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Abstract. Simple approximation schemes are developed to calculate induced optical
fields and local field corrections to the linear optical dielectric function in metals
like aluminium and in insulators like germanium. In these calculations, the
unperturbed electronic states in Ge are described within the framework of the bonding
orbital approach, whereas the nearly-free-electron approximation is used for Al.
As expected, explicit numerical calculations show that the contribution to secondary
longitudinal induced fields is more appreciable in Ge. The second order suscepti-
bility describing the non-linear mixing of an optical frequency with an X-rayfrequency,
which depends upon the magnitude of the microscopic induced optical charge density,
is also calculated for these solids. For most relevant wavevectors of secondary
optical fields, it is found to be of the order of 10-2esu in Ge and 10~ esu in Al

Keywords. Microscopic fields; local field corrections; bilinear susceptibility;
germanium ; aluminium.

1. Introduction

The study of the microscopic linear dielectric response function e (r, ¥/, t —t")
of electrons in a solid is important for understanding various physical processes
in the medium (Agranovich and Ginzburg 1966). For example, it allows us to
compute the local field corrections to the macroscopic dielectric function (Adler
1962, Wiser 1963). It has also been shown recently (Freund and Levine 1970,
Eisenberger and McCall 1971, Woo and Jha 1972) that in order to calculate the
amount of nonlinear mixing of x-ray and optical frequencies, it is crucial to know
the relevant components of the optical microscopic dielectric function having rapid
spatial variations. When a light wave with wavevector q is incident on a crystal
it induces optical polarization fields varying with wavevectors g and g+ G, where
G is any reciprocal lattice vector of the crystal. These induced microscopic pola-
rizations P (q) and P (g4 G), for different non-zero G, give rise to fields E (g)
and E(¢ + G) in the medium, which are called the primary and secondary fields
respectively. The total field E (¥) in the medium, which contains both transverse
and longitudinal components, and which must be a self-consistent solution of the
appropriate Maxwell’s equations, is the so-called microscopic field. The slowly
varying macroscopic electric field is nothing but the spatial average of this micro-
scopic field, over any unit cell in the crystal. If, however, one averages the
microscopic field over the region occupied by the electrons, the contribution to
the average being greater from those parts of the unit cell which contain more
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easily polarizable electrons, one obtains the well- i
scopic field. well-known local or the effective Macra-

1
1]

The induced microscopic charge density in t . L ' o
opticfal frequency, is proportional to they diveggeizzdéfozgl?;?fcx tg tthe ;m‘z}%&:m
scopic field in the medium. Unless the crystal is birefringent andp ;C‘%__m“‘,r‘
the divergence of the electric field, varying with the optical wavevector et e
However, the secondary fields varying with wavevectors 4L G Go Oq. ;; ‘,{LN
general, _longitudinal components with non-vanishing diVErgéncg;_ S;ce thi: e, E.,n
linear mixing of a wave at the x-ray frequency with the wave at the optical fre f:»:
is proportional (see Woo and Jha 1972) to the field amplitude at the x-rav frcgu‘zpi-i

and the induced optical charge density, it is the rapidly varying secondary field
which is responsible for the mixing. i

Ad_ler (1962) anfi Wisf:r (1963) have proposed a general theory for the calculation
of .lTIICl‘f)SC;OplC dielectric function for’ the Bloch electrons in a solid, including the
cstimation of the local field corrections. Van Vechten and Martin (1972) and
Smha. et al (1971) }}ave used thls‘theory for the local field calculaticn in dianw nd
and snhfzon, respectively. In section 2 of this paper we use this apprcach to derive
expressions for the self-consistent microscopic fields and the local field correctivn
to the macroscopic dielectric function. The microscopic field in Al is culeuluted
in section 3, using the nearly-free-electron approximation for the electrcnic metion
in the conduction band. In this case, it is found that the secondary induced fickds
are small compared to the primary field, justifying the usual neglect of local ficld
corrections in metals. Taking Ge as a representative example of IV-IV semi-
conductors, the microscopic field is calculated for such solids in secticn 4, using
the molecular orbital approach (Coulson et al 1962) for the valence and conduc-
tion band states. The secondary fields and the local field correction to the linear
dielectric function are no longer negligible in this case. In secticn 5, we determine
for both Al and Ge the second order nonlinear susceptibility which describes the
mixing of x-ray and optical waves. As expected, the mixing effect is much more
dominant in the case of Ge as compared to Al. We discuss our results in section 6,

