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Abstract. Approximate analytic solutions to the self similar equations of gas dynamics
for a plasma, treated as an ideal gas with specific heat ratio y=15/3, are obtained for the

implosion and subsequent reflection of various types of shock sequences in spherical
and cylindrical geometries. Thisis based on the lowest-order polynomial approxima-
tion, in the reduced fluid velocity, for a suitable nonlinear function of the sound velocity
and the fluid velocity. However, the method developed here is powerful enough to
be extended analytically to higher order polynomial approximations, to obtain succes-
sive approximations to the exact self-similar solutions. Also obtained, for the first
time, are exact asymptotic solutions, in analytic form, for the reflected shocks. Criteria
are given that may enable one to make a choice between the two geometries for maximis-
ing compression or temperature of the gas. These solutions should be useful in the
study of inertial confinement of a plasma.

Keywords. Self-similar equations; shock sequences; implosion; asymptotic solution;
spherical and cylindrical geometries. .

1. Introduction

Recent experimental and theoretical schemes for producing fusionable temperatures
using high-power ion beams or relativistic electron beams (Bogolyubskii et al 1976;
Clauser et al 1977; Chang et al 1975), and the experiments using lasers for the same
purpose under way at many laboratories, including the Lawrence Livermore Labora-
tory, have given a great impetus to the study of the dynamics of the implosion of
shock waves in a thermonuclear plasma. The implosion helps reduce the input
energy by compressing the fusion fuel to high densities before it is heated to fusionable
temperatures. It also obviates the necessity of external magnetic confinement of
the plasma so produced. Classical studies of the implosion problem in an ideal gas,
although mostly numerical, produced a number of important results. Among these
is the well-known study by Guderley (1942) that the maximum compression in the
implosion of a single strong shock is limited to a definite value for any v, where y is
the ratio of specific heats in the ideal gas. However, these studies involve a great
deal of numerical computation, and do not throw much light on the way the various
parameters affect the dynamics of the implosion and the subsequent reflection of
shock waves. In this paper, we seek approximate but sufficiently accurate analytic
solutions to the problem, for both the spherical and cylindrical geometries. Some
work along these lines for the spherical geometry has already been reported by us
recently (Jha and Chavda 1977). As already shown there, at high temperatures
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being considered here, the fusionable material (D-T pellet) can be treated as an ideal
gas of y = 5/3. The analytic approach presented here enables us to study the para-
meters that control the growth of the pressure, the temperature, etc. much more
transparently. In particular, we can exhibit explicitly the role played by the geo-
metry of the implosion. We also present, for the first time, the exact asymptotic
solution to the motion of the reflected shocks in an analytic form. The paper is
organised as follows. In section 2, we present for an ideal gas, the one-dimensional
hydrodynamic partial different equations for an arbitrary geometry. The self-
similar equations, which give the exact behaviour at the point of implosion, and their
symmetry and non-linearity properties are also discussed in this section. Formal
exact solutions to the self-similarity equations are presented in the form of continued
fractions in section 3. More useful approximate solutions are presented in section 4,
where the exact asymptotic solution to the motion of the reflected shocks is also to be
found. We conclude this work in section 3.

2. Self-similarity equations and their symmetry and non-linearity properties

2.1. Hydrodynamic equations

Let u, p, p, ¢ define the gas velocity in the symmetry direction, the density of the gas,
the pressure of the gas and the speed of sound in the gas, respectively. All these
quantities are measured at the point of observation at all times. The point of obser-
vation is at a distance r from the centre of symmetry. For the spherical geometry
r = 0 is the centre of the sphere and for the cylindrical geometry » = 0 is the axis
of the cylinder. In both these cases, u represents the radial velocity. The time
¢ = 0 is the time at which the incident shock front arrives at the centre of symmetry.
In the absence of dissipation and the external source term, we can then write the

hydrodynamic conservation laws for mass, momentum and energy in the form
(Stanyukovich 1960)

2 (ing) -+ 2 () + _+ z= | M
ou  ,ou lop_ | o
ot ar p or v
2 _ 8 |
9 In(pp") + uZIn (pp”) =
p n (pp™") + uo n(pp”) =0 3)

where N equals 0, 1, 2 for the plane, the cylindrical and the spherical geometries,
respectively.

