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Abstract. An approximate method is developed for investigaﬁng the nature of inter-

face exciton modes in a composite spatially dispersive medium. The method is general
enough to be applicable to any composite system, in which each component is des-
cribed by an arbitrary bulk dielectric function e(g, w). It is based on the extension of
the usual electros’gati‘c-image_method of solving the Poisson’s equation, in the presence

metallic sphere of radius R, surrounded by a semiconductor, with a spherical inter-
face between them. With assumed spatially dispersive model dielectric functions for
the bulk metal and the bulk semiconductor, the nature of the electron-electron inter-
action and the interface exciton modes in the metallic region are obtained in both the
cases. For the relevant size of the metal large compared to the atomic dimensions
over which the bulk dielectric functions are non-local due to the spatial dispersion,
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1. Introduction

The study of interface exciton modes in a composite system of a semiconductor and a
metal is of paramount importance in understanding the nature of effective electron-
electron interaction near the junction. The exciton modes are in fact determined by
the poles of the modified electron-electron interaction in the vicinity of the interface.
Hence, they play a definite role in determining various physical properties of the
systems, e.g., in determining the possible existence of the exciton-exchange mechanism
of superconductivity (Ginzburg 1970: Ginzburg and Kirzhnits 1972) in composite
systems or in explaining the details of Schottky effect (Inkson 1972). Though it is
very difficult to obtain (Mills 1972; Ritchie and Marusak 1966 ; Fuchs and Kliewal
1971; Maradudin and Mills 1973; Agarwal 1972) the nature of these modes exactly,
because of the complex nature of the interface, it is often possible to have an under-
standing about their approximate behaviour near the interface. In the first approxi-
mation, this may be enough to answer, for example, whether the exchange of these
excitons leads to an attractive interaction between metal electrons, thereby enhancing
the superconducting transition temperature, as envisaged by the exciton-exchange

mechanism of superconductivity (Rangarajan and Jha 1976; Inkson 1974; Allender
et al 1973).
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In this paper, we obtain the effective electron-electron interaction between metal
electrons in a semiconductor-metal system to obtain the surface exciton mode fre-
quencies. The bulk regions of the metal and the semiconductor are described by
model dielectric functions. The metal dielectric function represents a spatially dis-
persive medium with a single plasmon pole, which in the static limit leads to the usual
screened static Coulomb interaction. We have considered the situations in which
the semiconductor dielectric function is either spatially non-dispersive or spatially
dispersive, but we have chosen only a single-oscillator model to describe the bulk
semiconductor mode frequency. In the classical image approximation, the electro-
static potential in each region, due to a charge —e at r’ in the metal region, can be
written in two parts. The first part is the frequency-dependent screened Coulomb
potential due to the charges inside the bulk metal, while the second part arises due
to the presence of the other medium. The latter is determined by matching the
potentials and the normal components of the displacement vector at the interface.
The interaction between electrons at r and r” inside the metal region is, then, nothing
but the value of the above potential at r times the electronic charge — e.

In section 2, we describe our model dielectric functions which can represent approxi-
mately the bulk metal and the bulk semiconductor. These are used here to study
the exciton modes in plane as well as spherical interface systems. The exciton mode
frequencies in the case of a plane interface are obtained in section 3. The metal is
taken to be a slab of width L, with the semi-infinite semiconductor on one side and
the vacuum on the other side. Here, g,, the tangential component of the wave
vector of the exciton is still 2 good quantum number, though its component in the
direction normal to the surface is no longer a constant of motion. Hence, we can
plot the exciton mode frequencies as a function of ¢,. The particular case of a spa-
tially non-dispersive semiconductor in such a composite system has of course already
been studied earlier (Rangarajan 1975; Rangarajan and Jha 1976). We consider a
spherical interface system consisting of a metallic sphere of radius R inside an infinite
semiconductor in section 4. Starting with a semiconductor which is spatially dis-
persive, we consider the limiting case when the semiconductor becomes spatially
non-dispersive. This can be compared with the earlier results of Srinivasan and
Jha (1977). In the case of a spherical interface, each of the exciton modes is labelled
by its orbital / value, and the frequencies are obtained as a function of the radius of
the metallic sphere. A discussion on the salient features of our calculations in the
plane as well as the spherical interface systems is presented in section 5.

