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Although calmodulin (CaM) is known to play multiple regulatory roles in eukaryotes, its direct function as transcriptional

regulator is unknown. Furthermore, the physiological functions of CaM are largely unknown in plants. Here, we show that

one of the four Arabidopsis thaliana CaM isoforms, CAM7, is a transcriptional regulator that directly interacts with the

promoters of light-inducible genes and promotes photomorphogenesis. CAM7 overexpression causes hyperphotomorpho-

genic growth and an increase in the expression of light-inducible genes. Mutations in CAM7 produce no visible effects on

photomorphogenic growth, indicating likely redundant gene functions. However, cam7 mutants display reduced expression

of light-inducible genes, and cam7 hy5 double mutants show an enhancement of the hy5 phenotype. Moreover, over-

expression of CAM7 can partly suppress the hy5 phenotype, indicating that the two factors work together to control light-

induced seedling development. The mutational and transgenic studies, together with physiological analyses, illustrate the

concerted function of CAM7 and HY5 basic leucine zipper transcription factor in Arabidopsis seedling development.

INTRODUCTION

Calmodulin (CaM) is ubiquitous in eukaryotes and is a highly

conserved Ca2+ binding protein that plays multiple regulatory

functions responding to a wide variety of stimuli (Berridge et al.,

2000; Hepler, 2005). CaM has a common helix-loop-helix struc-

ture, the EF-hand, which is known to perform its regulatory

function by modulating the activity of specific CaM binding

proteins. CaM regulation of basic-helix-loop-helix transcription

factors has been reported, where CaM inhibits the DNA–protein

interactions by competing with the DNA binding domains of the

basic-helix-loop-helix proteins (Corneliussen et al., 1994). Inter-

estingly, recent studies have shown that some proteins with EF-

hands have the ability to directly interact with DNA. For example,

the human DRE antagonist modulator (DREAM) has four EF-

hands and specifically interacts with the DNA DRE element

(Carrion et al., 1999; Gilchrist et al., 2001; Craig et al., 2002).

Various studies have shown that Ca2+/CaM is involved inmultiple

signaling pathways in plants (Miller and Sanders, 1987; Braam

andDavis, 1990; Knight et al., 1991; Szymanski et al., 1996; Yang

and Poovaiah, 2002; Yoo et al., 2004). The Arabidopsis thaliana

genome contains seven CAM genes that encode only four

protein isoforms: CAM1/CAM4, CAM2/CAM3/CAM5, CAM6,

and CAM7. The CAM7 protein sequence shows the most sim-

ilarity to consensus among all the members of the family, but all

the CAM isoforms are very highly conserved. CAM1/CAM4

differs from CAM7 by four amino acids, whereas CAM2/3/5

and CAM6 differ from CAM7 by a single amino acid substitution

(McCormack et al., 2005).

Arabidopsis seedlings grow with two distinct developmental

patterns in the presence and absence of light (Nagy and

Schaefer, 2002; Chen et al., 2004; Huq and Quail, 2005). The

dark-grown seedlings exhibit elongated hypocotyls and closed

cotyledons with apical hooks, designated as skotomorphogenic

growth. When exposed to light, seedlings grow with a short

hypocotyl and open and expanded cotyledons, known as pho-

tomorphogenic growth. The expression of light-inducible genes,

which remains suppressed in the dark, is strongly induced during

photomorphogenesis. A complexmolecular network operates to

sense the dark–light transitions and regulate the seedling mor-

phology and gene expression accordingly (Jiao et al., 2007). The

basic leucine zipper transcription factor, LongHypocotyl 5 (HY5),

plays an important role in the transition from skotomorphogen-

esis to photomorphogenesis. The loss-of-function mutants of

HY5 display partial photomorphogenic growth at various wave-

lengths of light with reduced expression of light-regulated genes

(Oyama et al., 1997; Ang et al., 1998; Chattopadhyay et al., 1998).

The abundance of HY5 protein has been correlated with the

extent of photomorphogenic growth (Osterlund et al., 2000).

Recently, genome-wide promoter target studies have revealed

that there are >3000 chromosomal sites in the Arabidopsis

genome that have putative HY5 binding targets (Lee et al., 2007)

The homeostasis of Ca2+ has been shown to be associated

with blue/UV-A light–induced gene expression (Long and Jenkins,

1998). A recent genetic study using SHORT UNDER BLUE

LIGHT1 (SUB1) has suggested the possible involvement of local

Ca2+ concentration change in phytochrome- and cryptochrome-

mediated light signaling (Guo et al., 2001). Biochemical and

pharmacological studies have revealed three branched path-

ways of light-induced gene expression. In one of these path-

ways, CaM has been shown to be involved in the regulation CAB
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gene expression (Neuhaus et al., 1993, 1997; Bowler et al., 1994).

All these studies suggest that Ca2+/CaM is involved in light-

mediated seedling development and gene expression. However,

the molecular and physiological function of CaM or structurally

related Ca2+ binding protein, which interprets and specifically

transduces the information into appropriate cellular responses,

remains largely unknown (Veitia, 2005).

The activity of a CAB1minimal promoter containing an essen-

tial Z-box light-responsive element (LRE) is controlled by HY5

(Yadav et al., 2002). Recently, two Z-box binding transcription

factors, ZBF1/MYC2 and ZBF2/GBF1, have been identified from

a ligand binding screen and shown to function in cryptochrome-

mediated blue light signaling (Yadav et al., 2005; Mallappa et al.,

2006). In this study, we demonstrate the functional relevance of

ZBF3, encoding CAM7, in light-mediated seedling development

and gene expression.

