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Abstract. Using the general formulation for obtaining chemical potential µ of an ideal
Fermi gas of particles at temperature T , with particle rest mass m0 and average density
〈N〉/V , the dependence of the mean square number fluctuation 〈∆N 2〉/V on the particle
mass m0 has been calculated explicitly. The numerical calculations are exact in all cases
whether rest mass energy m0c

2 is very large (non-relativistic case), very small (ultra-
relativistic case) or of the same order as the thermal energy kBT . Application of our
results to the detection of the universal very low energy cosmic neutrino background
(CNB), from any of the three species of neutrinos, shows that it is possible to estimate the
neutrino mass of these species if from approximate experimental measurements of their
momentum distribution one can extract, someday, not only the density 〈Nν〉/V but also
the mean square fluctuation 〈∆N2

ν 〉/V . If at the present epoch, the universe is expanding
much faster than thermalization rate for CNB, it is shown that our analysis leads to a
scaled neutrino mass mν instead of the actual mass m0ν .

Keywords. Cosmic neutrino background; relic neutrinos; mean square fluctuation; neu-
trino mass.
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1. Introduction

While measuring the flux of any particle arising from a thermal source at a given
temperature T , one is always concerned with the background noise due to the root
mean square number fluctuation of the particles as observed by the detector. For
particles with the classical Maxwell–Boltzmann (MB) distribution, the mean square
fluctuation per unit volume, 〈∆N 2〉/V , is equal to the average density 〈N〉/V ,
where the number dispersion 〈∆N 2〉 = 〈N2〉− 〈N〉2. In this case, it is independent
of the rest mass m0 of the particles being detected, for a fixed density n = 〈N〉/V .
However, it is well-known that for an ideal Bose gas, the mean square fluctuation
〈∆N2〉/V is larger than 〈N〉/V , whereas for an ideal Fermi gas it is smaller than the
classical value [1,2]. The deviation of the fluctuation from the classical value or the
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total dispersion 〈∆N2〉/V depends, in general, on the massm0 of the particle in the
gas and the temperature T . In this paper, our aim is to examine this dependence
explicitly for particles which can be treated as an ideal Fermi gas with a given mass
m0, both in the non-relativistic limit as well as in the relativistic regime. The idea
is to study its possible role in estimating the mass of different types of neutrinos in
the universal cosmic neutrino background (CNB), also called relic neutrinos [3].
In the standard Big-Bang model of cosmology [3], which is supported by the

observation of the cosmic microwave background radiation (CMBR) at the present
temperature of 2.725 K and by various other predictions, the universe started from
a very high density, and high temperature state. It cooled down while it expanded
and during this early process particles of different species and masses got decoupled
one after another. At temperatures of about a few MeV (∼2 × 1010 K), one had
only neutrinos, electrons, positrons and photons in thermal equilibrium with each
other. As the temperature cooled down further, the neutrinos of all the three
types decoupled one by one from the rest of the matter within the first few seconds
or so after the Big-Bang. At the time of this decoupling, the temperature (very
high) was same for the particles of all species and they were highly relativistic.
Below the temperature of about 0.5 MeV (∼5 × 109 K), the electron–positron
annihilation process created more photons and heated the photon gas in the early
universe. One may assume that the universe expanded in thermal equilibrium
with constant entropy which was proportional to NTT

3 in the highly relativistic
regime. Here, NT is the total of the effective numbers for each of the species,
which take into account their spin and polarization degrees of freedom and effect
of their specific quantum statistics. Taking into account the spin degeneracies of
electrons and positrons, two polarizations of the photons and the additional factor
7/8 in the energy of the highly relativistic fermions [4] as compared to the black-
body radiation (photons) at the same temperature and volume, the effective total
number changed from (2 × 2) × (7/8) + 2 = 11/2 to 2 after the annihilation of
the electron–positron pairs into photons. This leads to the heating of the photon
gas and to the well-known estimate of the CNB temperature Tν to be equal to
(4/11)1/3TCMBR, which for the present time gives Tν = (4/11)

1/3 × 2.725 K ' 1.95
K. The ratio of the number density of neutrinos to that of photons [5,6] is given by
〈Nν/V 〉/〈N/V 〉CMBR = (3/4)× (Tν/TCMBR)

