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Abstract. New oxide superconductors with layered structure are expected to have aniso-
tropic energy gap in the generalized BCS pairing theory. The gap parameter 2A(k) can be
quite different for k perpendicular to the plane of the layers as compared to k parallel to
layer planes. Because of short coherence lengths ¢, quite small compared to the normal state
catrier meanfree path J, the effect of these anisotropies do not average out, as in many of
the conventional superconductors. For a proper comparison of experimental results with
the correct predictions of the pairing theory, a formulation is developed to obtain important
physical quantities like specific heat and infrared absorption in the superconducting state
of such anisotropic systems. This includes a brief account of the pairing theory generalized
to layered crystals with arbitrary number of layers per unit celi, not necessarily equidistant.
In an explicit model for the anisotropy of the gap parameter in k-space, with a simple form
for the nonspherical Fermi-surface, it is shown that the low-temperature specific heat can
have even a linear or a power-law temperaturé-dependence in the superconducting
state. Even if the gap parameter does not vanish anywhere, its smeared-out exponential
temperature-dependence may be difficult to be distinguished experimentally froma power-law
behaviour. Similarly, it is shown that in the case of appreciable anisotropy, infrared absorption
can take place much below the in-plane gap parameter 2A,(k,), where k, is the wavevector
in the plane of the layers.

Keywords. Layered superconductors; anisotropic energy gap; specific heat; infrared
absorption.
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1. Introduction

The behaviour of many of the important physical parameters in the superconducting
state of the recently discovered high-T, metallic oxides is known to differ considerably
from the predictions of the simple one-parameter, isotropic, weak-coupling BCS
model. This need not be very surprising, since these materials have layered structures
with large anisotropies in the normal state properties of the relatively low density
(~a few times 102 cm™3) carriers, and they have very short anisotropic coherence
tengths (3A to 20A) in the superconducting state. The mobility of the carriers in the
conducting Cu-O layers, which are approximately parallel to the a-b plane of the
crystalline unit cell, is much higher than their value in the perpendicular direction
(C-axis). Moreover, significant deviations are expected (Jha 1989) because of (i) possible
strong-coupling effects in the generalized BCS pairing arising from a net dynamic
attractive interaction between the carriers, due to the exchange of lattice phonons
and/or electronic excitations in the system, (ii) the possibility of interacting carriers
in more than one narrow band or layer, and (iii) possible corrections to the usual
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mean-field results of the theory. Nevertheless, due to the unusual normal and
superconducting properties of these metallic oxides, very serious and fascinating
attempts have been made to find an alternative to the generalized BCS pairing theory
(Anderson 1987; Anderson etal 1987), in the form of the resonating-valence-bond
(RVB) approach involving very large repulsive intra-atomic carrier-carrier interaction
energy U as compared to the band width W of the single-particle electronic states.
There are various other bosonic models involving some kind of pairing of fermions
followed by Bose-condensation of these pairs, e.g., of possible bound bi-polarons in
these materials.

As of now, it is fair to say that starting from a collection of charged fermions, the
generalized BCS pairing idea, involving off-diagonal long range order in the
two-particle density matrix, seems to be an ideal approach in which the superconduct-
ing transition can be demonstrated theoretically without any doubt. In view of this,
it is of great interest to examine whether various experimental results on single-crystals
of these new high-T, materials can still be understood, at least in principle, within
the framework of an appropriate generalization of the BCS pairing theory. In this
connection, as two typical examples, we will consider the behaviour of the electronic
specific heat and the infrared absorption in the superconducting state of such materials.
Experimentally, it has been found that in many of these materials the electronic
specific heat (Phillips etal 1987; Ishikawa etal 1987; Batlogg et al 1987) at low
temperatures seems to vary linearly with temperature T, insted of the usual exponential
expected in the simple BCS model with a finite gap parameter A(T). Similarly, there
seems to be some residual (Schlesinger et al 1987; Beyerman et al 1987; Sulewski et al
1987) absorption of infrared frequencies below the identifiable energy-gap “2A”, even
in the case of experiments done on single crystals, so that the absorption edge is not
as sharp as in many of the conventional superconductors (Ginsberg and Hebel 1969).
Also, the values of the energy-gap measured in such experiments seem to be somewhat
different than their corresponding values obtained in tunnelling experiments. However,
even in tunnelling data it is difficult to find real sharp characteristics.

As indicated earlier, the layered structure of the crystal and large anisotropies in
various properties can have significant consequences for the nature of superconduct-
ivity in these materials. Even when one works within the framework of the mean-field
theory of the generalized BCS approach, one can obtain anisotropic gap functions
A(k) which may even vanish, depending upon the symmetry of the layers and the
crystal, in certain directions or regions of the k-space, e.g., for k perpendicular to the
conducting layers in the high-T, oxides. In such a case, a power-law behaviour for
the electronic specific heat, etc., can result. Note that the conventional argument
about the absence of nodes in A for the familiar s-wave pairing is no longer valid,
because for layered crystals with highly non-spherical Fermi surfaces, a fixed orbital-1
is not the correct label to describe pairing. As an approximation, we can still assume
isotropy in the 2-dimensional plane of the layers, but not in the direction perpendicular
to the planes. We can no longer talk of a s-wave pairing or a d-wave pairing, etc., a
concept applicable to the three-dimensional isotropic case. If the gap parameter is
small or vanishing in the direction perpendicular to the a-b plane of k, it is possible
to get finite infrared absorption below the larger energy-gap 2A(k,) in the a-b plane,
depending on the direction of propagation and polarization of the incident radiation.