RESULTS

CAM7 Specifically Binds to the Z-/G-Box of

Light-Regulated Promoters

We had identified and cloned ZBF3/CAM7, which was repre-

sented by three independent cDNA clones in a ligand binding

screen (Yadav et al., 2005). The DNA binding analyses, which

examined binding of labeled probe DNA sequences to proteins

immobilized on nylon membranes, revealed that ZBF3/CAM7

was able to specifically bind to the Z-box LRE (Figures 1A and

1B). To further examine the results obtained from these analyses,

we performed electrophoretic mobility shift assays (EMSAs)

using CAB1 minimal promoter containing an essential Z-box

and purified glutathione S-transferase-CAM7 (GST-CAM7) fu-

sion protein. As shown in Figure 1C, GST-CAM7 was able

to bind to the Z-box of CAB1 minimal promoter. Excess un-

labeled Z-box DNA, but not a nonspecific competitor (GT1 LRE;

Chattopadhyay et al., 1998), was able to compete for the binding

activity of GST-CAM7. Since recent studies have suggested that

the Z- and G-box LREs are functionally equivalent (Yadav et al.,

2005; Mallappa et al., 2006), we also investigated the binding

ability of CAM7 to theG-box. As shown in Figure 1D,CAM7could

specifically bind to the essential G-box of RBCS-1A minimal

promoter. Taken together, these results suggest that CAM7

specifically binds to the Z-/G-box of light-regulated CAB1 and

RBCS-1A minimal promoters.

It has been postulated that substitution of amino acid in the EF-

hand could contribute to select the target specificity of CaM

(McCormack et al., 2005). CAMs have highly conserved amino

acid sequences, and the amino acid sequence of the CAM2/3/5

isoform differs from CAM7 by a single amino acid substitution

(Figure 1G). To determine whether CAM2/3/5 was also able to

interact with the Z-box, EMSAs were performed using purified

GST-CAM3 fusion protein andCAB1minimal promoter as probe.

However, no DNA–protein complex was detected; thereby,

these results suggest that CAM2/3/5 is unable to bind to the

CAB1 minimal promoter (Figure 1E). To further test this obser-

vation, we generated mutated versions of CAM7, CAM7-M1 and

CAM7-M2, by site-directed mutagenesis. Whereas two Asp

residues of CAM7 were substituted by Ala in CAM7-M1, four

Asp residues were substituted by Ala in CAM7-M2 protein

(Figure 1G). We used purified GST-CAM7-M1 or GST-CAM7-

M2 fusion proteins in EMSAs (see Supplemental Figure 1 online).

None of thesemutated versions of CAM7was also able to bind to

the CAB1 minimal promoter (Figure 1F). Taken together, these

results suggest that CAM7 is likely to be a unique member of the

CAM gene family that directly binds to the Z-/G-box of light-

regulated promoters.

Overexpression of CAM7 Leads to

Hyperphotomorphogenic Growth Irrespective

of Light Qualities

To investigate the physiological function of CAM7 in light-

mediated seedling development, 27Arabidopsis transgenic lines

overexpressing CAM7 fused to three copies of c-Myc epitope

were generated. The c-Myc epitope was fused to either the C- or

N-terminal end of the CAM7 protein, and the proteins showed

high levels of accumulation in the transgenic lines (Figure 2G).

The transgenic seedlings exhibited short hypocotyl phenotype at

various wavelengths of light, including red (RL), far-red (FR), and

blue light (BL) (Figure 2A). Measurements of hypocotyl length

revealed that the enhanced inhibition of hypocotyl elongation

was more evident at lower fluence rates especially in RL- or FR-

grown seedlings (Figures 2C to 2F). Strikingly, the transgenic

seedlings displayed a weak photomorphogenic growth with

shorter hypocotyl and partly opened cotyledons without apical

hooks in the darkness (Figures 2A and 2B). The overexpresser

transgenic seedlings also showed higher levels of chlorophyll in

light and of anthocyanin in both dark and light growth conditions

(Figures 2H to 2J). Taken together, these results suggest that

overexpression of CAM7 induces a partial photomorphogenic

development in the dark and also promotes photomorphogenic

growth in various wavelengths of light.

CAM7 Interacts with CAB1Minimal Promoter in Vivo and

Promotes Light-Induced Gene Expression

To determine whether CAM7 was able to promote the transcrip-

tional activity of light-regulated genes, we performed RNA gel

blot analysis using transgenic seedlings grown in constant dark

or light. The expressionofCABwas strongly elevated in transgenic

seedlings comparedwith thewild type in white light (WL) (Figures

3A and 3E). Whereas very little expression, as expected, of CAB

was detected in wild-type background in the dark, the expres-

sion was strikingly elevated in transgenic seedlings. To deter-

mine the light-controlled expression of the CAB or RBCS gene,

5-d-old dark-grown seedlings were transferred to WL for various

time points. The level of expression was further elevated in trans-

genic seedlings compared with wild-type background (Figure 3B).

Taken together, these results provide evidence that CAM7 acts

as a positive regulator of CAB and RBCS gene expression.

We performed chromatin immunoprecipitation (ChIP) experi-

ments to determine whether CAM7 binds to CAB1 minimal

promoter in vivo. The CAM7-c-Myc fusion protein in trans-

genic plants was immmunoprecipitated by antibody to c-Myc.

The genomic DNA fragments that coimmunoprecipitated with
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Figure 1. CAM7 Binds to the Essential Z-/G-Box of CAB1 or RBCS-1A Minimal Promoter.

(A) Identification of CAM7 in a ligand binding (protein/DNA gel blot) screen. The blotted nylon membrane (containing protein-expressing plaques from

the tertiary screen for proteins that bind to the Z-box) was probed with the radioactively labeled Z-box LRE (Yadav et al., 2005).

(B) The specificity of interaction of CAM7 to the Z-box. The blotted nylon membrane was cut into two halves and probed with the Z-box or GATA LRE

(Yadav et al., 2002).