3 = 3/11, for each of the three species
of neutrinos. The factor (3/4) in the above ratio is due to the Fermi statistics
of each of the highly relativistic neutrinos at the time of decoupling, compared to
Bose statistics of massless photons [4]. We have assumed that neutrinos have finite
mass so that helicity factor 2 cancels the factor 2 from the polarization of photons.
The above estimate gives the value of CNB density for each type of neutrino to be
about 102 cm−3 = 108m−3. The assumption that all the neutrinos decouple before
any heating of the photon gas due to electron–positron annihilations took place is
not strictly valid, and neutrinos also take part in the heating. There are some more
corrections to the above estimates, but all these corrections [6,7] increase the above
estimate for Tν and 〈Nν〉/V by no more than about one to two per cent.
At the present time, the temperature Tν of CNB is only about 1.95 K (∼ 1.7 ×

10−4 eV), and depending upon the actual mass m0ν of different types of neutrinos,
the gas may either be in the non-relativistic (m0νc

2 À kBTν) or in the relativistic
regime (m0νc

2 ∼ kBTν). Of course at such low densities, the Fermi gas is expected
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to be away from the degenerate case. In any case, our general analysis of dispersion
and average density of neutrinos of each of the species must explicitly take into
account the variation of the chemical potential parameter µ with particle mass and
the temperature T , for a given density 〈N〉/V .
Before proceeding further, we must point out that while applying our analy-

sis to the case of the cosmic neutrino background (CNB), one has to be very
careful. In an expanding universe, when the relaxation rate for reaching ther-
mal equilibrium for the weakly interacting CNB becomes less than the rate of
expansion of the universe, the neutrino gas will no longer remain in thermal
equilibrium. As explained, for example, by Pal and Kar [8], for simplicity one
can assume that this decoupling of CNB takes place when these rates are equal,
which may be specified by the epoch where the cosmological scale parameter was

ãD. Till then, one can assume that the CNB momentum distribution 〈ND(~k)〉
was described by the usual thermal Fermi–Dirac energy distribution function

〈ND(~k)〉 = fD(ε(k,m0ν), µD, TD) = [exp[(ε(k,m0ν) − µD)/kBTD] + 1]
−1 at tem-

perature TD and chemical potential µD. Here, ε(k,m0ν) is the usual single par-
ticle energy of the neutrino of rest mass m0ν and momentum ~k, which is given
by (~2k2c2 + m2

0νc
4)1/2 − m0νc

2, if it is measured with respect to m0νc
2, in the

most general relativistic case. After that epoch, if nothing happens to the decou-
pled CNB except for the gravitational red-shift in the expanding universe, i.e. if
no thermalization process continues, the new distribution function at the present
epoch, specified by the cosmological scale parameter ã0 = ãD/r, is given simply

by [8], 〈N0(~k)〉 = fD(ε(k/r,m0ν), µD, TD). The energy distribution is no longer
a thermal distribution. However, because of the form of the Fermi–Dirac (FD)
distribution function fD and the form of the single particle energy ε as a func-
tion of k and m0ν (whether it is the general relativistic case or the non-relativistic
case or the ultra-relativistic case), the new distribution function can be rewritten

as 〈N0(~k)〉 = fD(ε(k,mν ≡ rm0ν), µ ≡ rµD, Tν ≡ rTD). This looks exactly like
a thermal FD distribution function except that now one has the scaled rest mass
mν ≡ rm0ν , scaled temperature Tν = rTD and the scaled chemical potential param-
eter µ = rµD. We will call this distribution function as the scaled FD distribution
function. Note that the new distribution function still depends only on the mag-

nitude ~k of the momentum, i.e. 〈N0(~k)〉 = 〈N0(k)〉, and is always positive with
values less than or equal to 1. This, of course, can be obtained from the scaled
grand canonical density matrix or the scaled grand canonical partition function, as
one does in the usual case, with the same scaling of rest mass, temperature and
the chemical potential parameter. However, the expression for the single particle
energy has still the unscaled rest mass m0ν everywhere except inside the scaled
FD function, the scaled grand canonical partition function, etc. In that sense, the
scaled µ has no longer the usual physical significance of the chemical potential.
But as long as we do not calculate the average value of any function which contains
the rest mass m0ν , e.g., energy density, etc., and we calculate only the integrated
density 〈Nν〉/V and dispersion 〈∆N2

ν 〉/V using the scaled FD distribution or the
scaled grand canonical partition function, our analysis will remain exactly the same
as in the pure thermal FD case. Since we take Tν to be (4/11)

