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Nonlinear response theory—I

SUDHANSHU S JHA
Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

Abstract. A general nonlinear response theory for the case of linear coupling of physical
systems to arbitrary external fields is formulated for applications in different branches of
physics. This is done within the framework of non-relativistic density matrix approach of
quantum mechanics. Some simple properties of response functions and other related functions,
which are introduced here for convenience, are studied to obtain suitable representations of the
nonlinear response functions, including important sum-rules. As an example, the sum rule for
the second-order response function is applied to electronic dipole nonlinearity at optical
frequencies which includes both the Raman nonlinearity arising from perturbation to the
electronic motion from external ionic displacement field and the usual optical sum, difference
and harmonic generations. This immediately allows us to visualize a rigorous connection
between these two types of non-linearities.
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1. Introduction

Linear response theory is known to be a powerful method (Kubo 1957, 1959; Martin
and Schwinger 1959; Forster 1975) to describe dynamical processes in many-particle
physical systems which are usually investigated experimentally by means of weak
external probes. In such non-equilibrium processes, the experiments only probe the
dynamical behaviour of spontaneous fluctuations about the known equilibrium state,
and these may be rigorously described in terms of time-dependent correlation functions
of suitable pairs of dynamical variables of the system. The formal mathematical
properties of these correlation functions or the corresponding linear response
functions, in terms of their symmetries, sum rules, dispersion relations and fluctuation-
dissipation theorems, have been extremely useful in analysing and understanding
various physical systems. As opposed to the hydrodynamic approximation in which the
induced changes must be slowly varying functions of space and time, the linear response
theory is applicable to arbitrary space-time behaviour of the probe, except that its
amplitude has to be weak enough for the linear approximation to be valid.

Of course, physical systems, in general, are nonlinear, even when the basic
microscopic coupling to the external field may be linear. In many experiments, one
indeed measures the second-order as well as higher-order responses systematically in,
e.g. acoustics and optics, besides many other important branches of physics. In
connection with the investigations related to optical nonlinearities, there have been
several attempts in the past to study general properties of higher-order response
functions (Price 1963; Kogan 1963; Butcher and McLean 1963; Bloembergen 1965;
Ridener and Good 1974). However, most of these approaches have been too specific and
restrictive to describe nonlinear response functions for the general case. The use of the
electric-dipole approximation or the assumption of linear coupling to the external field
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is not always valid even in the case of nonlinear electromagnetic response at opticgl
frequencies, in the framework of nonrelativistic dynamics (Jha 1965, 1966; Flytzgn}s
1975). Here, our aim is to formulate nonlinear response theory of nonrelatiVI_stlc
physical systems in such a way that it is useful and applicable not only to optlcgl
nonlinearities but also to other more general cases. However, to avoid the algebraic
complication arising from the presence of the linear as well as bilinear basic coupling to
external fields at the same time, which tends to obscure the general mathematical
structure of the nonlinear response functions, in this first paper on the formulation we
will examine the case of linear coupling only.

In §2 of this paper, we present the mathematical formulation for obtaining the linear
as well as the nonlinear dynamical response of any physical system, in the framework of
the familiar non-relativistic density matrix approach. In §3, we study some simple
properties of these response functions, including the derivation of useful sum rules. As
an example, in §4, the resulting sum rule for the second-order nonlinearity is applieq to
the case of optical dipole nonlinearity to explicitly relate it to the nonlinear force acting
on the electrons in the system, including the force arising from the ionic motion. In this
sense, our formulation includes Raman nonlinearity, when specialized to the optical
case. The more general properties of higher-order nonlinearities and the case of basic

bilinear coupling, including applications to specific non-optical problems will be taken
up in a subsequent paper. "

2. Mathematical formulation: Linear coupling to external fields

Let us consider a physical system described by an unperturbed Hamiltonian H in .the
presence of arbitrary external fields a(r, t), each of which couples linearly to dynamical

variables 4,(r) of the system. In Schrédinger representation, the density matrix p, of the
system satisfies the equation