(C) EMSAs showing GST-CAM7 (CAM7) specifically binds to the Z-box of 189-bpCAB1minimal promoter (Yadav et al., 2005). Approximately 200 ng of

recombinant protein was added (lanes 3 to 6) to radioactively labeled CAB1 promoter fragment. Approximately 500 ng GST protein was added in lane 2.

The triangle indicates the increased amount of unlabeled Z-box DNA added (50 and 100 molar excess in lanes 4 and 5, respectively) to the reaction as

competitor (Comp.). In lane 6, 100 molar excess GT1 LRE (Yadav et al., 2002) was added. The presence of CAM7 or GST protein is indicated by plus

signs in their respective rows. The minus signs indicate the absence of competitors CAM7 or GST. The arrowhead indicates the protein–DNA complex.

(D) EMSA showing GST-CAM7 (CAM7) protein specifically binds to the essential G-box of 196-bp RBCS-1A minimal promoter (Chattopadhyay et al.,

1998). For experimental detail, see (C). In this case, the unlabeled competitor DNA is G-box LRE.

(E) EMSA of CAM2/3/5 to the CAB1 minimal promoter. Approximately 200 ng, 1 mg, and 3 mg (lanes 3 to 5), and 100, 200, and 300 ng (lanes 6 to 8) of

recombinant proteins were added to radioactively labeled CAB1 minimal promoter. For experimental detail, see (C).

(F) EMSAs showing that CAM7, but not CAM7-M1 and CAM7-M2, is able to bind to CAB1 minimal promoter. Approximately 200, 300, 200, 500, 200,

and 500 ng (lanes 2 to 7, respectively) of recombinant proteinswere added to radioactively labeledCAB1minimal promoter. For experimental detail, see (C).

(G) Amino acid sequences of CAM7, CAM2/3/5, and site-directed mutagenesis products of CAM7 (CAM7-M1 and CAM7-M2) are shown. The amino

acid substitutions are shown in red.
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CAM7-c-Myc were analyzed by real-time quantitative PCR. The

analyses of these data revealed that the amount of DNA fragment

of CAB1 promoter coimmunoprecipitated from the transgenic

seedlings was >30-fold higher than that precipitated from the

nontransgenic seedlings, and ;10-fold higher than the NIA2

promoter, which is induced by light but does not contain any

Z-/G-box LRE (Figure 3C). These results demonstrate that

CAM7 binds to the CAB1 minimal promoter in vivo.

To determine whether CAM7 binding to the Z-box is required

for the in vivo activation of CAB1 promoter, we used CAB1

minimal promoter containing either wild type or mutated Z-box

fused to the b-glucuronidase reporter gene construct (CAB1

promoter-GUS or CAB1m promoter-GUS). We examined the

activity of these promoters in transiently transformed protoplasts

made from wild-type or CAM7 overexpresser transgenic plants

(OE1). The activity of CAB1 promoter was increased by more

than twofold in OE1 compared with wild-type background,

confirming that CAM7 promotes CAB1-GUS expression. By

contrast, overexpression of CAM7 was unable to activate the

CAB1m promoter in vivo (Figure 3D). Together, the above results

Figure 2. CAM7 Promotes Photomorphogenic Growth.

(A) The visible phenotypes of the seedlings grown in constant dark, WL (15 mmol/m2/s), RL (30 mmol/m2/s), BL (20 mmol/m2/s), or FR (40 mmol/m2/s) are

shown. In each panel, 6-d-old wild-type (Columbia [Col]) and CAM7 overexpresser transgenic seedlings (OE1, OE2, and OE3 in Col background) are

shown from left to right, respectively. OE1 and OE2 contain CAM7 with c-Myc tagged at the N-terminal end, whereas OE3 contains CAM7 with c-Myc

tagged at the C-terminal end. Bar = 1 mm.

(B) to (F)Quantification of hypocotyl length of 6-d-old seedlings grown in constant dark or at various fluences of WL, RL, BL, or FR. Approximately 25 to

30 seedlings were used for the measurement of hypocotyl length. The error bars indicate SD.

(G) Immunoblot (using anti-c-Myc antibodies) of 20 mg of total protein prepared from wild-type (Col) or overexpresser transgenic plants. The asterisk in

the bottom panel shows a cross-reacting band in the same gel as loading control.

(H) The level of total chlorophyll content in 6-d-old wild-type (Col) or transgenic seedlings grown in WL (30 mmol/m2/s) is shown.

(I) and (J) Accumulation of anthocyanin in 6-d-old wild-type or transgenic seedlings grown in WL (30 mmol/m2/s) or dark, respectively. Approximately 30

to 40 seedlings were used for the measurement of chlorophyll or anthocyanin accumulation. The error bars indicate SD.
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demonstrate that CAM7 acts as a transcriptional activator of

CAB1 promoter in vivo and the Z-box is essential for such

activation mediated by CAM7 protein.

Overexpression of CAM7-M2 Confers Possible

Dominant-Negative Effects

To investigate the physiological function of the mutated version

of CAM7 protein, which lost DNA binding ability due to amino

acid substitutions (Figure 1G), we constructed a series of 32

transgenic lines overexpressing CAM7-M2 (Figure 4G). Exami-

nation of 2- to 6-d-old transgenic seedlings did not show any

altered morphology in the dark. However, 6-d-old WL-grown

transgenic seedlings displayed a longer hypocotyl compared

with the corresponding wild type (Figure 4A). Furthermore, the

transgenic seedlings displayed elongated hypocotyls in all light

conditions tested compared with the corresponding wild type

(Figure 4A). The measurements of hypocotyl length revealed

significant reduction (P value < 0.01; n = 3) in light-mediated

inhibition of hypocotyl elongation in transgenic seedlings com-

paredwith thewild type in different light conditions (Figures 4B to

4E). The elongated hypocotyl phenotype conferred by the over-

expression of CAM7-M2 could be attributable to dominant-

negative interference of the light signaling pathways by CAM7-

M2 protein. To determine whether overexpression of CAM7-M2

leads to similar effects on light-regulated gene expression, we

performed quantitative real-time PCR experiments of CAB1 and

RBCS-1A genes. The rate of light-mediated induction of CAB1

and RBCS-1A genes was significantly reduced in transgenic

seedlings compared with wild-type background (Figure 4F).