1/3TCMBR = rTD
in our analysis, as long as we consider the resulting neutrino mass parameter mν

to be the scaled mass rm0ν , our analysis will remain unchanged for both types

Pramana – J. Phys., Vol. 64, No. 1, January 2005 19



Swapnil S Jawkar and Sudhanshu S Jha

of distribution. More explicitly, in terms of the scaled grand canonical partition
function ZGC(mν , µ, Tν), the average value 〈Nν〉 of the non-interacting neutrinos is
still given by the first partial derivative of kBTν lnZGC with respect to the scaled
parameter µ and the dispersion 〈∆N 2

ν 〉 is still obtained from the second partial
derivative of k2

BT
2
ν lnZGC with respect to µ. Here, one still has the usual form [2],

ZGC =
∑

N

∑

j exp[(µN−EN
j (mν))/kBTν ], where E

N
j (mν) are the possible energies

of N free particles of mass mν . It is also clear from the mathematical formulation
described in the next section that even for the scaled distribution function 〈Nν(k)〉,
the relations 〈Nν〉 =

∑

~k

∑

σ〈Nν(k)〉 and 〈∆N2
ν 〉 =

∑

~k

∑

σ〈Nν(k)〉[1 − 〈Nν(k)〉]
are still valid. Here, the summation over σ denotes summation over spins and sum-

mation over ~k may be converted to integration in the usual way. These relations
allow extraction of 〈Nν〉/V and 〈∆N2

ν 〉/V from experimental measurement of the
distribution function 〈Nν(k)〉. For a given 〈Nν〉/V , the scaled chemical potential
parameter µ is determined completely, once Tν andmν are specified. We will, there-
fore, continue to call µ as the chemical potential parameter even if the distribution
is the scaled FD distribution.
In reality, even after the so-called decoupling described above, the CNB will

continue to try to move towards a thermal equilibrium even if the interaction with
the external world and the interaction amongst themselves are very weak. How far
away is the actual distribution function of CNB from thermal equilibrium or how
close the CNB distribution is to the scaled FD distribution at the present epoch
can also be tested experimentally. Even for this very important testing it becomes
more important to develop a very good low-energy neutrino detector with adequate
momentum and energy resolution in the 10−4 eV range. Only then can one perform
measurements of CNB distribution, similar to the detection of CMBR photons, as
functions of energy and momentum ~k. It is not enough to detect just a few
isolated events involving cosmic neutrinos. It should be emphasized here that even
for determining the validity of the scaled FD distribution function at the present
epoch, our mathematical analysis described in this paper will be required. In what
follows, we calculate here only 〈Nν〉/V and 〈∆N2

ν 〉/V and not the average value of
any function involving the rest mass of the particles. Whether the distribution is
the usual FD or the scaled FD distribution, our numerical analysis of the problem
will remain the same. One thing we must keep in mind is that if the distribution at
the present epoch turns out to be closer to the scaled FD distribution, the resulting
mν is not m0ν but rm0ν .
Because of very weak interaction of relic neutrinos with matter and its extremely

low energy, as of now, no one has been able to even detect CNB. There are small
indirect effects due to the presence of sufficiently large amount of CNB everywhere
[9], but unlike the case of high-energy (∼ MeV) neutrinos, e.g., solar neutrinos, any
direct detection of 10−4 eV neutrinos is extremely difficult [9]. One possibility which
is being talked about is to observe the decay products (particle–antiparticle pairs)
of the massive Z-bosons produced by the collision of low-energy relic neutrinos with
ultra-high energy anti-neutrinos. But such high energy neutrinos or anti-neutrinos
are not available easily, except in cosmic rays with very low flux. It is indeed one
of the greatest challenges of the present century to directly detect CNB and its
momentum and energy distributions, for a proper understanding of the nature of
the early universe.
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Not underestimating the great difficulty in developing a very low energy neutrino
detector with good momentum and energy resolution for observing CNB, we feel
that we can still talk about not only extracting the total integrated CNB number
density but also about extracting its number dispersion. By proper interpolation,
these two parameters can be extracted fairly well even if the experimental measure-
ment of the distribution 〈Nν(k)〉 is not very detailed. One has to use the relations,
〈Nν〉 =

∑

~k

∑

σ〈Nν(k)〉 and 〈∆N2
ν 〉 =

∑

~k

∑

σ〈Nν(k)〉[1 − 〈Nν(k)〉], as explained
earlier. Let us assume that some day this will happen. This will allow us to get an
idea of the mass for each of the species of cosmic neutrinos.
In §2 of this paper, we present the mathematical formulation of the problem

of calculating the chemical potential µ as a function of m0 and T for a given
density 〈N〉/V , for an usual thermal FD distribution. This is the crucial step in our
numerical analysis of dispersion, and this is done both for a non-relativistic Fermi
gas as well as a relativistic Fermi gas. We also obtain the resulting mean square
fluctuation 〈∆N2〉/V in each case. In §3, we apply our analysis to the case relevant
to relic neutrinos at temperature Tν . We present explicitly numerical results for the
chemical potential parameter µ and 〈∆N 2