00 ‘
gt = (Hp ]+ o], @

- where the interaction with the external fields is given by
h=-% Jd3rAi(r)ai(r, t), )
the minus sign being introduced to follow the usual convention (Forster 1975). At time
= — o, the system is assumed to be in thermal equilibrium, with

Ps(t= = 00) = po; po = exp(— BH)/trace [exp (—BH)], B = 1/k,T  (3)
and the external fields a;(r,t - —0) =0,
In terms of the Heisenberg operators for the unperturbed system, defined by

p(8) = exp [(i/R) Ht] p,exp [(~i/k) Ht 1
Ai(r,0) = exp [(i/k) Ht] A,(r) exp [(—i/k) Ht), | (4)

)= =Y |d*rd,(c, ) a(r, 0,
i
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one has to solve the equation

i 220 = (h(0, 01 p(~ 0) = o . )

As a perturbative expansion in the powers of the external field amplitudes, (5) can be
solved immediately in the form

t

) |
P(t)=90+% ) dt; [A(ty),po]
+(l—,§)—f dt, j b dt, [h(ty), (h(t2)po1]

+(I—,%3—f d, f - f dt, [h(t), [h(t2) [h(ta), po11]

o (6)

In general, one may now calculate the induced non-equilibrium value of a physical
variable B,(r) of the system as the deviation of its expectation value from the
equilibrium:

8B, (r,t) ying, = trace By (r) (5 () — po)

= (trace B (r, ) p () — <B; (1) . (7)
Here, as a compact notation, the expectation value with respect to the equilibrium is
written as (AS = trace A p,. ®)

In particular, one is often concerned with the induced changes in the variables A;
themselves to different orders in the external fields. For this case, one finds the result to
be of the form

GAE) ma = Y (A1), ©)
n=1
(Ai(r,t))"=z...ZJd3r1 ...'[dﬂrnj dt, .. j dt,
jl jn — - o0

VN |3 PSS Lol PP ,t—1,)
X a; (rl,tl)ajz(rz,t,_) e aj"(r,,,t,,), (10)

from which it is obvious that the response functions y® are symmetric with respect to
simultaneous interchange of any two sets of variables: j, 2 j;, 7, 27, [, # L In fact, the
causal response functions can be written in a convenient form

A LT Gty L)
=RP (T . Tty t,)0(t,)0(t,) ... 0(t,) (11)
RP ey, Tyuty,ens t,)
= sym (jy Tyty,ja¥a2tas - - > JnTaln)
xKP et =t ty—ty—1)

X 0(t;)0(t,—1ty) - .- O(ta—ta-1)s (12)
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where the theta function is defined by the step function
0x)=1,x>0,
f(x)=0, x <0,

(13)

and sym (abc, def, . . J) is the symmetrization operator:

sym (abc, def)FE%{F-hF(ar_»d,bze,czf)}. (14)

The substitution of the expression

for h(t) in (6) and some rearrangement of
independent variables lead to the foll

owing explicit expression for K™:
KP r, ... Tostisty, ..., t,)
1
= —:l—h); {[.. [[Ai(l')’Aj1 (r1,—t1)],Aj,(rz,‘“tz—t1)] A
ij(l‘,,,—t,,—t,,_l...—tl)) (15)

While writing the above form for K in terms of the e
repeated commutators, we haye used the identities

trace ([A4, (ty), [4,(,) . .. [4,(2,), 001 . . 114()
= trace (po [ .. [[A(0) 4, (1)1, A3 (55)] ... L A, (1)]) 16)
(4, (t,) 4, (t2)) = (4, (O)Az(tz‘t1)> = <A1(t1 —1,)A,(0)> (17

due to cyclic property of the trace operations,

Instead of the time-representation for the response functions y™, we can use the more
conventional frequency representation in the Fourier transform space to rewrite (10) as

® dw ® dw
. = 3 3 ——“1 n
(4;(r, 1)), J.d .. .fd r,,f_w o ...Jlm e

Xexp [ —i(w, +w,+ .. tw,)t]

(
><;c,-j‘l’m]-"(r,r1 T 01,0, ..., o,)

quilibrium expectation value of

X a; (l'l,col)ajz (r,0,). .. a; (r,,w,), (18)
where
x(n)(]',l'l PP rn,wx, ey CDn)