Loss-of-Function Mutants of CAM7 Have Reduced

Expression of Light-Inducible Genes

To determine whether loss of CAM7 function would lead to re-

duced photomorphogenesis, we searched for mutants in T-DNA

knockout collections (Alonso et al., 2003). We identified two

such T-DNA insertion knockout lines (cam7-1 and cam7-2) and

performed PCR genotyping analyses to identify plants homozy-

gous or heterozygous for a cam7 mutation (see Supplemental

Figure 2 online). The segregation ratios of self-fertilized plants

heterozygous for cam7, determined by the genotyping PCR on

T2 progeny, suggested that a single T-DNA locus was present in

each of the cam7 mutant lines. The junctions of T-DNA and

CAM7 were amplified by PCR, and the DNA sequence analyses

revealed that the T-DNA was inserted in nucleotide position 225

Figure 3. CAM7 Interacts with CAB1 Promoter in Vivo and Promotes Light-Regulated Gene Expression.

(A) The RNA gel blot shows the level of CAB1 gene expression in 6-d-old wild-type (Col) and CAM7 overexpresser transgenic seedlings (OE1, OE2, and

OE3) grown in dark or WL (30 mmol/m2/s). Ten micrograms of total RNA was loaded onto each lane. 18S rRNA has been shown as loading control. The

numbers indicate the relative mRNA levels. To quantify the RNA gel blot data, the intensity of each band was quantified by the Fluor-S-MultiImager (Bio-

Rad), and ratios of CAB1 versus its corresponding rRNA band were determined and plotted (Fluor-S-MultiImager; Bio-Rad).

(B) The RNA gel blot results (quantified as described above) show light-mediated induction of CAB1 and RBCS gene expression in wild-type (Col) and

OE1 transgenic seedlings grown in dark (0) for 5 d and then transferred to WL (30 mmol/m2/s) for various time points.

(C)ChIP assays ofCAB1 promoter fromOE1, OE2, or OE3 transgenic seedlings using antibodies to c-Myc. The light-inducible NIA2 promoter fragment,

which does not contain any Z- or G-box, was used as a control. Results of real-time quantitative PCR are presented as the ratio of the amount of DNA

immunoprecipitated from overexpresser transgenic seedlings to nontransgenic control plants.

(D) Expression of CAB1-GUS or CAB1m-GUS reporter gene (reflected by GUS activities) relative to the 35S-GUS internal control in Arabidopsis

protoplasts made from wild-type or CAM7 overexpresser (OE1) plants. Error bars indicate SE (n = 5). The experiment was repeated three times.

(E) Normalized graph of the data in (A) (quantified as described in [A]).
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Figure 4. Overexpression of CAM7-M2 Results in Suppression of Photomorphogenic Growth Irrespective of Light Qualities.
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and 113 bp upstream to the ATG codon of CAM7 in cam7-1 and

cam7-2 mutants, respectively (see Supplemental Figure 2A

online). RT-PCR analyses were unable to detect any CAM7

mRNA in either of the cam7 mutant lines (see Supplemental

Figure 2B online).

When the growth of cam7 mutant seedlings was examined in

dark and in various light conditions, cam7mutants grew normally

in the dark and at variouswavelengths of light tested, showing no

sign of altered photomorphogenic growth (Figures 5A and 5C).

These results indicate that CAM7-mediated inhibition of hypo-

cotyl elongation is functionally redundant. However, the level of

CAB1 and RBCS-1A expression was compromised in cam7

mutants (P value < 0.03; n = 4), thereby suggesting that CAM7 is

required for the optimum expression of CAB1 and RBCS-1A

genes (Figure 4H).

CAM7 and HY5 Function in an Independent and

Interdependent Manner to Promote Photomorphogenesis

HY5 is thus far the only known transcription factor in light

signaling that promotes photomorphogenesis in RL, FR, and

BL. Since higher-level accumulation of CAM7 also leads to

hyperphotomorphogenic growth irrespective of light qualities,

we asked whether HY5 and CAM7 are functionally interrelated.

We constructed cam7 hy5 double mutants and examined the

genetic interactions between cam7 and hy5. Similar to hy5 or

cam7 single mutants, cam7 hy5 double mutants did not show

any altered growth in the dark. However, the characteristic long

hypocotyl phenotype of hy5 in WL irradiation was further en-

hanced in cam7 hy5 double mutants, exhibiting a super tall

phenotype (Figure 5A). Furthermore, as shown in Figure 5A,

cam7 hy5 double mutants also displayed reduced sensitivity in

RL, FR, and BL compared with hy5 single mutants. Measure-

ments revealed that the hypocotyl length of cam7 hy5 double

mutants was strikingly increased compared with hy5 or cam7

alone, indicating a synergistic effect of cam7 and hy5 mutations

on hypocotyl length irrespective of light qualities (Figure 5C; see

Supplemental Figures 3A to 3C online). The expression of light-

regulated genes has been shown to be downregulated in hy5

mutants (Ang et al., 1998; Chattopadhyay et al., 1998). When

tested, the level of CAB1 and RBCS-1A gene expression was

found to be further reduced in cam7 hy5 double mutants com-

pared with the cam7 or hy5 mutant background (Figure 5G). A

genomic fragment containing CAM7 and 1.5 kb of its upstream

sequence was introduced into the cam7 hy5 double mutant

plants for a complementation test. The transgenic seedlings did

not display the super-tall phenotype, and the expression of light-

regulated genes was also restored to hy5 mutant levels (Figures

5E and 5G). These results confirm that the observed super-tall

phenotype of cam7 hy5 double mutants was caused by the

additional loss of CAM7 function.