2. Model dielectric functions for the bulk metal and semiconductor

For many applications, the bulk metal may be represented by a wave vector and
frequency dependent dielectric function

1)
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where ¢ = Q2 R €0 304 €y, 18 the contribution from com-

pletely full bands, and where the average screening wave vector Q. due to

,, T



Interface exciton modes
181

the conduction electrons is of the order of the Thomas Fermi wave t
. vector

dTE ==(‘57"”_62/E1~‘)11f' Here, w,,==(47rne2/m)% is the free electron plasma frequ

corresponding to the conduction electrons, In the spatially non-dispersi S
ie. w.he.n 9< Qs, this function describes the collective plasma mOdzpzrswe v i
that limit, while in the static limit, we get the usual screened Coulomb int:rr;:(t:itgxrl -

the two band model (Penn 1962), this problem can,

ably. In this model, assumed to consist of an empty conduction band and a full
valence band, the Bloch states of wave vector k i taken as the linear combination of

two plane waves of wave vector k and k' = (k~—2kF)/lz. In other words, the Bloch

£ C n ba-nd,

[k, 8> = [exp (k1) + b exp (K" 1)] /1 + (ad)2]t/2 %))

with the corresponding energy eigen values

c 1[0 0 0 0\2 )%
E* (K) ——-—Z—[Ek + E) + g(Ek—Ek,) + 17} ]

() = [E,S + By, — { (50~ ) + Ejﬂ ©
Here,
w38 (=150 ©

EQ = (8% k*[2m), and E, is the energy gap parameter which is adjusted to yield the
correct static dielectric constant. The dielectric response function for the semi-
conductor can then be written as

€5 (@ @) = €5, + (4me?[q2 Q) g |k, ¢k +q, ) |2

) 1 1
8 gE" (k) — E° (k+q) — fiw i E° (k) — E? (k+q) + ﬁw} ©)

where ), is the unit cell volume, and k runs over the entire first Brillouin zone. For
completeness, we have also added the contribution €5 arising from other full bands

in the semiconductor. In the zero frequency case, eq. (5) leads to the limiting values

€g (qa O) —;_:3 €500 + (ﬁ‘-"ps/Ey)2 v (6)
€5 (g, 0) —(;:o;* €sop T (Awps/Eg)? _ ™
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where, wps is the plasma frequency corresponding to the free valence-electron den-
sity. We can interpolate between these two behaviours to choose, for all q, the form

(% wps)? 1
E2  1+(EHE)? 4%k

€ (g, 0) = €500 T

= €5, 1 (& — €)1 + ¢%/¥%) ®
where

0= 5 = (haopglEP; v2 = (heopg)? kg? (e — e5,0)/E? ©)
Now, we must incorporate the frequency dependence also. But it can be shown
that no simple interpolation procedure works well in all the regions of q and w.
However, since for ¢ = 0, eq. (5) gives

€s (Os ‘”) = €500 + ﬁszDS/ (E92 - ﬁzwz), (10)

we can combine eqs (8) and (10) into a single expression of the form

(&*—1) *—_%
. (q, w) = € 1 > 0 T — (1 1)
5 (@, w) S0 [ + [1+ (g%/?) — (&/wﬁ)]] ° €500
where
wy = wps (€ — €go0)t2 12

is the usual transverse bulk mode exciton frequency of the semiconductor. Although,
expression (11) is very crude, it may be enough for many calculations of interest in
physics. The bulk mode longitudinal frequency for the semiconductor is, of course,

@y = wy (f €g N2y o0 . (13)

3. Plane interface exciton modes

We consider a composite System of a semiconductor and a metal with a plane inter-
face taken to be the z:=0 plane. The bulk semiconductor (z<0) is represented by
the dielectric function €5 (9, w) given by eq. (11). The metal is assumed to be of
finite length L along the positive z-direction, beyond which is the vacuum. The
model dielectric function given by eq. (1) represents the metal.

In any medium, the electrostatic potential ®(r,w) at r is determined from the
solution of Poisson equation

D(e,) = 4 oy (1) (142)
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where the displacement vector D is given by

D(r, w) = [d% € (1,1, w) - E(', w) (14b)

in terms of the unknown dielectric tensor = for the whole medium, and where the
electric field is

E, ) = Vo, ). | (140)

Here, p,(r) is the external charge density within the medium. The general solution
of eqs (14) for an arbitrary unbounded composite medium is of course given by

d*q" 4mp (q')
@m)?®  qq’

(I)(qa w) = el (qa q’: w) (153')

O, w) = [d% K, 1, o) p’) (15b)

where @(q, ) is the spatial Fourier transform of the potential @(r, w), and where in
terms of the matrix elements of inverse dielectric matrix -1,

v [ [dq , o 4T (g, )
K, v, w)y= (E—w)?’ (—2—_—77)3 exp (iqr) exp (—iq"r') ——q—q7._~ (15c)
with
«@9)=q"<(qq, ) qlgq (15d)
o~ 3 3! ~
e, ', w) = f é%’.a f él;% exp (iq-x) exp (fiq"r’) <(q, ¢, w). (15e)

However, the formal solution given above is of not much value since we have no

knowledge of ‘¢(r, r’, w) near the interface of a composite medium. We must, there-
fore, investigate the problem of composite systems in some other way, which may be
only approximate. Of course, we may model the bulk metal and the bulk semi-
conductor fairly well by homogeneous dielectric functions depending only on the
difference r—r’. In such a case, e(q, q')=¢(q, w) (27)3 8(q—q'); 1 (q, q)=[1/e(g, w)]
(2m)* 3(q—q'), and

4 p (q) (15f)

D(q, w) = Felga)

In other words, for the bulk homogeneous medium, we have

er, 1, w) = e — r', w) (16)