In what follows, we first describe briefly the recent formulation of the BCS pairing
theory in layered crystals, in §2. For allowed pairing within the same conducting
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layer j in any unit cell or within the same band b only, the contributions of
quasi-particles in different layers or bands to thermodynamic functions are additive.
In view of this, we also examine in §2, the temperature-dependence of specific heat
in the superconducting state with anisotropic A(k), consistent with the approximate
symmetry for the motion of carriers close to the anisotropic Fermi surface. In an
explicit simple model for A;(k), for k close to the Fermi surface, where it is assumed
to depend only on the direction of k, the specific heat is calculated analytically to
show how the power-law behaviour can be obtained in such a case. The effect of the
energy-gap anisotropy on thermodynamic and other properties has been considered
extensively in the past for the conventional superconductors (Sheplev 1969). However,
in most of these studies the anisotropic part of the gap function is assumed to be
small compared to the main isotropic part. This is not necessarily the case in the new
superconductors. Moreover, when the coherence length & is small compared to the
mean free path [ due to impurities etc., the effect of anisotropy in many-of the physical
measurements, e.g., in electromagnetic absorption, does not average out (Anderson
1959), as in most of the conventional superconductors. In §3, we present the calculation
of the linear response function for electromagnetic waves in a superconductor with
anisotropic energy-gap and nonspherical Fermi surface, valid for the case under
discussion in which & «/. By an explicit calculation, we show how the imaginary part
of the dielectric function /,(q, ), i.e. the real part of the conductivity tensor o,,(q, )
can have strength below the larger gap corresponding to k in the a-b plane. We
conclude our discussion in §4.

2. Anisotropic energy-gap and specific heat in layered crystals

Starting with the single-particle electronic-band picture and with Cooper pairing
restricted to carriers in the same conducting band only, it is wellknown that the
quasi-particle excitations in the superconducting state can be described by the
approximate diagonalized Hamiltonian

H—puN={C),+ Z Ebk(')’ljxo')’bk() + 71;;171;1‘1) (1)
bk

where 7's satisfy the usual Fermion anti-commutation relations and where the
quasi-particle energies are given by

Ey = (e — 11)2 + Ag(k)]”z = [él%k + Ag(k)]llz (2)

in terms of the BCS energy-gap parameters A,(k, T) and the Bloch energy &, of the
carriers measured from the chemical potential (Fermi energy) p. In (1), the fixed-p
thermal average :

(CY,=Y [€— En+(ANK)2E,) {1 -2f(Ey)}] (3)
with & :
f(E)=[1+expBE]™Y, B=1/kgT. (4)

The coupled BCS equations for the energy-gap functions A,(k) in the multi-band case
were already considered by Subl etal (1959) in terms of the effective interaction
parameters V,,.. Explicitly, the determination (Tha 1988) of the effective interaction
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functions V,,(q=k'—k,®) and the corresponding T, involves the knowledge of an
appropriate inverse dielectric matrix ¢ Yq+G, q+ G, w) in the reciprocal G-space
of the crystal. Note that, in general, A,(k) is an anisotropic function of k.

For any 3-dimensional layered crystal, the above multi-band formulation is enough
to obtain T,, A,(k, T) and other physical properties of the superconducting material.
However, we (Jha 1987) have argued that in highly-layered crystals in which the
electronic motion is mostly confined to the plane of the layers, with much larger
effective mass in the direction perpendicular to the layers, it is more appropriate to
consider effective Cooper pairing of carriers in the same localized layers j only. In
other words, to avoid consideration of large matrices in the reciprocal lattice space-G
and various local-field corrections in the multi-band theory, the order parameters or
the energy-gap parameters are now described by A (k)=A(k,, k.) where k, is the wave
vector in the plane of the layers and k,=6/L, 0<6< 2= is the wavevector in the
z-direction, perpendicular to the layer plane, for each of the layers j in the unit cell
of length L in the z-direction. Superconductivity in a layered crystal with electronic
motion localized in equally-spaced alternate metallic and insulating molecular layers
was already investigated by Bulaevskii and Kukharenko (1971). However, we have
generalized the formulation to an arbitrary number of layers in any unit cell, which
are not necessarily equidistant (Jha 1988). In such an approach, the gap functions A,
are determined by the solution of coupled equations

AJ'(kH k)= — ZZZ V;?P(Qz =k, — k;’Qz = kz - k,z’éi'éj’)
K k, J

x A;(k; k) tanh (BEj,k,)/ZE e ‘ %)
where

Ej = &(k)+Aj(K) =3k k) + A (kok,) | (6)

in terms of the single-particle energies &;(k) of carriers localized in layers j, and where

2 (> ImV;(q.q., )
VSU'P q,E, N — V(.Q') q, +_\§‘ dw’___ll___i._z__—_ 7
@08 ) =ViP@ea) + | do' e @)

In the above equation, V{?(q,q,) is the Fourier transform of the bare Coulomb
interaction between two carriers in layers j and j/ in any unit cell, and V;;(q,q.-»)
is the corresponding effective dynamic interaction in the presence of other electrons
and ions. If the z-coordinate of the nth layer is given by

z,=2(N,j)=NL+R;, Ry=0 (8)

where N denotes the unit cell label and j denotes the label for the layer within the
unit cell, and where R;,=R;—R; denotes the distance of the jth layer from the j'th
layer in the cell, for any function g(q,z,— z,) we can write