To further test this observation, we introduced the 35S-CAM7-

c-Myc transgene from the overexpresser transgenic lines (OE1

and OE2) into hy5 mutant background by genetic crosses. The

higher level of CAM7 protein in hy5 transgenic seedlings was

indeed able to suppress the elongated hypocotyl phenotype of

hy5 (Figures 5B, 5D, and 5F). When examined under various

wavelengths of light, the hy5 phenotype was significantly sup-

pressed in transgenic hy5 seedlings grown in RL, FR, and BL

(Figure 5B; see Supplemental Figures 3D to 3F online). Further-

more, similar to OE1, hy5 transgenic seedlings also displayed

partial photomorphogenic growth with slightly reduced hypo-

cotyl length in the darkness. However, unlike OE1, the cotyle-

dons remained closed with apical hooks in hy5 transgenic

seedlings in the darkness (Figures 5B, dark, and 5D). The

lower-level expression of light-inducible genes, such as CAB1

and RBCS-1A, in hy5 mutants was also restored in hy5 trans-

genic seedlings (Figure 5G). Taken together, these results sug-

gest that CAM7 and HY5 function in an independent and

interdependent manner to promote photomorphogenic growth

and light-regulated gene expression.

The Accumulation of CAM7 Protein Is Dependent on

Light Intensity

Since abundance of HY5 protein has been correlated with the

extent of photomorphogenic growth, we asked whether CAM7

protein also accumulated in a similar fashion correlating with

photomorphogenic growth. To address this question, we first

used 6-d-old constant dark- or WL-grown CAM7-c-Myc over-

expresser transgenic seedlings for immunoblot analysis. The

accumulation of CAM7 protein was significantly reduced in WL

Figure 4. (continued).

(A) Visible phenotypes of 6-d-old wild-type (Col), and transgenic seedlings grown in various light conditions. In each panel, wild-type (Col), OE1, OEm1,

OEm2, and OEm3 seedlings are shown from left to right, respectively.

(B) to (E) Quantification of hypocotyl length of 6-d-old seedlings grown in WL, RL (60 mmol/m2/s), FR (40 mmol/m2/s), or BL (20 mmol/m2/s). For each

measurement of hypocotyl length, 25 to 30 seedlings were used. The error bars indicate SD. All the samples were significantly different from the wild

type at each light condition (P < 0.01; n = 3).

(F) The abundance of CAB1 and RBCS-1A transcripts in total RNA from wild-type (Col) and CAM7-M2 overexpresser transgenic seedlings (OEm1)

grown in dark (0) for 5 d and then transferred to white light (30 mmol/m2/s) for various time points was determined by quantitative real-time PCR, and the

transcript levels were normalized to the level of ACTIN2 transcript abundance. Error bars represent SD (P < 0.01 between Col versus OEm1 at each time

point exposed to light; n = 3).

(G) RT-PCR results (using CAM7-specific primers) show the level of expression of CAM7-M2 in overexpresser transgenic lines (OEm1, OEm2, and

OEm3) or in the corresponding wild-type (Col) background. Actin band shows the loading control. M indicates molecular weight markers (100- bp

ladder), and the dot shows a DNA fragment of 500 bp.

(H) Real-time quantitative PCR results show the relative expression of CAB1 and RBCS-1A in 6-d-old wild-type versus cam7mutant seedlings (P < 0.03

between the wild type versus cam7 mutants; n = 4) grown in WL (30 mmol/m2/s).
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Figure 5. The Elongated Hypocotyl Phenotype of hy5 Is Enhanced in cam7 hy5 Double Mutants.

(A) The visible phenotypes of 6-d-old cam7 hy5 double mutant seedlings grown in WL (30 mmol/m2/s), RL (60 mmol/m2/s), FR (40 mmol/m2/s), or BL (20

mmol/m2/s) are shown. In each panel, wild-type (segregated wild type in F2), cam7-1, hy5, and cam7-1 hy5 seedlings are shown from left to right. Bar =

1 mm.

(B) The visible phenotype of 6-d-old hy5 transgenic seedlings (hy5 [OE1] and hy5 [OE2]), containing 35S promoter-c-Myc-CAM7 transgene, grown in

dark, WL (30 mmol/m2/s), RL (60 mmol/m2/s), FR (40 mmol/m2/s), or BL (20 mmol/m2/s) is shown. In each panel, wild-type, OE1, hy5, hy5 (OE1), and hy5

(OE2) seedlings are shown from left to right. Bar = 1 mm.

(C) and (D) Quantification of hypocotyl length in dark (D; on x-axis label) or various fluence rates of WL. Approximately 25 to 30 seedlings were used for

the measurement of hypocotyl length. The error bars indicate SD.
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compared with dark-grown seedlings (Figure 6A), which is con-

trary to the accumulation pattern of HY5 protein under similar

conditions.

We then examined whether the reduced accumulation of

CAM7 protein in WL was dependent on light intensity. As shown

in Figure 6B (bottom panel), the accumulation of CAM7 protein

decreased with increase in fluence rates of WL in overexpresser

transgenic lines (OE1). Whereas the level of accumulation of

CAM7 protein was slightly reduced at 5 mmol/m2/s, it was further

reduced at 15 or 30mmol/m2/s and strikingly reduced at 60mmol/

m2/s or higher fluence rates of WL. The enhanced inhibition in

hypocotyl elongation, caused by higher level of CAM7 protein,

was also gradually reduced with higher fluence rates of WL,

suggesting a likely correlation between the level of CAM7 protein

and the extent of hyperphotomorphogenic growth of the trans-

genic seedlings. To determine whether WL-mediated reduction

of CAM7 protein is wavelength specific, we examined the level of

CAM7 protein in 6-d-old seedlings grown at low or relatively high

intensities of RL, FR, and BL. As shown in Figure 6C, similar to

WL, CAM7 protein was strikingly reduced at higher fluence rates

of RL and BL, although the accumulation of CAM7 was largely

maintained at higher fluence rates of FR.