2.2. Self-similar equations

We consider a spherical or a cylindrical fuel pellet consisting of an equal mixture of
deuterium (D) and tritium (T), at solid densities. Relativistic electrons, lasers or
ion beams provide the piston action for the implosion. We treat the D-T plasma as
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an ideal gas with y = 5/3 and an average electron-ion mass M/2 approximately,
where M is the mass of an ion. Although the formalism presented here is valid for
arbitrary y, we shall present final numerical results for the important case of y = 5/3
only. In this paper, we examine the following three types of shocks: (2) A single
strong shock (the 1S case), (b) A coalesced sequence consisting of a single strong shock
followed by m—1 weak ones (the 15 (m—1) W case) launched in such a way that they
all merge into a single shock front at a distance r,, from the centre of symmetry,
(c) A coalesced sequence of m weak shocks launched as in (b). In each case, after
the coalescence of the shocks, one must consider four regions. We denote by A the
region in which the incident (coalesced) shock front has not yet reached the point of
observation (¢ < 0). Region B is one where this incident shock front has passed
the observation point but has not yet reached the centre of symmetry (7 still less
than zero). C denotes the region where the front is reflected from the centre, but
has not yet arrived at the point of observation (z > 0), and D is the region where the
reflected shock front is past the observation point (¢ greater than zero).

The characteristic variables of the problem are p, u, p, 7, L The fundamental
dimensions from which these can be constructed are the length (L), the mass (M) and
the time (7). We shall, however, take R (D), po, and R,(t) as the independent dimen-
sional quantities to correspond to L, M, T. Here p, is the density of the undisturbed
gas and R,(t) is the position of the incident (coalesced) shock front at time 7. Also,
since p,R,2(f) has the dimensions of pressure, we shall take the former as the pressure
scale. Using these scales, we may construct corresponding reduced, dimensionless
functions from p, u, pand c¢. These reduced functions will, in general, depend upon
(See e.g., Zeldovich and Raizer 1967) two dimensionless variables r/R,( f)and #/| 1, |
where | #, | is the time it takes the incident shock front to reach the centre of symmetry
from the point of observation. We note that 7, <0 because we have taken t =0
to be the time at which the incident shock front arrives at the centre of symmetry.
For small negative ¢, one may expand R,(7) as

R(t) = Z, g (—1)5 1<0... @
For sufficiently small (negative) values of ¢ one may approximate it as
R/t) = £(—1)%; t <0 )

where a is the smallest power in the expansion, eq. (4). Asymptotically, as ¢ -0,
eq. (5) is exact. The region where eq. (5) is approximately valid is the region of self-
similarity, and o is the self-similarity index. In this region, in view of eq. (5), the
variables r/R,(¢) and t/|¢,| are no longer independent of each other. Consequently
the reduced functions constructed from p, u, p, ¢ will depend upon only one variable

s =1/ |t ' (6)

we assume that the point of coalescence, ry, and the point of observation r(r<r,,)
are both approximately inside the region of self-similarity. From eq. (6) it follows
that the incident shock front arrives at the point of observaton at s = —1. Further-
more, :
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Ri(ty) = r = £(—ty); ltol = (r/&)lfe (7
FR(f) = (—s)e; 5<0 @®
D) = Ry(ty) = —a &lle pla-1)a ©)
R(t) = Dyr) (—s)1; s <0 | (10)
and
=1 [D,(7)| (11)
- o

where D,(r) is the speed of the incident shock front when the latter arrives at the
point of observation. It can be shown that the motion after the implosion (z > 0)
(Guderley 1942; Zeldovich and Raizer 1967) is also self-similar with the same a.
Thus, for the position Rg(t) for the reflected front we can write

Ry(t) = £@t[s™e; t>0 (12)
RR(t) = Dy(r) so-1; Dy(r) = ]D,(r)|/s* (13)
(s/s%)@ = r/Ry(t); s> 0 (19

where s = s* corresponds to the return of the reflected shock front to the point of
observation. In the region of self-similarity, one can define the reduced dimension-
less functions as follows:

u = (r/t) V(s) | (15)
P = po G(s) (16)
€ = (r*/r2) Z(s). (17)