0

—J dt, j de, .. f dz, exp (iw, t,) exp (iwyt,) . . . exp (iw,t,)
o — e

Xy, .. Lilisty, . oo t)

and where summatio
obtains

(19)

D§ over repeated indices Ji-..Jj, are implied. Explicitly, one

o]

Xg})(“arz:wJ:f dr, exp(ia)ltl)Kg)(r,rl,t1)9(t1), (20)

1
K nrg,1) = i A0, 4y, 1) s, (21)
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2
x§j£ (r,ry,ry,0,0,)

=J dtlj dt, exp (iw, t,) exp (i, t;) sym (jrytys kryts)

9(t1)9(t2-t1) KE‘:]ZIC) (l‘,l‘l,l‘z,tl,tz*-tl.), (22)
ngzk) (r9r17r2’t1’ t2)
1
= (——Tﬁ)—z (L[4 (r,0), Aj(rla_tl) L Ag(ry,—t— t)1> (23)

(3
XijIZI (l’, r13r25r3sw1aw2:w3)

- - o0 -0

= J de, j dtzj dty exp (i, ;) exp (iw,t,) exp (iwsts)

x sym (jryty, kryty, Irats)0(t;)0(t — t,)0(t; —t3)

x KOy (r,00, 15, 5, 1y, 0 — 1y, s — t5) (24)

(_lih)3 < [[[A4i(r,0), Aj(ry,— t)l

Ak(rz:“‘tz‘“t1)]aA1(r3:—t3—t2"tl)]>: (25)

etc. Note that each of the frequencies w;, i = 1,2 ..., of the external fields can be
assumed to contain a small imaginary part id, & > 0, so that exp (—iw;t) vanishes at
= — oo, when there are no external fields.

For the case in which one wants to find the non-equilibrium expectation value of an
arbitrary physical variable B;(r) which does not explicitly occur in the interaction h with
‘the external fields, the more general expressions can be easily obtained from the
expressions already derived for 4, (r) in this section. One has to simply replace 4;(r,0) by
B, (r,0) in each of the results, e.g. in (15), (21), (23), (25), etc. However, in what follows we
will not be interested in such a problem here. In the next section, we will study some of
the general properties of the response functions 21, £?, etc., given by (201-(25)-

3 —
KE,& (r,ry,rp, T3,y tr,ts) =

3. General properties of response functions

In the last section, we have defined the nth-order response function
. ...ty t,) whichis symmetric under the simultaneous interchanges
of j,2j,r,2r,t,2t, and which is zero for any time argument.‘tp < 0.For all tlfne
arguments positive, its value is given by the function R™ of (11). Since the.expectatlon
value of a hermitian operator, like any of the physical operators A,, 18 real, of a
commutator of two such hermitian operators is imaginary, of a double commutator ?f
three hermitian operators is real, etc., it is easy to see from the definitions of Kf"’ and R™
of (11), (12) and (15) that each of the functions K™ R®and y™ in time space 1 real. The

reality condition in time space also implies the following obvious conditions in the
complex frequency space:

* ¥ ¥ —_rn¥

SO (T @1y Dy - - > D) = ¥y T, —0f, — 03 o¥)

* __ ¥ —n*
K(ﬂ} (r’rl .. r"’wl,wz, . w") — K(”)*(r’rl RN go — 7, Wiy, - a)(nz)ﬁ')
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It means that the real part of #™ of arbitrary order in the real frequepcy space is
Symmetric whereas the imaginary part is antisymmetric, with respect to simultaneous

changes in sign of all the real frequency arguments.
Explicitly, for the linear response function, one has

o0
x5, I, m,) =f dt, exp (iw, t,) K.(})(l'»l'u t,)0(ty)

— ® dw’l K,@})(r,rl,w})
~w 27T (0] —w, —i07)

where

® dw .
KiP(r, l‘1at1)=f ‘—27:1 exp(~zmlt])K,.(j”(r,r‘l,wl)
~w

1 |
=T (A 1), 4,0, 0))).