ν 〉/V as a function of the average density
〈Nν〉/V , for different values of neutrino mass parameter mν which enter in the
distribution function. We show that [〈Nν〉/V − 〈∆N2

ν 〉/V ] depends appreciably on
the mass parametermν , and a reliable extraction of this quantity from experimental

measurement of distribution function Nν(~k), can lead to a realistic estimate of mass
parameter mν . Let us emphasize again that if the actual distribution of CNB is
closer to the scaled FD distribution, the resulting mν will be scaled as mν = rm0ν .
Otherwise, for a purely thermal FD distribution, mν = m0ν . We also discuss our
results in the concluding section.

2. Mathematical formulation of the problem

In terms of the grand canonical partition function ZGC, the thermodynamic poten-
tial Ω(T, V, µ) for a statistical system is defined by

Ω(T, V, µ) = − 1
β
lnZGC, β ≡ 1

kBT
, (1)

where µ is the chemical potential and kB is the Boltzmann constant. The average
number of particles and the mean square fluctuation in the number are determined
by [2]

〈N〉 = −
(

∂Ω

∂µ

)

T,V

, (2)

〈∆N2〉 = 〈N2〉 − 〈N〉2 = − 1
β

(

∂2Ω

∂µ2

)

T,V

=
1

β

(

∂〈N〉
∂µ

)

T,V

. (3)

For an ideal Fermi gas with single particle energy εi for the state i, one has [2]
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Ω =
∑

i

Ωi; Ωi = −
1

β
ln[1 + exp[−β(εi − µ)], (4)

〈N〉 =
∑

i

〈Ni〉; 〈Ni〉 = [exp[β(εi − µ) + 1]−1, (5)

〈∆N2〉 =
∑

i

〈∆N2
i 〉;

〈∆N2
i 〉 =

exp[β(εi − µ)]

(exp[β(εi − µ) + 1])2
= 〈Ni〉[1− 〈Ni〉]. (6)

2.1 Non-relativistic energy spectrum

For a non-relativistic fermion gas of particles of mass m0 confined in a box of very
large volume V ,

ε~k =
~2k2

2m0

(7)

with discrete values of ~k. Going over to the continuous energy spectrum in the
limit of large volume V one then finds

〈N〉
V
=

g

4π2

(

2m0

~2

)3/2 ∫ ∞

0

dε ε1/2

[exp[β(ε− µ)] + 1]
, (8)

where g is the spin degeneracy factor (2 for spin- 1
2
particle). In terms of thermal

wavelength λT defined by

λT =

(

2π~2

m0kBT

)1/2

, (9)

the above expression is rewritten in a more common form:

〈N〉
V
=

g

λ3
T

f+

3/2(exp y), (10)

f+

3/2(exp y) =
2√
π

∫ ∞

0

dx x1/2

[exp[x− y] + 1]
, (11)

where x = βε and

y = βµ =
µ

kBT
. (12)

There is no general analytical method to obtain chemical potential µ for a given
value of 〈N〉/V , as a function of m0 and T , i.e. for inverting eq. (8). Only in the
two limiting cases of (i) the high temperature limit (which reduces to the case of
the classical MB result) and (ii) the low temperature limit (which reduces to the
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case of the degenerate Fermi gas result), one can obtain analytic expressions for µ.
Since in general we are faced with the intermediate region, we must use numerical
methods [10] to determine µ(T,m0) for a given 〈N〉/V .
In the non-relativistic case being considered, the mean square fluctuation is given

by

〈∆N2〉
V

=
g

4π2

(

2m0

~2

)3/2 ∫ ∞

0

dε ε1/2 exp[β(ε− µ)]

[exp[β(ε− µ) + 1]2
(13)

=
g

λ3
T

2√
π

∫ ∞

0

dx x1/2 exp[x− y]

[exp[x− y] + 1]2
(14)

with x = βε and, as before

y = βµ. (15)

For a given value of 〈N〉/V , once µ is determined from eqs (10) to (12), one can
find the dispersion 〈∆N2〉/V from eq. (13). It can be shown that the non-relativistic
expressions will give good results as long as m0c

2 À kBT .