We recall that p, p, u, ¢ are measured at the point of observation at all times. In the
. region B, the gas is moving towards the centre of symmetry. Therefore u is negative
but so also is z. Thus, in view of eq. (15), V(s)> 0, for s <0. In the region C,
reflection of the incident shock front is taking place at the centre of symmetry. How-
ever, the reflected shock front has not yet reached the point of observation. Thus,
at the point of observation, the gas is still moving towards the centre of symmetry.
Consequently u is still negative although ¢ >0. Therefore, in view of eq. (15),
V(s) <0, for s> 0, but s < s* Similarly, in the region D, V(s) > 0, s> s*.
G and Z are, of course, positive in all regions. In terms of the reduced functions,
one can show that the three partial differential eqs (1)-(3) reduce to three ordinary
differential equations in the region of self-similarity. One can also obtain an exact
adiabatic integral from these three ordinary differential equations (Zeldovich and
Raizer 1967). The two ordinary differential equations and the adiabatic integral
are given by (Jha and Chavda 1977; Stanyukovich 1960).
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dinZ _ y—1 _ o[(1+(N+1) y—2)V—2] dIn|s]|

18
v a—V a—V av (1)
din|s| _ (e—V)P—2Z A (19)
dv ZINADV —pl—=V(A=V)e—V) Ay

G = Cs— 20N+ ZzalN+ho ( _py200=e) 7. o _ congt, (20)
where

u=2(1—a)/y and 1/o = a[(N+1) y+1 —N] —2. 1)
Note that one may also write eq. (18) as

v g(V)Z—g, (V)
where g, are the known polynomials in V-

& = 21— a)+2y(a—V); g3 = 2p(a—V )2 (1—=P)+y(y—1) V(a—V)
X (2V—3a-+1)

& =3y (a—V)[V—2(1—0a)/37]; gy = Y (e—VY (1—V)V
2.3, Symmetry and nonlinearity properties

Since eq. (22) cannot be exactly solved, we must study its symmetry and non-linearity
properties. The knowledge gained may lead to a better understanding of the equa-
tion, and may also be useful in obtaining more accurate solutions. Let us define a
transformation T that does the following: Z->1/Z, g;«— — g, and gy <—>g,. It is
easy to see that under this transformation, eq. (22) remains form-invariant. Thus,
T, is a symmetry transformation. There is yet one more transformation T, say,
which does the following. Z—1/Z, g« g;, g3 <~ —g,. T, is also a symmetry
transformation. Let us define a new dependent variable

&1Z — &2
p=8Z "% (23)
832 — g4

It is easily seen that
Tin=—n1; i=12 ‘ @9

These considerations help us to reduce the differential eq (22) to the following canoni-
cal form |

g.f’; =a(V) + nb(V) + we(V) + n%d(V) @)
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where a, b, ¢, d are known functions of g,(¥') and their first derivatives. We note
that we do not have to use any specific properties of g; to come so far, except that the
locations of the singularities of a, b, ¢, d will depend upon the actual forms of the g
At the positions of these singularities the above considerations will not hold. Bear-
ing this precaution in mind, we may claim that any differential equation of the form
of eq. (22), with arbitrary g,, can always be reduced to the canonical form eq. (25).
The latter may be compared with another nonlinear equation, namely, the Riccati
equation which has terms up to the quadratic in the dependent variable on the right
hand side. Thus, eq. (25) proves to be even more non-linear than the Riccati equa-
tion. In general, the Riccati equation cannot always be solved. However, if one
solution is known, another can always be constructed from it. Whether such is also
the case for eq. (25) remains to be investigated. However, eq. (25) must have at
least two distinct solutions; one corresponding to the imploding motion and another
corresponding to the exploding motion of the shock-front. '

3. Formal exact solution

If we let ¢ = g;Z — g,, we can reduce eq. (22) to the following form

A pa— o =%? - (262)

where P, Q, R are known functions of the g; and their first derivatives:

P=(g5' +&)lgs; @ = (8,85 + 2818, — 828: — £,85)]25
R = (8184 — £:838))/2s - (26b)

Here prime denotes differentiation with respect to ¥. The left hand side of eq. (26)
has the standard form of a linear differential equation. However, we must show
that the right hand side is well defined at ¢ = 0, before we can utilize this interesting
connection with the linear differential equation. We proceed as follows. The
physical quantities u, p, ¢ must remain finite for finite values of r. Therefore, from
eqs (11), (15) and (17), it is clear that as s—0, '

V(s)—>s R : 270
Z(s)—>s? ’ } (28)
or.(Zeldovich and Raizer 1967).
. Z(V)> V2 as V-0, | - (29)