9@ 20— 2y) = gi(0eN — N')

2xn/L
=5;[—J 44.9,,(4,4:) exp (N — N)La.. o

0

For m layers in any unit cell, a simplified diagrammatic perturbation theory can then
be used to find the mxm dynamic interaction matrix V in terms of V¢ and
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2-dimensional electronic layer-polarization functions
TLj(ge0) = 8;;7(Qr )= 0.4 m(Gre2)- - (10)

Explicitly, using the matrix notation, one finds

V(qeq,) =t~ "(q.4.0)V”(q,q.) (11)
5(‘1:@2'“’) =1+ V(o)(qr’q,z)n(%’w) ‘ (12)
where I is the m x m unit matrix, and
VS'?') (qt’qz)
2ne?

p [P(g-q.)exp(—q.R j}i +N(g.q.)exp@.R;)]; >
t
= (13)

2ne? .
[P(q,—4.) exp (@R ;) + N(gr — g exp(—4R;) L J<J

P(q,q.) = exp (ig,L) [exp (iq.L) — exp(—q.L)] ™" (14)
N(g,q,) = exp(—q.L) [exp (—ig.L)—exp(—qL)]1™". (15)

Note that ¢~ (q,q,®) is a mxm non-diagonal matrix so that even the effective
interaction between two carriers in the same layer j depends not only on the
polarization function of the same layer but also of other layers in the unit cell. These
polarization functions 7;(q,.w) contain contributions from all possible electronic and
ionic excitations in the system.

From the above discussions, it is quite clear that for layered crystals, the energy-gap
parameters are expected to be highly anisotropic in k-space. Whether one uses the
multi-band picture or the multi-layer picture, the total contributions to thermo-
dynamic functions are of course additive corresponding to quasi-particles labelled by
the band indices b or the layer indices jin (1). For a given form for such a gap function
A(k), one has the usual result for the thermodynamic potential

Q= — Lz =Y 1[( —fE)1+(C, (6
B BX
where the partition function
Z =exp(— Q) = Traceexp (— f(H — uN)], Q=E—TS—uN. amn
The entropy Iﬁer unit volume V is then given by

1[/Q d’k
S= ‘Tz[(?ﬁ)m} 2k, j S —fE)~PESE] (9

from which the specific heat per unit volume can be obtained by the relation

copd__ 408

7= b5 (19)
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If one chooses suitable co-ordinates u and v on the surface of constant single-particle
energy & =¢, so that k.k, and k, can be rewritten as functions of u, v and ¢, the
integral over d*k in (18) transforms to

3
Jgﬁ%q%‘[du Jdv jdéJ(u, v,8)= fd“ J‘d” jdfg(u, 5,¢) (20)

where J(u, v, &) is the Jacobian determinant

J(u,v, &) = 8ng(u, v, &) = (

ok ak>_ak d2o, 2

o) 0E " Vil
in terms of the element of the surface area d20'¢ on the surface £, =¢. In terms of these

new variables, A(k)—A(u, v, ), E,—~E(u,v,£), and the entropy can then be calculated
in the form

S=H(l)+ jw dAH(4) (22)
1 ‘

H(A) = 2kg jdu J.dv Jw dég(u, v, ©)BE[1 + exp(ABE)] ™! (23)

E=[&+Au0,0)]" (24)

As it is often the case, if the contributions to S are dominated by the region in 4
near the Fermi surface, i.e. £~0, the above general calculation can be simplified

considerably. In such a case, one can replace g and A in (23) and (24) by their values
at the Fermi surface:

9(u,v, &)~ g(u, v,0) = grl(u, v) | (25)
Au, v, &)~ Alu, v,0) = Aglu, v). : (26)

This leads to the expression

S=2kg jdu j‘dvg,(u, v)G(u, v) 27

where
Glu,v) =28 J dEf(E)[E® + £%]/¢
Ap

(o2}

cosh 2y
= 2BA2 d
g “L Y T+ oxp (BAy cosh )]

=248} 3, (1P KalnbAy) 28)

in terms of the modified Bessel function K,. Note that by definition, the single-spin
density of states N at the Fermi surface ({=0) is simply given by

J du Jdng(u, v) = Ng. (29)

|
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For the single-particle carrier energy of the form
B h2k2 + h2k:  hks
- 2mX X 2mYY 2mzz

Sk (30)

it is possible to choose spherical polaral coordinates §=v, ¢=u on the constant
energy surface, so that

gp(u,v)dudo =]—:;§sin 0dd¢ (€29
112 ' 1/3 32 12
Np= A2 ;;E(mxxmwmzz) H (32)
and
NFkB T . 2z ) 0
S = - sinfdo doA#0, ¢) 21 (— 1K ,(nBARG, P))- (33)
0 - Jo n= :

If one assumes isotropy in the a-b plane, one can take myy=myy in (30) and (32).
Further, because of the symmetry in the problem, if A 0, d)=Ag(|cos 0]), i.e. the gap
parameter is independent of ¢ and depends only on the magnitude of cos @, with
0 =0 along the perpendicular z-axis, the above expression simplifies to

$=2Npkaff 3 (~17'DP (4
D,(f)=2 f  ABHK BB (9)
0

Note that when Ay(x) =0, the above expression leads to the usual linear temperature
dependence of the entropy in the normal state, as T —0,

2n?