2. Microscopic fields and local field corrections

The induced linear polarization P (r, 1) is related to the self-consistent microscopic
electric field E (r, f) by the general relation

P(r,t)y=fdt' fd®'x(r, ¥, t —1)VEW, 1) (2.1)

which defines the generalised microscopic susceptibility tensor x. In terms of
the Fourier components

€@ 0= g5 | f @i op(— i@ HIC ) ey 3
one has
PO, w)= X X(Q, @', w)-E(Q, @) (2.3)
Q’

For a spatially homogeneous system, note that y is a function of r — r’ alone, thih
implies that in this case Q' has to be equal to Qin the above summation. i
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such a case, one usually denotes x (@, @, w) simply by x¥ (@, ). Fecr a periodic
crystal onthe other hand, Q' can differ from Q by any reciprocal lattice vector G of
the crystal, including, of course, G =0. Thus for a crystalline solid, we have

P+ G, )= IX@+Gg+G, ) EQ LG, w) 2.4)

where ¢ lies in the first Brillouin zone.

Letus now assume that the incident optical field (primary field) has a fixed wave-
vector ¢ in the medium. The displacement vector, D = E 4 4#P, is

D@+ G, v)= é‘ c(@q+G,q+ G, w)E({g-+ G, w) (2.5)

where the generalised microscopic dielectric function is given by

€@+ G.q+tG,w)= {8 +47X (g + G,q + G, w) 2.6)
Since V.D =0, one thus finds
(q+G).<(g + G, q, v).E(gw)
=-(9+G)-£6(4+G,Q+G’,w).E(q+G’,w) 2.7
G’7#0
This is an infinite set of homogeneous tensorial equations for obtaining E (g + G, w)

for each G. Since the optical frequency w enters only as a parameter in these

equations, in what follows we will suppress the explicit frequency dependence in
our equations.

In the special case of a cubic crystal, e is a diagonal tensor. The relation
e;E; = E in this case, where E; is a vector and e is a matrix in the reciprocal

lattice vector space, leads to a simple expression for the ceccndary field in terms
of the primary field:

i ] - e S
E(g+G) = <qe:_rl g;’ qq)) E; (¢) 5

For the ‘local’ macroscopic dielectric function defined by D (g) = €°(g, q)-E (g),
eqs (2.5) and (2.8) lead to the expression

o _ &5 (g,9 + G) ¢, (q + G, q)
] ( ) - ’ 11 11 2 . 9
€, (g, q) = ¢,;(4,9) + GZ#O @D 2.9

For the general non-cubic case, one can get a simple expression for the secondary
fields only if these are assumed to be much smaller than the primary field at the
wavevector . We may then use a perturbation approach in which, to the first
approximation, the off-diagonal elements (G# G') of ¢(q + G, ¢ + G’) may be
neglected on the right hand side of eq (2.7). In this approximation, one has

@+G)eld+ G EQ~— g+ G)e(@g+ G g+ G)E(g+ G)
(2.10)

for determining the self-consistent field E. The tensorial natyre of this equation
is still difficult to handle. However, for G == 0, using Maxwell’s equation

(@¥e)D g+ 6) -~ @+ GPEG@+G)+ (4 + G g+ &) E-(g+ G) =0,

L0

a‘a =
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one can show that the component of the secondary field E(g -+ G

) - g -+ G) tronsyerse to
(g + G) is of the Qrdfar of (w¥cH/(g + G)? times the corresponding lc»nl;:ugtim;
component, and at optical frequencies it may be neglected in the first approxbimam n
Retaining only the longitudinal components of the secondary fields (G 0y ix;
eq (2.9), one, therefore, finds T

@+G).<@+Gq+G) @+ 6

for the secondary fields in terms of the primary field. Under the same approxi-
mation the local macroscopic dielectric function is

Eloc (q’ q’ CO) € (q’ q’ w)

(2.12)

_ Z «<@4+6G® . @+6)@+6).<(g+ G, g, w)

Ll LT (2.13)
a0 @+ G)c@+ G, q+ G, w.(¢g+ G)

3. Microscopic dielectric function in aluminium

A general expression for the microscopic linear susceptibility tensor or the micro-
scopic dielectric function may be obtained by using the usual linear response theory,
where one calculates (see Jha and Warke 1968) the induced polarizations ina
medium by the self-consistent electric field E (r, ). For the electrons moving
in a single-particle periodic potential ¥ (r) in a crystal, one has

5{} (q + G: q + G,’ (.u)
= 8,8, o — (dme/mwV) X f, | expi(G' — G). r| a) 8+

+- («lexp{i (¢ +G). r}{p+Lh(g+ G)|a

- E, —E, - ho 118

| [elep (=i +6). Hip—1h+Okle) X
A — (aed')

(3.1)

where |o) and E, are the eigenstates and eigenvalues of the single-particle electronic
Hamiltonian, and f, is the Fermi function at energy E,.