Now g,—> V and g, constant, as V'—0. Therefore, ¢—0 in the same limit.
However, R(V) is such that R(V)/q goes to a finite limit, as ¥ 0. Thus eq. (26)
remains well defined at g =0. This enables us to-write a formal solution of eq. (26)
in terms of recurring continued fractions as follows: ‘

R(V)dv -
q=am+EWJ4m+mm-mmﬂ, (30)

E R
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where - R |
q =832 — 8 | , , (1)
o (V)av
AY) = E(V)f e ‘ -
L E(W) =exp (JR(V)AY). o -

Having solved for Z = Z(V), one can use eq. (19) to solve for s = s(V) by a mere
quadrature. The adiabatic integral provides the third exact solution. = Thus we have,
in principle, a complete set of exact solutions. However, they are not very useful in
practice, because of the integrations over continued fractions involved in eq. (30).
Therefore, we turn to approximate solutions. '

4. Approximate solutions

4.1. Initial boundary conditions

To determine the initial boundary conditions for the three types of shocks, namely,
the 18, the 1S(m—1)W and the mW cases, we proceed as follows. Let us consider
an infinitesimally thin surface of discontinuity moving with a radial velocity D,
from region 1 towards region 0 which is closer to the centre of symmetry. In the
rest frame of the surface of discontinuity the integration of eqs (1)~(3) leads to the
following jump conditions:

(uy — Dy) P1 = (uy — D) pg . S , | ‘ (349)
D1+ py (g — Di)? = py + poltty — Dl) | (35)
& + 31y — D) + pifpy = € + ¥ty — Dy -+ Dolpy (36)

where e is the internal energy per unit mass. Assumm(r the isentropic equation of
state for an ideal gas, one can show that (Jha and Chavda 1977) the jump conditions
for a single strong shock (p,/p, > 1) reduce to

plpo = (v + Dity —=1) . . (372)

o — Y _%l’._)m' 172 ‘

th & y(y T (p4/po) | | (37b)

I ] ot Y

where u,, the gas speed in the undisturbed gas, is taken to be, zero. In terms of the
reduced functions these boundary conditions for-the 1.5 casé are” E

Vis = —1) = 2a/(y+1) L e T e e (38a)
B A el Ve 27(7—1)a2/(7’+1)2 N (38b)
 Ge= DG, T e
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To get the jump conditions for the mW case, one must iterate eqs ( 34 36). On doing
§0, one gets (Jha and Chavda 1977)

Pulpo = (Pulp)™” (39a)

~— 2o o=t/ 39b
t &2 —  (PulPo) | (39b)
Dy == — o (Z i l) (pm/po)(y..l)/y (390)

Here we have used the notation in which the quantities in the region between shocks
n and n 4 1, are labelled by » and we have assumed that p,/p,, —1 <1,
m>=n>1, and (p,/p)”" 172 > 1. In terms of the reduced functions, for the
boundary values in the mW case one gets

V(—1) = 2a/(y+1) (402)
Z(=1) =~ a2(y—13[(y+1)° (400)
G(—1) 2= (Pmfpo)*"” v (40c)

where V(—1) refers to the ;'alue of V(s) at s = —1. Similarly for the 1S(m—DW
case one gets

1 y
Pm/PO & (')Yl_j‘_—_l_) (Pm/pl)l/ (4121) .
) 2¢, _1) /99 '
Uiy = — (pm/pl)( v (41b)
y—1
Dus— (120 (oo @19
Y —

where (pu/p)” V%" > 1 and pyjp, > 1, but (pupsy) —1 <1, for m>n>2.
Thus, for the 1.5 (m—1)W case, one gets the boundary conditions:

V(—1) 2 2a/(y-+1) (42a)
Z(~1) = ly—1R[(y+1¢ | (42b)
G—1) =~ (V'“) Pnlp"” 4

4.2. Determination of the self-similarity index o

The solutions in the region A are the trivial undisturbed ones. In the region B, the
Z—V curve must pass through the origin 0 as is clear from eq. (29). This is true
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Figure 1. Possible physical integral curves in different regions of the ¥—Z plane, and
the location of singular points (P,, Pg), and the initial boundary points (4, 4°). Only
the solid curves represent possible solutions for the mW and the 1S(m—1)W cases.
For the 1S case the physical curve has to extend up to the point 4 given by
Ra/(y-+1), 2y(y— Da?/(y+1)2]

for all three cases under consideration. Another point which the Z—V curve in
the region B must pass through is the boundary point s = —1. We denote it as
A in figure 1. Its coordinates are given by egs (38), (40) and (42) for the three cases
under consideration. For the 1.5 case, it lies above the parabola A = (e—V)2—Z=0.
For the other two cases it lies almost on the parabola; albeit slightly above it. Thus,
in all three cases, the Z— ¥ curve must pass through points 0 and A which lie on the
opposite sides of the parabola A =0 (see figure 1). Therefore the curve must inter-
sect the parabola. The points of intersection will, in general, be extrema of the
s =s(V) curve as is evident from eq. (19). The single valuedness of the physical
quantities requires that there be no extrema at the points of intersection. This can
only be achieved by demanding that A, also vanish when A=0. This determines
the singular points of the differential equation (19) as

V, =B, (B*— pa/Npe ' (43)
and

Z, =(a—V_y | (44)
where

B = (p+(N+1) a—D2N; p=2A(1—a)/y. (45)

Let us denote by P, and P, the points obtained by taking the upper and the lower
signs, respectively, in eqs (43) and (44). The imploding (exploding) solution must
pass through the point P;(P,) as shown in figure 1.

Since the point A lies almost on the parabola for the mW and the 1S (m—1)W

P—-7
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cases, we equate the abscissa of A given by eqs (40a) and (42a) with the abscissa
V. of P, given by eq. (43). This immediately determines the similarity index o as

—_ D@D
(N-+2)y*—(N—1)y—1

(46)

For the spherical (N = 2) and the cylindrical (N = 1) geometries the values of « are
14/19 = 0-736842 and o = 28/33 = 0-848485, respectively, when y = 5/3. These
considerations do not apply to the 1S case, since there the boundary point A is dis-
tinct from the point P;.  For the latter one has.to find a solution that passes through
the origin and has a constant of integration. The solution must also pass through
the distinct points A and P,. This leads to over-determination of the solution, i.e.,
a relation between o and y. For a given approximate solution one can explicitly dis-
play this relationship between a and y. For the 1.5 case, using the solutions presented
in the next section, we get a = 0-815567 and o = 0-688273, for N =1 and N = 2,
respectively. For a more accurate value of a for the 1S case, one must solve the
differential equation numerically (Zeldovich and Raizer 1967). Here, too, it is the
over-determination of the solution that gives the value of «.

4.3. Approximate solutions in regions B and C

Using eq. (29), one can show that a quantity defined as

A V(=1
FZ, V)= 2
@) A1 (e—7) @)

tends to unity as ' 0. Similarly, if the point P, is approached in such a way that
Z = Z,-¢, where ¢ approaches zero through positive values, and V = V., held
fixed, F again tends to unity. Here V., and Z, are the coordinates of P, defined in
eqs (43) and (44). However, for more general directions of approaching P, the
quantity F may differ somewhat from unity at P,. Let us see how to determine F
at the point Py, in the general case. From eqs (29) and (47) we may write F as

_ V(1—V) Z—(a—V)? (48)
(N+D [V—u/(N+D)] (a—V) §Z—~ V(1-—7v) (a—V) }
| (N+D) [V—p/(N+1)]S

Now at Pg, A = A; =0. Thatis,

N+D)| vV, — 2
@+ (v

)(a—-V+) =V, 1=V p =209

(49)

Using this, we have, at P,

F = Lim Z—(a—V)
Y4 ;
LTl (N+D [V—p[(N+1)]

X, +C dZ)
= y X =2
A, R (dV i ' | (50)

&
i
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a where
:%,:f C = 2((1-— V+) (51)
7€ and
D= Vi 1—=V.) (a—V3) -+ ' Vi (1—V5)
N+1 (V -_ff._) N+1 (V K )
N+ | Vs fa WN+D( Vs N
+ V+ (a-—V+) _ (1'—'V+) (Ct"‘"V+) . (52)
N+1 (V —__ff__) N1 (V m_"_)
( WV N N+D{ Vs ¥l
We determine X, as follows. From eqgs (18) and (19), we have
dz _ | »=1 _ _[4+@+Dy—2r—2
av oV | oo
(N+D(0o—P)| V — ——
O+ ¥ — 2]
[Z—(a—V)?]
X (53)
[Z_ Va—7) (a—7) ]
N+ (v —F )
W+ (7 =
Hence,
X, + C]
X, =dy — By | =+
L=y — B T2 (59
where, A3 = (y—1) (a—V,)
: NtV — L)
@+ (v -
For the mW and the 1S(m—1)W cases, with N = 2, we have
| 7 28 7 14
Ay = —; =_——; C=—; D=_.
7 A T 19 51 (56)
Using these values we can solve the quadratic eq. (54) to yield
* X, =0087; X,, = —0266 (s7)