Snormal = 3 klzi'NFT 7 (36)
since
2 ® 1 n?
- Tl =, 37
yl_’.to Klny) n2y*’ ,,; (=D n? 12 37

Similarly, for an isotropic gap Ap(x)=A in the superconducting state,

S—4NgkpBA* Y (=17 K,(nBA) (38)
n=1 .
which varies as B2 exp(—fA) as T -0, since
m )" 39
yl:zo K,(ny)— (m) exp (—ny). (39)

To illustrate the temperature-dependence of the entropy in the more general case
of an anisotropic gap, let us assume that Ag(|cos |) has the form '

1
A{l —plcosB]), lcosf|<—, p=0

Ai{|cosB]|) = (40)

—

0, |cosB| >—
p
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where p is a positive number. Note that for the anisotropy parameter p <1, Ay does
not vanish anywhere, whereas for p=1, it vanishes only at points with =0 and =,
ie. in directions perpendicular to the layers. For p>1, the above model describes
regions of vanishing A, close to §=0 and . The isotropic case corresponds to p=0.
In this anisotropic model, (35) and (40) lead to the result, for 0<p<1,

L

" nBpA,
—nfA(1L —p) {K,(nBA(1 — p))L,(nBA(L —p))

+Ly(nBA(1—p))K y(npA(1—p))] (41)

—5— [BA{K(nBA)L(nBA) + Ly(nBA)K ,(nA) }

and forp>1

3n
SBA

4 1
+;§2—(1—E) | (42)

where L,(z) is the modified Struve function (Abramowitz and Stegun 1968). In the
limiting cases, one has

[nBA{K o(nBA)L1(nBA) + Lo(nBAIK 1 (nfA,)} ]

1 2 222 27°
220 Ky, K-y Lid-5 Li@)-1s
7 \12 3 7 \112
’ K — — —_— s —
Z— 00 1(z)—>(22> exp( Z)(1+8z+ ), Kz(z)—*(22>
15
xexp(—z)<1+§+---> : (43)

1 1 \? 3 2
Lt Li(z)— Lt I_ 1(2)—-——+() — |- =— Al l——g s =24
z=r 0 = z 2nz 8z s

Lt Ly(z)— Lt I_,(z )—3%—24-0(%)

J
TN
(&)
=] b
N
\—/.—1
™
<.DN
Ve
Pt
|
oolv—-‘
N |
+
N’

2z

_ E‘—F ves | (44)
Lt TR0+ LK @] 5 )
Lt [Ko0Ly(2) + LKy ()] . (46)

Thus as T—0, i.e. §— o0, one has

S=2Nyksb 3, (—17"'Dy(— o) (47)
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which can be calculated from (41) and (42) by using the limiting values of the functions
and expressing L,(z) in terms of I_,(z) and a power series in z. It can be shown that
for p<1, i.e. when Ay is nonvanishing everywhere, the entropy and specific heat still
have temperature-dependences resembling the exp(—BA,), but for p closer to 1, this
can be nearer to a power law behaviour, in practice. In fact, for p>1, one finds

& 3n 4 1
S=2N 1Y s trl 1= 2
FkBﬁ"Z_:l( 1) [n3ﬂ3pA,+n2,82(1 p/jls ﬁ—*OO, 14 1 (48)

Thus at low temperatures, this leads to the specific heat in the superconducting state
which is of the form

127N JAT? & 127N K3 T2 ~
C, = ZNATE & ypos L _DEREBT (090154), forp=1  (49)
Al n=1 n At
and
In2N k2
sz_”_gz(l_%>+0(7"2), for p>1. (50)

In other words, depending upon the value of the anisotropy parameter p, at low
temperatures one can get either a linear temperature-dependence for the specific heat
or a higher power law or a smeared out exponential (which may be difficult to be
distinguished from a power law behaviour).

Before we conclude this section, it should be emphasized here that the possibility
of the spin-singlet or the spin-triplet energy gap vanishing on points or lines of the
Fermi surface of a crystalline material, and the consequent T? or T? power-law
behaviour of the low-temperature specific heat have been discussed extensively in
recent years, particularly in connection with superconductivity in heavy fermion
systems. This has, however, not been appreciated fully in the layered-crystal high-T,
literature, and very often one continues to talk in terms of s-wave or p-wave pairing
with a spherical Fermi surface. Our aim here was to examine the expression for the
electronic specific heat C, with a general form of the BCS gap as a function of k, and
to introduce an explicit anisotropic model for A(k) on an ellipsoidal Fermi surface
to study the resulting analytic form of C; as a function of temperature T and the
anisotropy parameter p. In light of this analysis, we will discuss some of the available
experimental results in high-T, materials in §4.