(27)

(28)

The sum-rules for the frequency moments of K (w;) may be obtained by taking
Tepeated time derivatives of the above equations, and then putting ¢, = 0. With the use

of the relation

A 1 ~
e T - 40)
one then finds
. * dw 1
- 2t TR 00 = e

CUH, [H, . . [H,4,0)] 11 4;(r) 1.

As done above, when it is not likely to cause any

(29)

confusion, we will sometimes omit

writing spatial variables explicitly. From (30), the high-frequency expansion of z® (w,)

can then be calculated by using the series

(1) o 1 ® doy | m (1) ,
Xij (l'al'laah): - Z =TT = (o)) Kij (r,ry, o).
o7 2ni

m=0

(1)

Similarly, using (22) and (23), the second-order response function has the explicit form

© dw| [[* dw'

(2) . 1 2
Xijk(r’rlsrzamnwz)=SYm(Jl’1601 kl’zwz)f —_f —2
’ —w 2mi [__ 2mi

X Kl('}k)(r’rlal'Z:w'law,Z)
(w’l—a)1~w2~i0+)(co’2-co,_—i0+)’
* dw, [* du
2

Kf’jk)(ﬁ,tz):f “2;5 Tz
o —w 2T
exP(‘iwlﬁ)eXP(“iwztz)Kg}k)(wnwz)

1

where

=W<[[Ai(r)’Af(r1’ -t1)],Ak("2, —t,—t)]).

E—

(32)

(33)
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Again, the moment sum rules may be obtained by repeated differentiation with respect
to t, and t,, to find :

do, (d
‘227”-1’ %Kﬁfz(wnwz)w?w?
1
=(—_—W—(;§m-<[[H, [H,..[HA@®].. . L4;r)]
[H,[H,.. [H A(r)].. 1117 (34)

where the first term involves n derivatives and the last term m derivatives. The high
frequency expansion of x'? is then given by
dof

: dow: .o
ngzk) (wl,coz) = sym (jr, w,, kl‘zwz)J‘EJ‘Eﬁz Kszk) (0%, 5)

< § 3 _wrer o

0 meo (0 @, oyt

It is straightforward to obtain similar results for the third-order response function
2 by using (24) and (25). For this, the explicit representation is given by

3 o
Xijlzl (l', rl’r2ar3,w1’w2’w3)

. ® dw) [® do) [® doj
= sym (jry @y, kr,0,,Ir;0;) i | omi | 7w

X Kg?k)lr: I, rz;rs,wﬁ,a"z’wls) (36)
[} - N+ .
(@), =0, —w, — 0y —i07) (@, — @, — w3 —i0%) (0 — 3 —107)

The frequency moment sum rules and the high-frequency expansion for 2™ can be

derived by the method already described for ¥ and x®. ,
Before we conclude this section, it is instructive to examine the representations of

1P (1), 1 (@, 0,) and ¥? (0, 0,,w3) given by (27), (32) and (36), respectively.
Calculations of K™ defined by (15) in time space, in the representation where the system
Hamiltonian is diagonal, show that these well-behaved real functions vary in tim? with
periodic exponential factors like exp{ + (i/#)|AE|t} where AE’s are the differences in any
two energy eigenvalues of the system Hamiltonian H. Therefore, the multiple Fpuncr
transform of K™ in the frequency space has strength only when its frequencies o},
coincide with any of the quantities + |AE|/A. This implies that x*) (o, ) has a resonant
structure whenfiw; = +|AE|. Similarly, y® (w;, w,) has resonances whenever @, or @, or
(e, + w,) coincides with any + |AE|/fiand x** (,, ,, w;) has resonances when w, or
@, OT W, OF (@, +@,) OF (0, + w3) OF (W3 +,) Or (@, +®, + w,) coincides with any
+ |AE|/h of the system.