We expect the slope at P; to be positive. Therefore, using the first value X, _ in
place of X, in eq. (50), we find

F=126atP, | (58)
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Thus, even in the most general case, the value of Fis close to unity at P,. Keeping
aside the problem of more accurate curve fitting for the future, we shall, therefore,
make the simplest possible approximation here that F' ~ 1 throughout the region B.
That is,

A (a—V)

=~ 7 | everywhere in B, : (59
Ar V(=D

This approximation makes the right hand sides of eqs (18) and (19), functions of V'
only. Simple integration of these equations leads to the following approximate
solutions.

pe (I—V)(”—l) N+1)

Z ~ | K| oy (60a)

s — | Ky | V(1—V)(—9e | (60b)
N+1

G~ |K) 9_(“:97;_ (600)

where the constants K; can be determined from the initial boundary conditions (38),
(40) and (42), for the three cases under consideration. Considering the boundary
conditions, we find that in the region B

0<r« % for all three cases. ’ | (61

Y

Our approximation (59) seems to be bad for the case of the 15 only, when we substi-
tute the analytical solutions back into eq. (47). For other cases, our solutions are
excellent.

In the region C, the quantities p, u, p, ¢ will continue to develop as they did in the
region B, because the reflected shock front has not yet arrived at the point of observa-
tion where these quantities are measured. Thus, we may analytically continue the
approximate solutions, eqs (60), from the region B to the region C merely by changing
sto —s. Having obtained the solutions in the region C, we now turn to calculate the

important parameter, s¥, defined after eq. (14). This is obtained from (Jha and
Chavda 1977)

r(1—a)/a
1s* =1+ lim [K@}:l—i [1_— _2_“.] , (62)
s>0 Los y+1 y+1

Since u and V are both negative in the region C, s*<1. Knowing s*, and using the
approximate solutions in the region C, we can calculate ¥, Z, G just before the reflected
shock front reaches the point of observation. Let us denote these values by V(s%)

Z(s*) and G (s*). These and the values of a and s* are presented below for the three,
cases under consideration when y=5/3. A comparison of eqs (40a), (40b), with
eqs (42a), (42b) shows that the initial boundary conditions for the Z=Z(V) curve
for the mW and the 1S(m—1)W cases are the same. Then from eqs (60) it follows
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that the constants K; and K, as also the parameters a and s* are also the same for
the two cases (Chavda 1977). Hence for the spherical geometry with N=2 we get
the following common values for the two cases

o o 14/19=0736842 ~ (63a)
5% 20 2:29 (63b)
Ve(s*) 2 077 | (630
Z(s%) = 0-26. (63d)

However, the values G (s*) are different for the two cases and are given by

G.(s%) = 30-4 (Z’T_l ) (Pul2)V? for mW (63¢)
y+1 - .

G.(s*) = 1216 (2%“%) (PP for 1S(m—1) W (63f)
T

For the cylindrical geometry, with N=1, we have the following common values for
the mW and the 1.S(m—1)W cases

0.2 28/33=0-848485 | (64a)

s* 2 2:67 (64b)

V(s*)~—123 (64c)

Z(s*¥) =041 (64d)
and

6.6 21536 (L2 ) (pulpo?” for mb . (64e)

G5 6144 (1) (pulpi?” fox 15 en—D)W. (641)

As already stated, the approximate solutions, eq. (60), are not appropriate for the
1§ case because the values of various parameters, except that of a, calculated there-
from deviate substantially from the exact ones, known from previous numerical
work (Goldman 1977). We will not consider the 1.5 case any more in the context of
our present approximation scheme in the regions B and C.