3. High frequency electromagnetic response and infrared absorption
For a superconductor with an isotropic gap, an expression for the linear conductivity

o(q, w) was first derived by Mattis and Bardeen (1958), and later obtained in more
detail by Abrikosov and Gorkov (1959). This calculation has already been described

“at various other places, including the book by Rickayzen (1965) which has a good

discussion of the calculation in the presence of scattering from random impurities in
its Appendix IV. In fact, a more general expression for the electromagnetic response
function in a superconducting crystal has been derived by Nam (1967), which includes
magnetic as well as nonmagnetic impurity scattering. In superconductors, non-
magnetic impurity scattering not only leads to the usual relaxation effects in the
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system in the presence of an external e.m. field, but also a change in the superconducting
wave function itself if the coherence length ¢ is of the order of the mean free path I
or larger. In the actual calculation with random impurities and weak scattering, these
effects are taken into account by finding the modified quasi-particle propagators as
well as the vertex corrections for the interaction of the quasi-particles with the external
e.m. wave. Recently, for the case of a spherical Fermi-surface and explicit p-wave
(I=1) pairings, Klemm et al (1988) have obtained the electromagnetic response in the
presence of impurity scattering. However, because of the complexity in actual
calculations, they have restricted to the case of ¢—0, where q is the wavevector of
the e.m. wave in the material. This limits its applicability to the case in which g§«1,
and gl« 1. Also, it cannot be used directly to the case of a nonspherical Fermi surface
with gap anisotropies relevant to high-T, layered materials. In any case, for the
situation under consideration here in which & «!, one may be able to avoid this rather
tedious calculation by assuming the sample to behave as almost a pure material as
far as the superconducting pair wavefunction is concerned. However, as in the normal
case, the relaxation effects arising from various elastic and inelastic scattering
mechanisms must be included, at least approximately, otherwise the induced current
density even in a singly-connected bulk superconductor will not decay to zero in the
absence of any dissipation, after the external e.m. field is switched off. In a general
density matrix theory of relaxation in any system with Hamiltonian H, in the presence
of interaction Hp. which is responsible for various relaxation mechanisms, and H,
which describes the interaction of the charged system with an external radiation field,
one obtains the usual reduced density matrix equation

(@p/0t)— (iH)™'[Ho + Hyp] = —T(p),

where the relaxation term I'(p), linear in p, is given by integrals over times ¢’ and t’
of the double commutator involving Hg(t'), Hx(t") and p, traced over the states of
relaxation agents. Here, a small second-order energy-shift term for the system, arising
from the interaction Hy has been neglected. After a sufficiently long time, if the decay
of the system to the equilibrium state can be described approximately by a single
relaxation time 7, one can then often replace I'(p) by (p — po)/z.. Note that in a normal
metal, 7" is usually a very slowly varying function of energy and temperature. However,
in the superconducting case t$is not the same as 7, as it is evident from an approximate
expression for the collision integral in the kinetic equation for a superconductor,
introduced by Khalatinikov and Abrikosov (1959) (see §7 of that paper). It is the
meanfree path | which remains almost the same in both cases, but

" = BL(& + ADABE)E] = T (vy/v,),

where v, and v, are the velocities of the quasi-particles in the superconducting state
and the normal state, respectively. This may also be deduced from the expression
(4.12) of Nam’s paper for the electromagnetic response function in terms of
the imaginary part ['(w) of the quasi-particle self-energy arising from various
scattering mechanisms and the corresponding pole of the Green function G(w, k), at
w~E, —i(¢/E) T, in the limit in which the effect of weak scattering on the real part
of the quasi-particle energy is neglected. Thus, following Rickayzen (1965), as long
as the scattering is weak, the relaxation effects may be included in our approach by
replacing I'(p) by 6pQ,, where Q. is a phenomenological frequency-dependent
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parameter appropriate to {1/t for the range of energy (of the order of ) and
momenta (of the order of g) involved in the transition process. This procedure, though
crude, is expected to give at least a qualitative indication of relaxation effects, in the
weak scattering limit.

In the presence of an external transverse electro-magnetic field described by the
vector potential A(r,t), one has to consider the Hamiltonian

Hp= <C>u+2Ek('ylZ)yk0+'ygi'))kl) +H, (1)
k
e
=2 Y Gl CuVirAG ) (52)
k,qo

where for actual intraband transitions among the Bloch states k> and |k +q)

Vi) = (ke glexp (—ig ) -k (3
which can be approximated by the carrier velocity
10¢,
= =-— 54

and where C’s can be transformed into quasi-particle operators y’s by using the
Bogoliubov transformation

Cur = o+ 05705 Cog=— 0o+t (55)
ug =%(1 +-§;‘i> v? =-21-(1 —%) E = +[& + A% k)12 (56)
k k

To obtain the linear response function, one has to calculate the expectation value
of the current density

. . —e
JO(q) + JA((L t) = W%}_Ckuck+¢lavk

ez

Y G CuAK +4,1) | (57)
ko

K

mcV
up to terms linear in A. Here, V is the volume of the system. Using the density matrix

approach with a phenomenological damping term, it is straightforward to find the
required expression in the form

jug,0)= i—(ceZ 0y (4, 0)A,(q, ®)

_ a)2 [Epv(qs O)) - 5;4v]
= T; o Aq, ®) (58)

where the linear conductivity o(q, w) is given by

2

ine ie? {d3k
Guv(q’ CU) = 771—60— auv - _CU_ J\'(—QE)“ VkuI/kvRT(ks k— q, CU) (59)
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with

Roll k—g,0,0) = =220 f(8) £ ()]

X (Ey + E + hoo + ihQ) ™ + (E; + E — ho — ihQ) ']

(EE;+&E +AA))
-k

[(E,—E +hw+ihQ,) ! +(E, —E—hw—ihQ) '] (60)

and where we have introduced the short hand notations

(=f=g—p A=AK), E=E.=+[5+A K] (61)
1= 4= Sk—q"’ t, A =Ak—q), E;=E,_,

= +[&_ +AY k-] (62)
f(B)=[exp(BE)+1]7", f(E;)=[exp(BE,_+117" (63)

As described in §2, we can again replace the integrations over d’k to integrations
over u, v and & introduced in (20). However, to be more definite, let us assume that
the form of ¢, and the corresponding Fermi surface are still determined by (30), with
m,, ~m,,. In such a case, one can again introduce spherical polar coordinates 6=,

¢ =u on the constant energy surface £, = &, so that the velocity components (1/#)3&,/0k;
of the carriers are given by

hk 2 \12 L
= E = — i 12

Vix . (mxx> sin A cos (& + p)
hk 2 \?