4. Application of sum-rules

-order response

As a simple example, let us apply our general sum rule for the second. ‘
it is enough to

function z® in the case of optical dipole nonlinearity. In this case,
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consider the induced electronic polarizabilities of the system. The unperturbed

Hamiltonian for the electronic system may be taken to be a sum of single-particle -

Hamiltonians of the type

2

H=2 1 yxQ=0, | (37)
2m

where the complete single-particle potential ¥ (x, Q) depends on the c-number normal
coordinates Q of the ionic motion from the equilibrium ionic positions. The external
interaction for the ionic system may be assumed to arise from both the jonic motion

field and also from external optical field E. In the electric dipole approximation, to the
lowest order in the jonic motion, one, therefore, has

h = ex-E(t) + (0V/0Q) Q(¢). (38)

Identification of h i}n terms of the physical variables 4; and external fields g, (r, t)
introduced in §2, leads to

A= —ex; A= —%:
a;(r;,t;) = E(t;); a3 =0Q; i=123, (39)

The electronic response is now related to the evaluation of the expectation. value of
A, i=1,2,3 only.

Using the commutation relations of the type
[x;, pjl=ih 5;‘,‘,

—ih

H,x;]=—p,

(4, x;] P

[, 1, %11 = (—itjm) (1) 27

2 £ (X)] = —if %f (40)

and other higher order relations, one can evaluate the leading terms in (35) and (34). If

the susceptibility for N electrons is split into the pure electronic part and the Raman
part in the form (n,= N /volume)

e =X, (@1 +@;))nupr = XFF (01, 0,) Ej(@,) Ey (@,)
+ (0, 2 0,) term (if @, # w,) »
n.{ —ex; (@, +w,) >2eQE = Xi(Jz'I)ceQE(wh ©02)Q; (1) Ey () (41)
ne{ —ex;(w; + w,) Y2erg = 1% (5, 1)@k (02) Ej(wy), etc.,
so that i, j, k are allowed values 1, 2, 3 only, one finds that the leading terms in the

expansion (35) arise from n = 4m=0and n=3 m=1 for 2PEE (0,, w,), and
fromn = 1,m = 1 for y@eQE (@, ®,). For optical frequencies, we assume Q to be zero.
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Explicitly, to the leading orders, we find
XgleEE (wl 9 C”z)

. —e> 0 9 @
= sym(Ja)l,sz)—';g— (5—;%5
i J k

V>

2 1
X + n
{(wl Yo,y o, +w2)4w§} ‘

_—e n, 680, o
m* (w,+w,) wiw] \|0x; 0x; 0x, ’ (42)
and
: 2
5oy, = % ([ 2220
Xl l (wlst) m2 <{axi aQJ axk (a)l+w2)2m§- (43)

In the last equation, w, and w; + o, are both in the optical frequency range, the ionic
frequency w, being small compared to these frequencies.

Examination of (42) and (43) immediately shows that the second-order electronic
nonlinearities at high frequencies, either of the optical mixing type or the Raman type,
are related to the third derivative of the electronic potential ¥'(x,Q). The second
derivative with respect to the electronic coordinate x, of course, gives the linear
harmonic force. The additional third derivative with respect to x leads to nonlinearity
describing mixing, difference frequency generation and harmonic generations of two
optical waves, whereas the additional derivative with respect to Q leads to the Raman
process. Similarly, the existence of nonvanishing higher-order derivatives of V implies

"that the higher-order nonlinear response functions are non-zero for such systems. The

explicit proof given here for the second-order nonlinearity justifies the use of such a
nonlinear force term (A garwal and Jha 1983) to model the dynamics of electronic system
in a simplified way. The external ionic displacement field Q(+ w, ) can, of course, be
generated, e.g., by mixing two optical fields E(w,)and E(+ 0, — ;). When thx§ is put
in the second equation of (41), we immediately see how the Raman digolle_pola‘nzat‘lo'n
at w, + w, gets related to a pure third-order nonlinear optical susceptibility, since 1t 1S
then proportional to E (@, ) E(0,) E(£ 0, —®;),0n elimination of Q(+ ®,) (Agarwal
and Jha 1983).

Without further discussion, we conclude this paper by reminding our‘sglves that we
have still not considered the consequences of the dispersion relations arising from the
causality (Goldberger 1960) of linear as well as non-linear responses. The importance ot;“
these relations as well as other interesting applications of the nonlinear response theory
will be considered in another paper.
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