4.4, Exact asymptotic solution in the region D

At s=s* the various quantities undergo further shock discontinuities given by
(Jha and Chavda 1977)

2 \Z,—~(a—V,)2
V :Vc ( [+ [
Gl y+1) Ve—a)

(65a)
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G,=G, [Vc‘“ “] (65b)

V,—a

“p= (,,_3)2[1+ ('yil) (a—Z ;fc)z] [ (yz—yl) (V“_a)z—z”] (63¢)

where V, = V, (s¥), V), = V,, (s*), etc. Equation (65) provides the starting values
for the integral curves in the region D. The motion in the region D is again self-
similar with the same «. However, the solution must now be of the explosive
type, i.e., — ad In|s|/dV<0. It must also pass through the singular point P, of
figure 1.

In the following, we present, for the first time, the exact asymptotic solution in the
region D.  We also give solutions that serve as good approximations throughout the
region D. In the asymptotic region, Z-co and s—>co. It is clear from eq. (19)
that unless

VoV = (N —1); pp = 20— (66)
and

Z— , a8 s~>oo and Z- o 6N

—row

with

C<h (68)
where

do= L2 (1= Vo) Vo) )

N+1 : ;

the solution will not be of the explosive type. The constant C is determined by a self-
consistency condition, viz., that the logarithmic derivative of Z, obtained from eq.
(67), must equal that obtained from eq. (18), in the asymptotic region. This determines
C uniquely as

C=Mf(1-F2) | (70)
where
A1=2_ Veol(N+ 1)7“N+1] = dy . (71
N+1D(e—Vw) NA+1)(a—V o)

For both the mW and the 1S(m—1)W cases we have C=0-015 and C=0-01082 for
N=1 and N=2 respectively. For the 1§ case the corresponding values are C=:0-016
and C=0-01086, respectively, This implies that, asymptotically, the reduced sound

velocity V/Z is higher for the 1.5 case than for the other two cases, for both geometries.

Equation (67) with parameters given by eqs (70) and (71) gives the exact asymptotic
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solutions. A nontrivial asset of eq. (67) is that it has no free parameters. The
condition, eq. (68), for the asymptotic solution to be of the explosive type reduces to

o/(1—a)>(1—N)/[y(1+N)]. (72

For the cylindrical (N=1) and the spherical (N==2) geometries, this condition is
trivially satisfied, thus ensuring that our asymptotic solution is indeed of the explosive
type. The remaining asymptotic solutions can be obtained as follows. Substituting
eq. (68) into eq. (19) gives

s=k(V—V) Ps as s+00, V>V (73)
with |

1Py = a(N+1)A,. (74)
Substituting eq. (73) into eq. (18), we find a solution that not only goes over to eq.

(67) in the asymptotic region, but also serves as a fairly good approximation in the
whole of the D region. Itis

Z=lky(a—V)"B(V—=V ) | (75)
where

key=Z(a—V YV p—Veo) (76)
and ‘

g=y—1+[1+(N+1)y—N)a—2]/d, (77)

- and where V), Z,, etc. are defined by eq. (65) and 4, is defined by eq. (71). Substitu-

tion of egs (73) and (75) into the adiabatic integral, eq. (20), leads to

G=k(a—V) OV =V )bz (78)
where

G=Gleo (L) a0 19)

by=1+a (N+1)/d; (80)

by=p/d;. (81)

In eq. (79); p,=p, for the mW case and p,=p for the 1S(m~1)Wcasé. The constant
k, m eq. (78) is determined from

K, = Gyla—Vp)b1 | (V= Vi)l (82)

Using egs (63), (64) and (65), we get the following common starting values for the
mW and the 1S(m—1)W cases for the spherical geometry, N =2:

V(%) ~ 023 (832)
Z(s%) 093 | (83b)
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and v

G, (s*) = 90-84 (Z‘_i) (Pmlp)t!” for mW (83c)
o

G (s*) = 363-36 (Z%)(pm/pl)lf’ for 1S(m—1)W. | (83d)
) : Y

Similarly the common starting values for the two cases for the cylindrical geometry,
N=1, are:

Vp(s*) =018 (84a)
Zp(s¥) 22170 (84b)
and
—1
G p(s*) = 47.76 (7__ (p"Ipt'? for mW (84c)
y+1
—~1 ,
Gp(s*) =~ 191-04 (L_- (Pufp )Y for 1S(m—1)W (84d)
v+l
Y =5/3
—— Pressure
— 20~ —=—Density N
£ N =1 a = 0.848485 (Cylindricall =
NQH _ . [
N =2 a=0.736842 (Spherical} &
<2, &
“E : =
a 1 5 — U
& 3
T £
X =
X °
S N
o qQf g
1 )
g
2 2
8 n
5 rad s
hel ZN=2 Re)
§ 5 P —-120 §
] i 3
CO:J // - — = ax
7~ —— -
- < — 7 N=1
//’ —
,4:" ///NjZ N=1
Ol 1 i | | (o]
-1 0 1 2 3 a
s =t/ [t

Figure 2, Plots of reduced pressure (left scale) and reduced mass density (right scale)
as functions of s=t/|t,]. Curves are presented for the m ¥ case only. The curves
with N=1 and N=2 refer to the cylindrical and the spherical geometries, respectively.
Curves for the 1.5(m— 1) W case may be obtained by multiplying all ordinates by a factor
4, and by replacing p, by p,.
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s 5/3
- 0:20 7
mW and 1s (m-1) cases
N=t a =0-848485(Cylindrical) N=1
N=2 Q =0 736842(Spherical)
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Figure 3. Plots of reduced temperature (left scale) and reduced fluid velocity (right
scale) as functions of s. The reduced temperature and the reduced fiuid velocity are
the same for the mW and the 1S(m—1)W cases. The labels N=1 and N=2 refer to
the cylindrical and the spherical geometries respectively.

In figures 2 and 3 we plot the following reduced quantities:

ul | Dr)|=V](as) | (85a)
|7/ (w07 @) (25) ot =28t (85b)
kpT/(3MD (1) = Z[(yo’s?) (85¢)

where k, is the Boltzmann constant and T is the absolute temperature, and p,=p,
for the mW case and p,=p, for the 1.8(m—1)W case. From figures 2 and 3 we see that
the reduced pressure, eq. (85b), the reduced density, eq. (79), and the reduced fluid
velocity, eq. (85a), are always higher for spherical geometry than for the cylindrical
geometry. This, however, is not true for the reduced temperature,eq. (85¢). From
figure 3, we see that although the reduced temperatures in the spherical geometry
are higher than those in the cylindrical geometry for the imploding shocks, the
situation is reversed for the reflected shocks. In fact, from eq. (85c) and figure 3,
it is clear that the choice of the geometry depends upon the relative values of two
parameters, namely, Di(r) and [ to|. The former is the speed of the incident shock front
when it reaches the point of observation, and the latter is the time taken by the
incident shock to travel from the point of observation to r=0. In particular, if these
values are the same for the two geometries, then the cylindrical geometry is preferable

L3
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to the spherical one as it (the former) not only gives higher final absolute temperatures
it also yields lower initial temperatures; a most desirable combination to have, f01
thermonuclear fusion in DT plasmas.

5. Discussion

In this paper we have presented approximate but sufficiently accurate solutions for
implosion in spherical and cylindrical geometries. Inthe regions B and C, these simple
approximate solutions work very well for the mW and the 1.S(m—1) W cases but not so
well for the 1S case. In order to get good results for the 15 case, and more accurate
results for the m W and 1S(m—1) W cases, in the regions B and C, we will have to fitthe
function F(Z, V) of eq. (47) by a higher order polynomial in ¥, the coefficients of
which have to be determined self-consistently, using the boundary values and the
differential eq. (53). Here, we have made the lowest order polynomial approxima-
tion, by taking F=1, everywhere in the regions B and C. However, the extension of
our approximation scheme to higher-order poylnomials, as successive approximations,
is quite clear. We hope to take up this problem in the near future, to obtain results
converging to the exact situation. We have also presented, for the first time, the
exact asymptotic solutions, in the region D, in analytic form, for the reflected shocks.
These solutions are applicable to all the three types of shocks mentioned above.
In particular, the solution for the reduced sound speed, Z¥/%, eq. (67), has no free
parameters and predicts that, asymptotically, the reduced sound speed is always
higher for the 1S case than for the other two cases in the spherical as well as the
cylindrical geometries. We have also presented solutions that serve as good approxi-
mations throughout the region D. Criteria for making the choice between the
two geometries are also given. As we have neglected self-heating, our solutions in
the region D will remain valid up to the point before the absorption of « particles
generated in thermonuclear D-T reactions becomes appreclable after the shock
reflection.
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