Vig=—2L= (-) sin 0 sin ¢(& + p)'/? (64)
Myy Myy :
hk 2 \?

Vig=——o=|— cos O(& + p)t/?

k2 Mzz (mzz) C+8)

In terms of the carrier density

4] n 2n N &3/2 ©
n=2j dcj sin@dOJ d¢-—F—<1+—) =2J déjduJ.dvg(u,v,é)
-p [ 0 4 u

—u

(65)
the conductivity tensor ¢,,(q, w) has the form
ine?  ine?
= - Dy,
oxx(¢q, @) Mg®  Myy® xx{(q, @)
ory(q.0) = ine>  ine’ Dorla, @) (66)
Y\q, W) = Myy@ Mgy o4 B
ine?  ine?
072(q, @) = -

D 1)
Mzz@0  Mzz0 z2{% ),
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where, due to interband terms, m is changed to m,, in the first term, and, where

0™ 'D, (g, »)

3 o) n 2n ‘ é 3/2
=——j déJ desinGJ- d¢>bvbv(1+—)
87E —n 0 0 u

RT(éa 6’ d), q,Q, Qc) (CD + ch)# ! (67)

with the electromagnetic absorption due to the second term determined by

2

Re [0,,(0, @) — 084, ©)] = ——Im D,,,(q, ) (68)
. m,, @
In (67),
by =sinfcosp, by=sinfsingp, bz=cos 0. (69)

If the direction of the propagation of the incident wave is assumed to be in the
Z-direction, i.e. along the C-axis, so that the wave is polarized in the x-y plane, one
has to determine Dy, and Dyy only. These will be equal if the gap-parameter Ais
assumed to be independent of ¢, and to depend only on cos . In such a case, one finds

W~ 1Dxx(qza w)

=%Jw déJ‘de(l—xz)(l +%>3/2RT(£, x,q, 0, Q) (@+iQ) ™! (70)

=1

where
x=cos @ (71)
and where R, has the same expression as given by (60) but with
¢y~ E—h0x, Q=Vizq ’ (72)
E=+[&+ A% )12 E,=[¢+A1(x)]" (73)

for transitions close to the Fermi surface. Note that for T =0, f(E)=f(E{)=0, so
that the second term in (60) for Ry does not contribute. In this case, the expression
for Dyy reduces to

N @ +1 é 3/2
w—lex(qZ,w)=%J‘ déj dx(l—xz)(l-ir-—)
-n J-1 H

W YEE, — &, —AA)/EE[(E+E, +ho+ihQ) ™

: +(E+E,—ho—ihQ) *J(w+iQ) ™. (74)

In the clean limit in which the mean free path is very large, the electromagnetic

absorption can be obtained from the imaginary part of Dy given by (74), in the limit

Q.—0%. As a simplification, if we also assume that approximately A, ~ A, we then
obtain

Reoyy(gZ, @)~ e f " dx(l = x?)F, (%) (75)
Bmyxw J-1
where
A2
Fz(x)= [EmlEmz + 6m1€m2 A (x)] 9(602 . szz —4A2(x)/h2) (76)

IémlEmZ - 6m2Em1 l
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where the step function

0y)=1, y=0 .
71
=0, y<0 )
and where
h h
£m1=¢’0+_2x5 ém2=_£0+_—Q" (78)
2 2
ho o, 2032 2427122 — (12427~ 1/2
S0 =5 [0} 40712 = Q2] 2 [0 ~ Q*x’] 79)
Ep =|[E +A%X)]'2),  Epy = I[85 + A% ()], (80)
For the case of the normal state with A(x)=0 everywhere,
Fz(x) —+Fll(x) = 2Qx5(a)— Qx)
= 32-51 d(x ~— w/Q) (81)
so that
3nne? ( a)2>
Re o%+(g2, w) = 1—-—— 100 —w
%x(q2, ) 4mxe Q; @ )
3nne? ( w? )
= 1- B(qVyz— @) (82)
dmyxqVe; Vs @Vez
in this approximation. In fact, if one includes collisions, in the normal state
3ne? (*1 ) 2
5 ) ~ — S 83
Fnlat,0) =g — f | dall—x )[(Qx_w_m?)] (83

In the superconducting state, infrared absorption is possible, even at T = 0K, if
© o> [0%x?+4A%(x)/h*]?, x=cosb (84)

- when the incident wave is propagating in the direction of the C-axis, as evident from
the expression (76). Here, Q is equal to Vp,q in terms of the carrier Fermi velocity
Vi in the direction of the incident e.m. wave. The minimum value of w for which
absorption can take place is determined by the minimum value of the function

£(%) = Q2x2 + 4A2(x)/h? ' (85)

If as an illustrative model, we again take the form (40) for A(x), i.e.