In the nearly-free-electron approximation for the conduction band in Al, we
expand the periodic potential V(r) as

v = X V(Gexp (iGn, V(G)=V*(—G) (3.2)
G :

and treat ¥ (G)/(h2G2[2m), G+ 0, as a small expansion parameter in the problem.
In what follows, we calculate different components of « Onl}./ to the 10w~:g non-
vanishing order in this parameter. For non-resonant optical frequencics, we
further assume that fiw/(52G?2m) is also much less than 1. In the long wa\.’elquth
limit for the incident optical wave (g —0), and with the neglect of contributions
of all bands other than the conduction band, we then find

4mne® \ 3 kg? | VO)* GGy
e; (0, 0) =6, — ~m~w—2~(l - Z §(4k1=‘2"' G2) Ex? G? ( ))

G0 (3.3)
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(G, 0) = (412221—(G<);2) (hZG(z(/;;m) % 3.4
< (0, G) = (42?]—((22) (525?31) & (3.5)
€c(G,G) = 1 + gfg—zé—z(-@ (3.6)
where
1@ =1+ B =Py, |Fat 3.7

and where kr is the Fermi wavevector, E. is the Fermi ENergy, grr is the Thomas-
Fermi wavevector and # is the electron density of the conduction band. Note that

we have introduced the convention under which G . « . EJ. is written simply as eg;.
For several values of the reciprocal lattice vector G, we tabulate the values of thtase
microscopic dielectric functions for Al in table 1. In the same table, we also give
the ratio of the longitudinal components of secondary fields with respect to the
field at the incident wavevector g, in the limit ¢ —0. For this purpose the
numerical values for the unscreened periodic potential in Al are taken from th.c
paper by Bennet, Maraduddin and Swanson (1972). The screened V(G) of this
paper is obtained by dividing the corresponding unscreened Fourier components
of the potential by our €4 (G, G). In this calculation, » is taken to be equal to
1-76 x 1022 cm~% and the lattice constant @ =4-04 A. It has to be noted t]:_lat
the secondary fields are quite small in this case, and decrease rapidly with
increasing G, so that both expression (2.8) and (2.12) give almost identical results.

Table 1. Microscopic dielectric function in case of Al, and the ratio of the induced
longitudinal secondary field in it to the primary fields in the x-direction

=2 ) 612 ) w(@6 GG w00 *%_—2%’“
111,171, 117, 171 0-78 0-136 1-44  — 3.7 - 3.7 — 2-6
111, 111, 171, 111 0-78 0-136 1-44 3-7 3-7 2:6
200 0-89 0- 686 1-28 —43-2 —43-2 —33-6
200 0-89 0-686 1-28 43-2 43.2 33-6
220, 202, 230, 203 1-27 0- 691 1-06 2-0 2-0 1-9
220, 303, 220, 302 1-27 0-691 1-06 — 2.0 — 2-0 - 1.9
222,233,223, 232 1-55 0-129 1-03 0-05 0-05 0-05
223, 322, 332, 923, 1-55 0-129 1403 —0:05 — 005 — g-05
400 1-79 0-145 1-01 0-03 0-03 0-03
100 1-79 0-145 1-01 =003 —0-03 — 0.03

Ny
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Figure 1. Tetrahedral bonds for Ge, pointing in {111’
directions. About the centre of any of the bonds,
there is a complete inversion symmetry.

Using eq (2.13) and table 1, we can c.alculaFe the local field correction (g, g. wi
— e(g,q, w) to the dielectri(.: function, since higher values of G contribute
insignificantly to this correction. For Alwe thus find this correction to eyy to
be of the order of — 3:0 X 10~ only.