2.2 Relativistic energy spectrum

In the general case of relativistic dynamics, one has

ε~k = (~
2k2c2 +m2

0c
4)1/2 −m0c

2, (16)

where we use the convention in which the single particle energies and the chemical
potential µ will be measured with respect to m0c

2. This convention is very con-
venient here because it makes it much simpler to compare our numerical results
and expressions with the non-relativistic case, when the non-relativistic limit is
applicable. For this case, in the continuous limit, we get

〈N〉
V
=
4πg

h3c3

∫ ∞

0

dε(ε+m0c
2)[(ε+m0c

2)2 −m2
0c

4]1/2

[exp[β(ε− µ)] + 1]
(17)

=
4πg

(βhc)3

∫ ∞

0

dx(x+ a)(x2 + 2ax)1/2

[exp[x− y] + 1]
, (18)

where again x = βε, and

a = βm0c
2, y = βµ. (19)

One must always remember here that we are measuring ε and µ with respect to
m0c

2. Under our convention, if we take the non-relativistic limit, a = βm0c
2 À 1

in eq. (18), we recover exactly eq. (8) or equivalently eqs (10)–(12) derived for the
non-relativistic case. Again, for a given 〈N〉/V , µ has to be determined numerically
in the relativistic case also, by using eqs (18) and (19).
In the general case of relativistic dynamics, the mean square fluctuation is deter-

mined by
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〈∆N2〉
V

=
4πg

(βhc)3

∫ ∞

0

dx(x+ a)(x2 + 2ax)1/2 exp[x− y]

[exp[x− y] + 1]2
(20)

which again reduces to the non-relativistic expression, eq. (14), in the limit a =
βm0c

2 À 1.

2.3 Ultra-relativistic limit

The ultra-relativistic regime corresponds to the limit a = βm0c
2 ¿ 1, in the general

relativistic expressions (18)–(20). In this case, the single particle spectrum reduces
to

ε~k = ~kc (21)

and one finds

〈N〉
V
=

4πg

(βhc)3

∫ ∞

0

dx x2

[exp[x− y] + 1]
, (22)

where y is again βµ and x = βε. Note that in this case the mass parameter
disappears and the chemical potential is independent of m0. The mean square
fluctuation is now given by

〈∆N2〉
V

=
4πg

(βhc)3

∫ ∞

0

dx x2 exp[x− y]

[exp[x− y] + 1]2
, (23)

where y = βµ. In this limit, the fluctuation is independent of m0.
In what follows, in the next section we will first check our non-relativistic results

for calculation of µ in the range of parameters relevant to electrons and holes in
semiconductors and metals for which numerical tables are already available readily
[10]. We will then apply our general expressions to the case of parameters relevant
to neutrinos in CNB.

3. Numerical calculations and results for cosmic neutrino background

For a non-relativistic ideal Fermi gas, numerical tables of Blakemore [10] are already
available for determining the chemical potential µ for a given temperature T and
density n = 〈N〉/V . However, parameters used in those tables are in the range of
densities, temperature and mass relevant to electrons or holes in semiconductors
and metals. Nevertheless, this allows us to check our numerical code for calculating
µ in the non-relativistic case, using expressions (10)–(12). Our numerical results
coincide with the numerical results of Blakemore, for parameters tabulated by him.
Here, we are, of course, concerned with a different range of parameters relevant
to CNB, where we have to deal with low densities in the range 〈N〉/V ∼ 102

cm−3 = 108 m−3, low temperatures in the range of 1.95 K (kBTν ∼ 1.7 × 10−4

eV) and unknown low mass parameter mνc
2 in the range of 10 eV to 10−6 eV. The

non-relativistic results are expected to be valid for mνc
2 À 10−4 eV. Note that if
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Figure 1. A plot of calculated values of the chemical potential µ showing its
variation with the number density n = (〈N/V 〉) of an ideal non-relativistic gas
at temperature T = 1.95 K (i.e., kBT = 1.7× 10−4 eV), for different assumed
neutrino masses mνc

2.

the actual CNB distribution turns out to be closer to the scaled FD distribution,
mν = rm0ν , where m0ν is the actual rest mass of the neutrino.
In figure 1, we show our result of the calculation of the chemical potential pa-

rameter µ as a function of density 〈N〉/V in the range 5 × 10 to 103 cm−3, for
temperature Tν = 1.95 K, for different neutrino mass parameter mνc

2. Note that
for such low densities, the neutrino gas is far from a degenerate Fermi gas and
the chemical potential parameter µ is negative in most of the range considered.
There is a substantial variation in parameter µ as a function of mνc