A(l—plx]), x<>, p=0
Ax) = (86)

05 x>—
p
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5&

Superconductors with anisotropy energy gap 273

the minimum value of f(x) is obtained for

1 ngtz 2.2(N2 2.2y—1
~— 55 for p>p’g(Q°+p7g;)
R for p<p*gP(Q*+p*g))™"
where
g? =4A? /R (88)
In other words, the minimum value of f!/*(x) is given by
g 2,212 1 n2,2)"1
, p>p°9(Q*+p°g:)
i | [1+PPGH/Q™] ' ' (89)
min T [Q2+g2(1-p)1H%  p<p’gH(Q*+p%00)
Thus, in such a model, infrared absorption can take place for
2At 2,212 2A27-1
hw > for p> [1+h%q*V#2/4p*Af] (90)

[1+4p*AZ/h*q* V]2
or
hzqzvzzfz

ho=2A(1— —
L

12
] for p<[1+Hh%*q> V2,/4p2AZ]"t (91)

This implies that depending upon the value of the anisotropy parameter p and the
ratio #Q/A, =hqVez/A,, the absorption can take place much below the in-plane gap
2A,, provided that 2pA,/(hqVe;) is appreciable. In the isotropic case (p=0), there is,
of course, no absorption below 24A,. At finite temperatures, one can get similar results
with additional smearing of the structure below 2A,, when 2pA,/(hq Vrz) is appreciable.
More detailed calculations for finite temperatures can be performed numerically, using
(59) to (63), which also include weak collision effects in an approximate way. However,
the general conclusion regarding the structure below 2A, will be similar. But, for any
actual analysis of the experimental data, one may have to take that into account
explicitly.

It is clear that (59)-(63) can also be used to calculate infrared absorption when the
incident wave is not necessarily along the Z-direction. For example, at T' = 0K and
Q,— 0, if the incident wave is propagating along the X-direction (in the plane of the
layers) and the wave is polarized either in the Y-direction or the Z-direction, one will
get non-vanishing oyy(g%, ©) and oz;(g%, ®). The threshold frequency is then deter-
mined by the relation

92)

4A%(cos 6) 1
w> [V%qu sin® 6 cos? ¢ + ———(993—1:\

ﬁZ

instead of the expression (84). More generally, A can, of course, also depend on ¢.

4. Conclusions and discussion of some experimental results

In this paper, we have considered the problem of calculating thermodynamic quantities
like specific heat and nonequilibrium properties like infrared absorption in the
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superconducting state of a material with nonspherical Fermi surface and anisotropic
energy gap. It has been argued that such an analysis is necessary for layered
oxide-superconductors with anisotropic energy gap and very short coherence lengths,
if one is interested in any meaningful comparison of experimental results with the
predictions of the generalized BCS pairing theory. It is no longer possible to talk in
terms of the 3-dimensional isotropic model for the motion of the carriers. Although,
as an approximation, isotropy in the plane of the layers may still be used, it has to
be necessarily distinguished from the motion of the carriers perpendicular to the
layers. The pairing can no longer be described in terms of pure s-wave or p-wave,
etc., since the 3-dimensional orbital /is not a good label any more. The gap parameter
in general can be highly anisotropic in the k-space. For example, A(k) with k in the
plane of the layers may be much larger than A(k) with k perpendicular to the layers.
Of course, our consideration of the problem is still within the framework of the
mean-field theory for the superconducting transition. The corrections to such an
approximation are expected to be small if (kz¢)? is still larger than 10 to 100.

-The calculation described in the preceding sections for heat capacity in the
superconducting state is based on the fact that at finite temperatures the excited states
of the system can be described by excitations of quasi-particles with energies E,, =
[&+ASK)]Y2, in the multi-band theory or by E,=[£;+A%(k)]'/? in the multi-
layer formulation of the generalized BCS pairing theory. In the multi-layer formula-
tion, the effective electron-electron interaction is obtained explicitly in terms of the
2-dimensional layer-polarization functions 7;(q,, w), and pairing is assumed within
the same conducting layer only. Of course, the quantity
2ne?
4an(qta CO) - q:(th/z) nj(qta CO) (93)

is an approximate projection of the three dimensional-band susceptibility function
4n y(q,) corresponding to the layer j. In an explicit model for A(k) in the
form, A(k)=A(1—p|cosf]), for |cosB|<1/p, p=0, and Ak)=0, for |cos@|> 1/p,
where cos 0 is the angle between the z-direction (C-axis) and the unit vector k, with
the assumption of an ellipsoidal Fermi surface (m,,#myy~myy), the temperature-
dependence of the specific heat has been calculated analytically. It is shown that as
T —0K, one can get a linear T-dependence for p>1, a T?-dependence for p=1, and
a smeared-out exponential dependence for p< 1. For an appreciable value for the gap
anisotropy, it would be difficult to distinguish the smeared-out exponential from a
power law.