4. Microscopic dielectric function in germanium

In order to calculate the electronic dielectric tensor in insulat.ors, one needs very
accurate band structures, at least for the valence and conduction t?ands, over the
whole Brillouin zone. However, since in th§ ngn—resonant region, only the
average properties of the electrons over the Brlllouml zone are }nvolved, one may
use the well-known bonding orbital approach for this calculation. In pz.trtxcular,‘
as discussed by Coulson ez al (1962), the eight valence electrons per unit ccli_ot
Ge can be considered to form four equivalent tetrahedral covglc-nt bond§, wl?nch
are localized between adjacent atoms in the crystal]ographl? {111} directions
(figure 1). The four bonding sp® orbitals cente.red on these adjacent atOmsﬂ f‘om:3
the valence band states, whereas, the four antibonding combination of the;ew SP,
orbitals give the conduction banfl state§. ’I_‘hus, e.g., the u.nperturl‘(l)ed'v;auq-
functions ,” and ¢, ¢ for the bond in the F]lt'@Cthn t,, corresponding to the valence
band and the conduction band, respectively, are

bt = 23 Bt + $.2) @.1)
b= 75 (= bk 42) .2
Bt =5 (ot V3, 4.3
P = 1 (s — V/3m) @.4)

i ized atomic
where 4,48 and ¢,, 4B are s- and p-type hydrogen like normalize
1
wave functions centered on the atoms A and B.
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In the case of localized electrons, the general expression (3.1) for the com-

ponents (& + é) .e(qgt+ G, g+ G) . (g + G’) of the microscopic dielectric tensor
may be rewritten in the form

cie, e @+ G g+ G 0) =8¢ + (@re?ll g+ Glla+ G| V) x

Zexpilg+ Q) rloelewigtG)rle
thF Lo By — Eot ho ]

4.5)

by usmg the identity
(hjm) Q.(c | exp (iQ ) (p + 1Q[2) | &) = (Eq — Ea){a| expiQ v a>,
a ol (4.6)

Thus in this formalism, in the long wavelength limit (¢—>0), and in the non-resonant
region (w —>0), we obtain

‘e (G, G) = 1 + (§me*N|GE,) & | @ | exp(—1G r) [ ) |* 4.7)
%; (G,0) = i(87e*N|GE,) 2 (b iGor) [ ) (b | | ) (4.8)
6 (0,G) = —i(8ne"N|GE,) & @l |90 @ L exp iGe [ 47 (4.9)
«; 0,0) =38;+ (8W62N/Ea)zt‘7 W Ll sy @ Ly [ (4.10)

where N is number of Ge atoms per unit volume and £, is the cnergy gap bcpwccn
the antibonding and bonding states. Summations over ¢ in eqs (4.7) to (4.10)
imply simply summations over all the four bonds.

Note that because of the symmetry, for X, ¥, Z along the rectangular crystallo-
graphic axis, eq (4.10) leads to

exy (0, 0) = evx (0, 0) = ezx (0, 0) = €xz (0, 0) = €yz (0, 0)

= ¢zy(0,0) =0 4.11)
exx (0,0) = €y (0,0) = €5, (0,0) = 1 + 32w N/EN | ( x ) |* (4.12)
(X Yo ={P" | x| %) 4.13)

Assuming that the bonding and the antibonding states by themselves saturate the
wellknown Thomas-Kuhn f~sum rule, we obtain another relation

@mfAH) E, | (x),, |2 =1. (4.14)

If we argue now that the value of the microscopic dielectric function exy (0, 0) is
somehow known, e.g., for Ge we take eyy (0,0)to be 170 eqs (4.12) and (4.13)
determine E, in terms of the dipole matrix element ( x),, in two different ways.
Any consistent parametrization of the sp? orbitals to calculate ( x),, froms egs
(4.13) and (4.1) to (4.4), therefore, must make these two values of E, to be the
same. For Ge, we use hydrogen like wavefunctions with the principle quantum
number 1 = 4, and treat the common effective Z-value for both s- and p-orbitals
as a parameter. For consistency of eqs (4.12) and (4.14) for Ge, we then obtain

Zyy =124 (4.15)
{ x)es = 0992 A (4.16)
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Table 2. Microscopic dielectric function in case of Ge, and the ratio of the induced longitudinal
secondary field in it to the primary field in the x-direction

G =2 (nynany) (G, &) «x(G0) s(0,G) GEGXEQ)

11, 11, 11, 111 181 —0-38  —0-38  —0-21
ITT, L7, 171, 111 1-81 0-38 0-38 0-21
220, 202, 520, 322 100 —0-19 =019 —019
330, 303, 220, 023 1-01 0-19 0-19 0-19
222, 233, 223, 222 101 —0-15 =015 —0-13
333, 522, 332, 323 1-01 0-15 0-15 0-15

400 100 —0-06  —0-06  —0-06

200 1-00 0-06 0-06 0-06

E, =39eV. 4.17)

The value of Z,, so obtained is not very much different from the values given by
Burns (1964), and the magnitude of the average gap E, is also close to that given
by Phillips (1969) for Ge.