2. These re-
sults allow us to calculate the mean square fluctuation 〈∆N 2〉/V , using eqs (13)
and (14), in the non-relativistic case. However, we do not present these results
here explicitly, but we have used these numbers to check our general results using
the relativistic expression (20), to be presented below. Since in the non-relativistic
limit, mνc

2 À kBTν , the results are identical, there is no need for a separate plot
here.
For the general case, we must use our relativistic expressions (18)–(20) to cal-

culate the chemical potential parameter µ, for a given n = 〈N〉/V , and the corre-
sponding mean square fluctuation 〈∆N 2〉/V . These results are valid for any value
of mνc

2, i.e. for any ratio a = mνc
2/kBTν . In figure 2, we plot the variation of the

chemical potential µ as a function of density 〈N〉/V , for different values of mνc
2

at T = 1.95 K (i.e. kBT ' 1.7 × 10−4) eV. For a = βmνc
2 À 1, these results are
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Figure 2. A plot of chemical potential µ showing its variation with
number density n = (〈N/V 〉) of an ideal relativistic gas at temperature
kBT = 1.7× 10−4 eV, for different masses mνc

2.

identical to the plot in figure 1, as expected. Using these general values of µ, the de-
viation 〈Nν〉/V −〈∆N2

ν 〉/V in the mean square fluctuation from the classical value
is plotted in figure 3 as a function of the density 〈Nν〉/V , for different values ofmνc

2

in the range 10 eV–10−6 eV. As stated before, we have checked that these general
results are identical to the non-relativistic calculations of 〈Nν〉/V −〈∆N2

ν 〉/V in the
limit a = βm0c

2 À 1. If we examine the plot in figure 3 carefully, we find a strong
dependence of the dispersion on mνc

2, except in the ultra-relativistic case when
a = βm0c

2 ¿ 1, i.e. when the dependence of µ and the mean square fluctuation
on mνc

2 disappears (see, expressions (22) and (23)). To make it more explicit, we
plot in figure 4 the deviation of the mean square fluctuation from its classical value
as a function of mνc

2, for fixed kBT = 1.7× 10−4 eV and fixed density 〈Nν〉/V =
102 cm−3.
Our exact numerical calculations, which take into account the variation of the

chemical potential parameter µ as a function of mass and temperature for the ex-
tremely low energy relic neutrinos, for a given density 〈N〉/V , show that the mean
square number fluctuation is a sensitive function of the neutrino mass. In conclu-
sion, we have shown that if from experimental measurement of CNB momentum
distribution one can at least extract the mean square fluctuation 〈∆N 2

ν 〉/V and the
integrated density 〈Nν〉/V of each type of neutrinos it can give a good estimate
of the corresponding neutrino mass directly. If detection involves measurement of
total density and mean square fluctuation of all the three types of neutrinos at the
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Figure 3. A plot of the deviation 〈N〉/V −〈∆N 2〉/V of the mean square fluc-
tuation of density n = 〈N/V 〉 for an ideal relativistic Fermi gas at temperature
kBT = 1.7× 10−4 eV, for different neutrino mass parameter mνc

2.

same time, our method will, of course, fail to estimate the mass of the different
types of neutrinos separately. However, it is hoped that some day in the future it
would become possible to extract both 〈Nν〉/V and 〈∆N2

ν 〉/V from experimental
measurements of momentum distribution of each type of neutrinos. It requires,
as we said before, the development of sensitive low-energy neutrino detectors for
each type of neutrinos with good momentum and energy resolution in the 10−4 eV
range to make these direct measurements for each type of neutrinos. In any scat-
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Figure 4. Variation of the deviation 〈N〉/V − 〈∆N 2〉/V of the mean
square fluctuation as a function of the neutrino mass parameter mνc

2, for
kBT = 1.7× 10−4 eV and 〈Nν〉/V = 102 cm−2.

terring experiment of particles with CNB, involving momentum transfer ~~k, which
couples through the number density of CNB, one can obtain 〈N(k)〉2 directly from
the cross-section. However, any other experiment which can give 〈N(k)〉 is good
enough to find 〈Nν〉/V and 〈∆N2

ν 〉/V . Although, the present emphasis on precise
measurements of high-energy (∼ MeV) neutrinos from the Sun and other sources
is important, it is a much greater challenge for all of us to make a direct detection
of CNB distribution, which has a flux of about 1011–1012 particles per cm2 per s,
everywhere.
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