DISCUSSION

The primary structures of CaMs are highly similar in plants and

animals with respect to their Ca2+ binding loops and E and F

helices. The topology of the EF-hand motif of CaM is similar to

the helix-turn-helix DNA binding domain of various transcription

factors that can recognize themajor groove of DNA. Examination

of amino acid sequences of all four subgroups of Arabidopsis

CaM family reveals that all CAM proteins, except CAM7, have

at least one amino acid substitution compared with CAM7

(McCormack et al., 2005). The binding of CAM7, but not CAM2/

3/5, CAM7-M1, or CAM7-M2, to the Z-/G-box of light-regulated

promoters supports the notion that although four Arabidopsis

CaM isoforms have very similar amino acid sequences, substi-

tution of amino acids in the EF-hand region may contribute to

select target specificity. Consistent with this notion, the human

DREAM, which has four consensus EF-hands, specifically binds

to the DRE element (Carrion et al., 1999). It is worth mentioning

here that the Z-box (ATACGTGT) and G-box (CACGTG) motifs

recognized byCAM7 in this study have very similar (or identical in

the case of the G-box) sequence to the recently identified Ca2

+-responsive element (CACGTG[T/C/G]) (Kaplan et al., 2006). A

detailed nuclear magnetic resonance study using various iso-

forms andmutated versions of CAM7 in the presence or absence

of Z-/G-box would address the question of how amino acid

substitution alters the target specificity of CAM7.

It has been shown that change in Ca2+ flux plays important

regulatory functions in sensing dark–light transition of Arabidop-

sis seedlings (Sai and Johnson, 2002). Furthermore, the role of

Ca2+/CaM in phytochrome signaling has been postulated, and

the potential connection between light and Ca2+/CaM signaling

has started emerging, especially with the identification and

functional characterization of SUB1, a Ca2+ binding protein

operative in both cryptochrome- and phytochrome-mediated

light signaling (Guo et al., 2001). Recent studies have also shown

the involvement of phototropins in blue light–mediated Ca2+ and

H+ fluxes (Babourina et al., 2002). The data in this study collec-

tively provide evidence that CAM7 acts as a transcriptional

regulator and promotes photomorphogenic growth and light-

regulated gene expression. However, the possible role of Ca2+ or

other divalent cation in CAM7-mediated Arabidopsis seedling

development remains to be elucidated. For example, recent

studies have suggested that Mg2+ may structurally bridge the

DREAM protein to DNA, whereas Ca2+-induced dimerization of

DREAM disrupts DREAM–DNA interactions (Osawa et al., 2005).

It has been predicted that, similar to other proteins that have

interacting protein partners, mutations in CaM might result in

dominant-negative effects (Veitia, 2005). Recent protein micro-

array analysis data also support such prediction (Popescu et al.,

2007). The elongated hypocotyl phenotype and reduced expres-

sion of light-regulated genes conferred by the overexpression of

CAM7-M2 could be attributed to dominant-negative interference

of the light signaling pathways by CAM7-M2 protein. The alter-

nate possibility of cosuppression of the endogenousCAM7 gene

expression caused by overexpression of CAM7-M2 seems to be

less likely since the cam7 mutants do not display any altered

photomorphogenic growth. Furthermore, cam7 cam3 double

mutants also do not display any altered morphology. However, it

could be possible that overexpression of CAM7-M2 cosup-

presses endogenous CAM7 gene expression and one or more

additional genes of the seven-member gene family of CAM

(except CAM3) or the 50-member gene family of CML (CaM like)

(McCormack et al., 2005). In either case, further study on

identification and functional characterization of such genes is

required to test the possibility.

HY5 is considered to be an important signal integration point of

major branches downstream to all known photoreceptors (Jiao

et al., 2007). The Z- and G-box have been shown to be func-

tionally equivalent in the context of ZBF1/MYC2 and ZBF2/GBF1

transcription factors (Yadav et al., 2005; Mallappa et al., 2006).

Recently, genome-wide promoter target studies usingChIP-chip

analysis have revealed that the Z- and G-box sequences are

Figure 5. (continued).

(E) Quantification of hypocotyl length of 6-d-old seedlings grown in WL (60 mmol/m2/s). Approximately 25 to 30 seedlings were used for the

measurement of hypocotyl length. The error bars indicate SD (P < 0.01, between cam7 hy5 versus cam7 hy5 [CAM7] as marked by asterisks; n = 3).

(F) Immunoblot (using c-Myc antibodies) of 20 mg of total protein prepared from wild-type, OE1, hy5, and hy5 (OE1), and hy5 (OE2) seedlings. The actin

bands indicate approximate equal loading.

(G) Real-time quantitative PCR results (P < 0.01; between cam7 hy5 versus cam7 hy5 [CAM7] as marked by asterisks; n = 3) show the relative

expression of CAB1 and RBCS-1A in 6-d-old seedlings grown in WL (30 mmol/m2/s).
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enriched in the promoter region of HY5 target genes (Lee et al.,

2007). Therefore, it is possible that CAM7 and HY5 regulate the

expression of a common set of downstream genes in light

signaling and have partially overlapping functions in light-

dependent development. Although mutations in CAM7 do not

cause any visible morphological defects, the expression of

light-regulated genes is downregulated in cam7mutants (Figure

4H). It could be envisioned that a coactivator (possibly one of the

other CAMs or CAM-like proteins) may recognize both CAM7

and HY5 proteins, which are already bound to the respective

promoter elements. In the absence of CAM7, the coactivator and

HY5 interaction might be sufficient (omitting the requirement for

DNA binding of CAM7) to promote photomorphogenic growth,

thus making CAM7 protein functionally redundant. However,

under this condition (in the absence of CAM7), the expression of

the light-regulated genes is moderately downregulated. Alterna-

tively, functional redundancy of CAM7 may be due to the

overlapping functions of light and another signaling pathway

working via CAM7 protein. For example, Ca2+/CaM-mediated

signaling has been shown to be involved in brassinosteroid

biosynthesis and auxin signaling pathways (Yang and Poovaiah,

2000; Du and Poovaiah, 2005). HY5 has also been shown to act

as a regulatory protein in auxin signaling (Sibout et al., 2006).

