recalculate the kinetic energy term and the exchange term. They
remain the same as in the expression (18). One has to recalculate only the repulsive
core contribution without any expansion in the parameter a/r0. We find

Ec(PARA)
E0

=
2mU0a

2

�2

(
19.2
54π

)(
a

r0

)
[1 + T (α0)]; α0 ≡ 2kF0a = 2

(
1.92a

r0

)
;

E0 ≡
(

�
2

2m

)(
2.21
r2
0

)
; 1.92 ∼=

(
9π

4

)1/3

, (35)

where the function T (s) is defined as

T (s) ≡ 1 − 72
s3

[(Si(s) − sin s) − 3
2s

(2 − 2 cos s − s sin s)

+
1

2s3
(8s sin s + 8 cos s − 8 − 4s2 cos s − s3 sin s)] (36)

and where the sine integral function

Si(s) =
∫ s

0

dx

(
sinx

x

)
= s − s3

3!3
+

s5

5!5
− s7

7!7
+ · · · . (37)

Similarly, one finds

Ec(JM)
E0

=
2mU0a

2

�2

(
19.2
27π

)(
a

r0

)
T (α↑);

α↑ ≡ 2kF↑a = 24/3

(
1.92a

r0

)
. (38)

Thus in the presence of the hard core interaction, the expression (18) giving the
ratio of the total energy E and E0 in the JM state is now replaced by

E

E0
(JM) =

{
22/3 +

(2m/�
2)U0a

3

r0

(
19.2
27π

)
T (α↑)

−
(

3
40

)
β2

(2m/�
2)μ2

(2.21)r0

}
, (39)

where as defined before,

(2.21)r0

(2mμ2�−2)
≡ rsm.

From the definition of the function T (s) given by eqs (36) and (37), it is easy to
see that it is a smooth function, with T (s) → 1, as s → ∞ and T (s) → 3s2/100,
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Figure 2. Plot of the total variational HF energy E in the ferromagnetic
JM state, in units of the energy E0 of the corresponding paramagnetic non-
interacting gas, in the presence of the magnetic dipole interaction as well as
a repulsive short-range hard core interaction of range a and strength U0, as
a function of r0/rm. Plots are for two values of the ratio of the two coupling
constants Γcm ≡ U0a

3/μ2, in which the label p ≡ a/rm is the range a in units
of the magnetic length rm ≡ 2mμ2/�

2.

for s � 1. With the definition given in eq. (38) for α↑ ∼ 1/r0, the expression
(39) immediately shows us that for the ratio U0a

3/μ2 of the coupling constants not
extremely small compared to 1, the total energy becomes positive as r0 → 0, and
there is no longer the high density collapse of §2.1, as explicitly shown in figure 2.
The JM ferromagnetic state is thus a possible stable equilibrium ground state of
the system.

3. Concluding remarks

Our interest in the nature of the ground state of chargeless fermions with a finite
magnetic moment initially arose because of the suggestion by Yajnik [4] that the
state of the universal relic background neutrinos might be a ferromagnetic state with
domain walls, made in the context of big-bang cosmology. However, we find that
in the nonrelativistic case, at T = 0 K, the density required for the ferromagnetic
transition, with a spheroidal occupation function, is too high for satisfying the
condition r0 < rm = 2μ2m/�

2. For chargeless fermions with an atomic mass of 104

to 105 times the electron mass and magnetic moment μ of the order of the Bohr
magneton, rm ≈ 10−9–10−8 cm. For neutrinos with a mass in the range of 0.01
eV and a very tiny magnetic moment [5], rm is extremely small. Note that in the
absence of the hard core interaction, our HF calculation of the true upper bound
for the ground state energy shows that the true ground state energy must go to
(−)∞ at infinite density. The high density collapse is real. No exotic state of any
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kind, spatially homogeneous or not [6] can lead to a ground state energy greater
than (−)∞, as density goes to infinity. However, in the presence of a repulsive
short-range hard core potential this collapse is arrested, and one can get, e.g., the
stable JM deformed ferromagnetic state as the ground state of the system.
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