Soon after the discovery of high-T, superconductivity in oxide materials, it was
reported extensively that the low temperature electronic specific heat in their
superconducting state shows an unusual linear temperature variation as T—0 K. This
was taken to be an indication of the failure of the BCS pairing theory for such
materials, and the possibility of RVB type of superconductivity in which uncharged
“spinons” obeying Fermi statistics were supposed to give the usual linear term in C,
and the charged “holons” obeying Bose statistics were supposed to give superconduct-
ivity. The coefficient y* in C;=y*T was found to be of the order of 1-3 mJ/K? mol
in La;.g5 Sro.;5 CuO,4 and of the order of 8 to 10 mJ/K?mol in Y Ba,Cu,0,
(123 compound). However, more recent experiments by Eckert et al (1988) show that
in the 123 compound, the most likely cause for the linear term is due to the presence
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of the impurity phase BaCuQO, which happens to have a large normal state y. New
experiments on most of these compounds and on various Bi and Tl-based super-
conductors (Chakraborty et al 1989; Urbach et al 1989; Caspary et al 1989) seem to
indicate that with a few exceptions which need further studies;, most likely value of

7* is close to zero in all these materials, with an upper limit ranging from 0-2 mJ/K? mol

to 1 mJ/K?*mol. The difficulty in obtaining good specific heat data to settle this
important question whether y*=0 or not, of course, arises due to their extreme
sensitivity to material imperfections on the scale of small coherence lengths in these
materials. Even if y* =0, the presence of a small T2 or T° term in the intrinsic low
temperature electronic specific heat cannot be ruled out experimentally. But, it is
quite fair to say that one does not have to abandon the generalized BCS pairing
approach to explain such a power-law behaviour. In our explicit model for gap
anisotropy discussed earlier, a value of the anisotropic parameter p close to 1 will be
sufficient to give such a result. Note that for y* ~ 1 mJ/K?mol and the normal state
y~10mJ/K?mol (as in La,.g5Sry.,5 CuO,), one needs a value of p~1-1 to fit the
data. Although, the available experimental data published in the literature are not of
such a quality which can be used to find the value of p or the form of a more general
structure of the gap by detailed curve-fitting, because of their dependence on sample
preparations, etc., the present indication seems to be that p<1 in most materials.

Any deviation from the experimental temperature-dependence of the intrinsic specific

heat arises from the smearing of the exponential due to gap anisotropy and from
possible impurity contributions remaining after the subtraction of the phonon
contribution (T3-term). -

The calculation for infrared absorption in the superconducting state has been
described in this paper only in the limit when the coherence length is small compared
to the normal state mean free path, so that the change in the superconducting wave
function and vertex corrections to the absorption process due to the impurity
scattering, etc., can be ignored. Also, we have ignored the inter-layer or inter-band
processes, by finding the electromagnetic response of quasi particles corresponding

to a single-layer label j or single-band label b. Of course, this does not imply that -

interlayer or inter-band interactions. are not included in calculating the unpcrturbed
quasi-particle energies and the gap-parameters. Using the model for A(k) and the
Fermi surface similar to that used for the calculation of specific heat, an explicit
expression for infrared absorption is obtained in the limit T—0K and the collision
frequency Q,—0. It is shown that appreciable absorption can take place below the
in-plane gap parameter 2A,, if the value of the anisotropy parameter p and the ratio
2A,/hVp,q are appreciable. Here, Vg, is the Fermi-velocity of the carriers in the direction
of the propagation vector g of the incident infrared wave.

The infrared study of reflectivity in superconducting and normal states of high-T,
materials has been made by many groups. Although, the most extensive experimental
work exists on YBa,Cu,;0, in the form of single crystal as well as polycrystalline
material and oriented thin films, one is not able to agree on any unique value for the
energy gap even in 123 compound. Sometimes, one finds two gaps (Wieck et al 1989)
in polycrystalline samples, in the vicinity of 200cm™! and 580cm™", which are

“attributed to 2A(k) with k along the c-axis and in the a-b plane, respectively. For

single-crystals, the a-b plane gap was found to be at about 500cm ™! by Schlesinger
etal (1987). However, they have found it difficult to obtain a realistic value of the
gap parameter along the c-axis in the case of single crystals. In any case, from the
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single-crystal reflectivity data, it seems evident that there is always some absorption
below the a-b plane gap. Usually, the energy gap is identified approximately by using
the Mattis-Bardeen expression for electromagnetic response for an isotropic super-
conductor, in the dirty limit. This implies large scattering rates, not very consistent
with normal state conductivity. We feel that the actual shape of the absorption curve
below the in-plane gap arises due to the anisotropy of the energy gap. In our model
for the anisotropy, this implies the case in which 2A,p/hVy,q is appreciable. If two
energy gaps in the 123 compound as measured by Wieck et al (1989) indeed correspond
to the c-axis and a-b plane gaps, it would imply a value of p~0-65 in our anisotropy
model. However, there may be other valid reasons for the experimental data obtained
by Wieck et al (1989). At this stage, since there does not seem to be any consensus
regarding the exact form of the reflectivity data on single crystals, even with g
perpendicular to the a-b plane, any numerical analysis of the data to obtain the
anisotropy parameter p or the general form of A(E), even in the case of the 123
compound, seems premature.

In conclusion, we have shown that for any realistic analysis of experimental data
obtained for finding the nature of various thermodynamic and nonequilibrium
properties in single crystals of layered superconductors, it is necessary to include
anisotropy of the gap parameter and the nonspherical nature of the Fermi surface
while comparing with the predictions of the generalized BCS theory. In an actual
comparison, numerical integrations involving more exact treatment of collisions when
ql< 1, and the relaxation of the approximation involving dominant contributions
coming from close to the Fermi-surface only may also be necessary, while dealing
with high-T, materials with low carrier densities.
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