Recent studies have revealed that seedlings that are deficient in

gibberellin synthesis or signaling exhibit photomorphogenic

growth in the darkness. Furthermore, these studies have shown

that HY5 is a point of crosstalk between light and jasmonic acid

signaling pathways (Alabadi et al., 2004, 2008).

This study reveals that CAM7 protein accumulates at higher

levels in dark or at lower intensity ofWL, which directly correlates

with its physiological functions under such conditions (Figures 2

and 6). Under certain growth conditions, two bands of CAM7

were detected in protein gel blot analyses, one of whichmight be

a posttranslationally modified form of the protein. HY5 accumu-

lates at a lower level at lower intensities of WL, and the level of

HY5 protein increases with exposure to higher intensity of WL

(Osterlund et al., 2000). The overexpression of full-length or

truncated HY5 is unable to promote photomorphogenic growth

or derepression of light-regulated genes in the darkness (Ang

et al., 1998). On the other hand, CAM7 overexpresser transgenic

seedlings not only display partial photomorphogenic growth in the

dark, but the light-regulated genes are also expressed under the

similar conditions. Overexpression of CAM7 in hy5 transgenic

lines not only partially suppresses the hy5 phenotype in light, it

Figure 6. The Accumulation of CAM7 Protein Is Altered in Dark and Light.

(A) Six-day-old wild-type (Col) or OE1 transgenic seedlings (OE1, OE2, and OE3) grown in constant dark (D) or WL were used for immunoblot analyses

of CAM7 protein (using c-Myc polyclonal antibodies). The actin bands (probed by anti-actin monoclonal antibodies) indicate approximate equal loading.

(B) Top panel: The visible phenotypes of seedlings grown in constant dark or various fluences of WL are shown. Six-day-old wild-type (Col) and CAM7

overexpresser transgenic seedlings (OE1) are shown alternatively from left to right. Bottom panel: The level of CAM7 protein in OE1 transgenic seedlings

as described in the top panel. The actin bands indicate approximate equal loading.

(C) Six-day-old OE1 transgenic seedlings grown at various wavelengths of light and at different fluence rates were used for immunoblot detection of

CAM7 protein. The actin bands indicate approximate equal loading.

(D) A schematic model for CAM7- and HY5-mediated regulatory pathways. The triangles indicate light intensity–dependent gradual decrease or

increase of CAM7 or HY5 protein, respectively. LIGs, light-inducible genes.
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also promotes photomorphogenic growth in the darkness (Figure

5B). Furthermore, accumulation of CAM7 in hy5 transgenic lines

fully restored the expression of light-regulated genes (Figure 5G).

Collectively, this study demonstrates that CAM7 acts as a positive

regulator of photomorphogenic growth and light-regulated gene

expression and highlights the concerted function of CAM7 and

HY5 in Arabidopsis seedling development (Figure 6D).

METHODS

Transgenic Plants and Mutants

Plant growth and light conditions were as described by Yadav et al.

(2005). The segregation ratios of self-fertilized plants heterozygous for

cam7-1 or cam7-2 determined by the analyses of genotyping PCR (left

border–specific primer LBP, 59-GCGTGGACCGCTTGCTGCAACT-39;

and CAM7-specific primers LP15, 59-GACCATCTCCTCTCCGTCTTT-

GTCGAA-39, and RP15, 59-CGAATGTGTTTCGTT TACAGTTCA-39) in T2

progeny suggested that a single T-DNA locus was present in cam7-1 or

cam7-2 mutant lines. The junctions of T-DNA and CAM7 were amplified

by PCR, and the DNA sequence analyses revealed that the T-DNA was

inserted at 225 and 113 bp upstream to ATG of CAM7 in cam7-1

(salk_074336) and cam7-2 (Flag_397A10), respectively. The hypocotyl

length measurement data were analyzed by one-way analysis of variance

using a post-hoc Dunnett test. All analyses were performed using the

SPSS15.0 program.

For the generation of overexpresser transgenic lines, a 571-bp frag-

ment of cDNA was PCR amplified using primers with c-Myc sequence:

FP, 59-CATGCCATGGCAATGAACATCTCAGAGTTCAAGGAGGCTT-39;

RP2A, 59-GGAGATTAGCTTTTGTTCACCGTTCAAATCTTCTTCAGAAA-

TCAACTTTTGTTCACCGTCGAGCTTAGCCATCATGACTTTGACAAACTC-39;

RP2B, 59-GACTAGTACCGTCGAGTCCGTTCAAGTCTTCTTCTGAGAT-

TAATTTTTGTTCACGTTCAAGTCTTCCTCGGAGATTAGCTTTTGTTCAC-

CGTTCAAAT-39. The PCR products were digested and cloned into the

NcoI and SpeI sites of pCAMBIA1303, and the transgenic lines were

generated as described by Mallappa et al. (2006).