Now, it is straightforward to calculate the relevant component of the micro-
scopic dielectric function and the secondary fields. Although more exact expres-
sion (2.8) for the secondary fields gives a slightly different result from that obtained

- by using the expression (2.12), we have used the latter for simplicity. These results
are given in table 2. It should be emphasized that the secondary fields are no
longer negligible in this case. The local field correction exx'* (g, ¢q, w) —
exx(q, ¢, w) turns out to be of the order of — 1-2. Thus the figure for the optical
dielectric function for Ge, including the local field correction is 15-8 in ourcalcula-
tion.

5. Mixing coefficients of x-ray and optical waves

The efficiency for mixing of x-ray and optical waves in a medium depends upon
the induced microscopic charge density at the optical frequency. The effective
coupling Hamiltonian for a light wave of (positive or negative) frequency « and
an x-ray of (positive or negative) frequency wg, interms of the corresponding
bilinear current density J, (r, w-+ wp) are given by (Woo and Jha 1972):

3[-7!:{(*(0—_;—0);)—6"‘ derAA("aw‘i‘wR)-E(‘_’w_wa) (5-1)
Jaa(r, 0 + wp) = — i(w + wp) P (r, w + wg)
= — i(efdrmwy) E(r, wg) V .E (¢, w) (5.2

Since V . E(r, w) is non-zero, in general, only for the secondary fields, for non-
birefringent crystals we have to consider only these fields. The longitudinal com-
ponents of E(q + G, w), G+ 0 in a cubic crystal, may be related back to the

P-Mar—2
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Table 3. Non-linear susceptibility tensor for mixing of x-ray and optical frequencies.

Xt = Xy ¥ = Xpp V0 5 Xy = XN = Xpp™ 5 Xxxz™F = Xyy, N = Xgp,Nt
Al Ge
—_— X NL — X NI, — Xy, NL G — X NL — iX NL — iX NL

(10-9&Su) (104esu)  (107esu) (1028esu)  (107%esu) (1018 esu)
(111) 13 1-3 1-3 111 0-75 0-75 0-75
(200) 19-6 0 0 (220) 1-11 1-11 0
(220) — 16 1-6 0 (222) 1-07 1-07 1-07
232) — 0-05 0-05 0:05
(400) — 0-04 0 0 (400) 0-50 0 0

primary optical field E (¢, ») by using eq. (2.8). Assuming the incident x-ray wave
to vary with wave vector gp, eqs (5.1), (5.2) and (2.8) then lead to

PNL(q—}_qR—[_G’w'{“wR)
=X(g + gp + G, qn, 4, @ + wp): E(qp, wp) E(g, ), G#0 (5-3)
where the bilinear susceptibility describing the mixing of x-ray and optical waves is

ied,,

vaa’"‘ (q + 9 + Ga 9p 4> wWp + w) =

(q+ G).e5 55 (¢ + G, g, ),
X 0 54
665_-1 (q + Ga q + G: w)’ ’ ¢ .7& ( )

In the long wavelength limit for the optical wave, ¢ in the right hand side of the
above equation can be neglected everywhere. For lowest values of G, we calculate
X, for Al and Ge, with the x-ray frequency wgp=1-5 X 10¥sec™ (a 1 kev
x-ray) and the optical frequency w <€ wp. The results are given in table 3. Note

that in Ge, X¥F is of the order of 1022 in esu. This may be significant enough to
ensure the experimental observation of this mixing.

6. Conclusions

The dstailed calculations in this paper of microscopic optical fields in solids show
that the secondary fields and the local field corrections are unimportant in metals
like Al, whereas these are appreciable in insulators like Ge. This confirms the
usual ideas that in dense systems, more tightly bound electrons give larger local
field corrections to the dielectric function. For the same reason, the non-linear
mixing coefiicient for x-ray and optical waves is much smaller in Al than in Ge.
For systems much more tightly bound than Ge, the mixing coefficient may be
still higher.  As pointed out by Eisenberger and McCall (197 1) who have also used
the wave function approach to calculate the secondary fields in solid hydrogen,
our actual numerical values for Ge may not be very accurate. OQur calculation
for Al can be criticised on the grounds that we should have used the bare crystal
potential instead of the pseudo-potential to describe the electronic state. In the
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nce in that case core
n and Martin 1972).

optical region, we feel this should not lead to serious errors, si
excitations would not play a dominant role (see Van Vechte
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