The cam7 hy5 double mutants were constructed by genetic crosses

using hy5-ks50 (Wassilewskija) and cam7-1 (Col) singlemutants following

similar methods described by Yadav et al. (2005). A segregated wild-type

line of the T2 generation was used as a control to compare the phenotypic

and molecular differences. The hy5 transgenic lines containing the 35S

promoter-CAM7-c-Myc transgene were constructed by genetic crosses

between hy5-KS50 and OE1 or OE2 transgenic plants containing the

35S promoter-CAM7-c-Myc transgene. For the complementation test, a

2.1-kb fragment containing CAM7 and its 1.5-kb upstream promoter

region was cloned into theNcoI and SpeI sites of pCAMBIA1303, and the

transgenic lines were generated as described by Mallappa et al. (2006).

Chlorophyll and Anthocyanin Measurements

Chlorophyll and anthocyanin levelsweremeasured following protocols as

described by Holm et al. (2002). Briefly, seedlings were collected into

microcentrifuge tubes, weighed, and crushed by a pestle in 700 mL of

chilled 80% acetone. Cellular debris was removed by centrifugation at

48C, and the supernatant containing chlorophyll was collected into a fresh

microcentrifuge tube, and volume was made up to 1 mL. Then the

absorbance was measured at the wavelengths of 645 and 663 nm.

The total chlorophyll content was calculated with the following formula:

(20.2 3 A645) – (8.02 3 A663) = mg/g of fresh tissue weight.

Arabidopsis thaliana Protoplast Transfection Assays

Arabidopsis protoplasts were isolated and transfection assays were

performed following the methods described by Wang et al. (2005). The

mutated Z-box used in CAB1m promoter has been described by Yadav

et al. (2002).

RNA Gel Blot Analysis

For RNA gel blots, total RNAwas extracted using the RNeasy plantminikit

(Qiagen) following the manufacturer’s instructions. The DNA fragment of

CAB1 orRBCS gene was used as probe as described (Yadav et al., 2005)

using a random priming kit (Megaprime; Amersham). To quantify the RNA

gel blot data, the intensity of each band was quantified by the Fluor-S-

MultiImager (Bio-Rad) and ratios of the gene versus its corresponding

rRNA band were determined and plotted (Fluor-S-MultiImager; Bio-Rad).

Protein Analysis

The ligand binding screen (DNA binding to filter-immobilized protein) was

performed as described (Yadav et al., 2005). For EMSAs, CAM7 cDNA

was cloned in pGEX4T-2 vector, and GST-CAM7 was induced using

1mM isopropylthio-b-galactoside and overexpressed in Escherichia coli.

The overexpressed GST-CAM7 was affinity purified following the man-

ufacturer’s protocol (GE). GST-CAM3, GST-CAM7-M1, or GST-CAM7-

M2 proteins were also purified similarly. EMSAs were performed as

described (Mallappa et al., 2006). Protein gel blot analysis was performed

using the Super Signal West Pico chemiluminescent substrate kit (Pierce)

following the instructions as described in the user’s manual. Protein

extracts were prepared from wild-type or transgenic seedlings. The

seedlings (100 mg) were frozen in liquid nitrogen and ground in 300 mL of

grinding buffer (400 mM sucrose, 50 mM Tris-Cl, pH 7.5, 10% glycerol,

and 2.5 mM EDTA), and PMSF was added (0.5 mL for every 100 mL of

grinding buffer). The protein extract was transferred to a fresh micro-

centrifuge tube and centrifuged at 5000 rpm for 5 min to pellet down the

debris. The supernatant was transferred to a fresh tube, and an aliquot of

5 mL was taken out in a separate tube for the estimation of protein by

Bradford assay. Proteins were separated by 10%SDS-PAGE. Prestained

protein markers (GE) were used for molecular mass determination. The

samples were then transferred to Hybond C-Extra (Fermentas) at 100 mA

for 2 h in transfer buffer (7.56 g Tris, 47 g glycine, and 20%methanol in 2.5

liters) in a mini blot protein gel apparatus (GE). The membrane was

blocked with 5%milk in PBS (10mMNa2HPO4, 1.8mMKH2PO4, 140mM

NaCl, and 2.7 mM KCl) and probed with c-Myc polyclonal antibodies or

anti-Actin monoclonal antibodies (Sigma-Aldrich).

The ChIP assays were essentially performed as described (He et al.,

2005). The sequence of primer pairs (resulting products of;500 bp) used

were as follows: NIA2-PROMO-FP, 59-CTATACATGTTTCCGAGACG-39;

NIA2-PROMO-RP, 59-AGTATCGTGCCGAATCACACG-39;CAB1-PROMO-

FP, 59-GGTTTACATTGATGCTCTCAGGATTTC-39; CAB1-PROMO-RP,

59-CGTGGTTAATGGCTCGCACTTCGC-39.

Real-Time Quantitative PCR

Total RNA was isolated using the RNeasy plant minikit (Qiagen) extraction

kit according to the manufacturer’s protocol. cDNA was synthesized from

1 mg of the total RNA using RT-AMV reverse transcriptase (Roche). Real-

timePCRwas performedusing LightCycler faststartDNAMasterplus SYBR

Green1 (Roche). Valueswerenormalizedwith the amplification ofActin asa

constitutively expressed internal control. Primers used were as follows:

CAB1-FP, 59-CCCATTTCTTGGCTTACAACAAC-39; CAB1-RP, 59-TCG-

GGGTCAGCTGAAAGTCCG-39; RBCS-1A-FP, 59-GAGTCACACAAAGA-

GTAAAGAAG-39; RBCS-1A-RP, 59-CTTAGCCAATTCGGAATCGGT-39.

Accession Numbers

Sequence data from this article can be found in the Arabidopsis Genome

Initiative or GenBank/EMBL databases under accession numbers

AM422556 (ZBF3/CAM7) and At1g37130 (NIA2).
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The following materials are available in the online version of this article.

Supplemental Figure 1. Comparison of Quality of Various Purified

Proteins Used for EMSAs.

Supplemental Figure 2. Identification of cam7 Mutants.

Supplemental Figure 3. CAM7 and HY5 Promote Photomorphogenic

Growth at Various Wavelengths of Light.
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