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Dual charged solution in curved space-time
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Abstract. A dual charged solution carrying both electric and magnetic charge is
formulated in SU(2) X U(1) gauge theory without making use of the topological char-
acteristics of Higgs fields. When Dirac quantisation condition is imposed, two
consequences follow: (i) Weinberg angle is restricted to the value sin*=1/2 and (ii)
the solution cannot have fractional electric change, but must have integer items the
basic electric charge of the theory. The infinity inherent in the theory is removed at
the classical level by the use of gravitational effects by obtaining the same solution in
the curved space-time. The resultant metric is of Reissner-Nordstrém form.
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1. Introduction

The study of solutions to classical Yang-Mills field equations has received much
attention in recent times due to the realisation of their important role in understand-
ing various aspects of hadron physics. An initial momentum to this was provided by
’t Hooft’s observation that solutions with characteristics of a magnetic monopole
exist for YM field systems with spontaneous symmetry breaking (t Hooft 1974).
The magnetic charge is contained at the zeros of the Higgs field (Arafune et al 1975).
’t Hooft’s work was extended to solutions which are both electrically and magneti-
cally charged (Julia ez al 1975, Prasad et al 1975). The existence of dual charged
particles was earlier considered by Schwinger (1969) as a possible answer to many
intriguing questions. One hopes that quarks with fractional electric charge are
entities of this variety. :

The introduction of elementary scalar field to spontaneously break the symmetry of
a non-abelian gauge theory describing strong interactions is likely to affect properties
such as asymptotic freedom, possessed by unbroken Yang Mills field. Therefore,
much effort has been put recently in considering dynamical symmetry breaking of
such theories. From this point of view, the work of Hsu (1976), exhibiting monopole
solutions in Weinberg’s unified theory without any crucial use of Higg’s scalar becomes
significant.
~ In this paper we look for a similar but dual charged solutions in Weinberg’s model
(1967). We observe that the electric charge of the solution depends on the Weinberg
angle. It is an integral multiple of electron charge if sin?® § = £ but is otherwise
arbitrary. One of the drawbacks of these solutions is that unlike ¢ t Hooft monopoles
these are not finite energy solutions of the theory. The total energy in the field con-
figuration is infinite, leading to infinite self mass. One would then hope that quantum

507




508 R Ramachandran and V. M Raval

corrections and renormalizations would make it finite. Alternatively we may look
for solutions, which are of finite mass at the classical level, by incorporating the effect
of gravity. This can be effectively implemented by considering the dual charged
solution in curved space time. The resultant Finstein equations are solved together
with Maxwell like equations for the gauge fields. A metric identical to the Reissner-
Nordstrém metric is obtained for the solution characterizing a dyon, in conformity
with Birkhoff’s theorem. (Birkhoff 1923, See also Weinberg 1972).

2. Dual-charged solution

Consider the Weinberg’s unified theory (1967) based on the gauge group SU(2) x U(1).
The equations of motion for the classical fields Ay, By, ¢ and ¢t are

O F" —fF*" x A, + wf“?/z 6 — if pt 7\/2 ¢ =0 O]
OB — i $16" + Fif ¢t =0 @)
0" — M2+ 2h¢tgt —[iF 4, T/z +Lif' B,J¢" =0 3
where
4= # S
(¢ + V2A+i g0 V2
Fpu = apAr "‘a,A, +fAP X A!
Bﬁv 2apBu — aan
# =o' —ifA" (72— L if B
—_

and T are the usual Pauli matrics.

Leptons have been neglected for simplicity. The photon field 4,6m and the
neutral massive vector field Z, are given by

A, = 4,%sin § + B, cos 0 4)
Zy =A,%cos 6 — B, sin 6.
The Weinberg angle 6 and the electronic charge e, are given by

tan 8 = fIf* and e, = —f sin . )

The Higgs scalar fields obviously possess the following trivial solutions:

¢:': = Oa 5620 =0, 9510 = -_«\/EA — ZV;MW
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where M, is the mass of W,* = (4, -+ zAz,)/\/ 2. Consequently, they decouple
from the field eqs (1) and (2) whxch then become,

o, F"" —fF" x 4, =0. (©6)

6,B" =0. | ™
‘Now the local gauge invariance of the theory allows us to introduce a unit isovector
vi(x) (Hsu 1976). Therefore, one can look for the static spherically symmetric
solutions of the form

B' =v'B(r),v' =rr., By =0 ®

A =€ VP A1), Ay* = v* 4y (1) A ®

iha,b=1,2,3.

On substituting (8) and (9) in the field equations we find that eq. (7) does not restrict
the radial functions B(r). However, eq. (6) reduces to

r S8 o B AU A QS A + r A Q4 A) =0 (10)
2 Pdoy 5 4o o4 (14fr AP =0 11)
dr? dr

A special solution of eq. (10) is

A@r) = —(1[fr). | | (12)

The structure of the equations of motion is such that this solution decouples the radial
functions A(r) and 4y(r). Hence one can also look for non-trivial solution of 44(r).
The other solution 4, = ——2/fr considered by Hsu (1976) does not admit non-trivial
value of 4,(r). Equation (11) is obviously satisfied by

A =J|r 3)

with J as an arbitrary constant. To understand the meaning of this classical solution
a gauge invariant generalised electromagnetic field tensor is defined as follows:

F,, =v*F°,, sin § 4+ B,, cos 6 — (§}Pf_9) e y3 D, v*D,ve 14

where

v (x) v (x) =1and

D,v? = 9,v° + f ¢ 4,
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It is easily verified that F,, == 9,4, — 9,4, when v* points in the z-direction
at each space time point. In the present case we find that the electric field is

- 4
E; = F;, =sin HZI;'(J/r) v

E = — (Jsin 0[r%)v.

This originates from an electric charge given by
0, =L fE'ds::—JsinB. | (15)
4o

Since the basic electric charge in Weinberg’s model is e, = —fsin 6, this represents

an electric charge of J/f units of basic electric charge. Similarly the magnetic field
is given by :

HJ == -?5 €5kt Fkl = —(Sin 9/ﬁ.2) Vy
or H=— (sin O/ﬁz) Y.

This form implies a monopole of strength —&, = —sin 0[f. Further Dirac quanti-
zation condition for electric and magnetic charges imply that

€ 8 — ¢ & = nf2 . . . (16)

where e; and g, are respectively the electric and magnetic charges on the ith particle.
If i refers to a particle that carries just the basic charge ¢, and no magnetic charge
and j refers to a monopole of strength g, = sin 8/f, Dirac’s condition that

€y 8 = n/2

in_lpIies sin? § = n/2. F)nly n =0, 1, 2 is thus compatible. While n =0 and n =2
will mean absence ‘of el-ther electromagnetic or weak coupling, only consistent value,
we may have for sin®@ is 1/2 corresponding to the product e, g, having a value 1/2,

Whgn we apply eq. (16) with our dyon solution as particle i and a pure monopole as
particle j, we arrive at ’ '

Op & =n'[2

or (J/f ) e 8o = n’/2'. Since e, g, = 1/2, we find J [f =n’ which is an integer. The
electric charge c_:amed by the dyon is an integral multiple of the basic electronic
charge. In particular, this preclud ' '

. : es the possible association of fractionally charged
quarks with these solutions, -
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3. Curved space-time

We now proceed to consider the nature of spacetime contaiﬁing the dual charged
solution. In view of the spherical symmetry of the following form:

g,, = diag (—e?", €24, 12, 2 sin? 6) . L 17)

where A and 7 are unknown functions of ». The field eqs (6) and (7) by virtue of
the antisymmetric nature of F?,, become

1 9 PN T s

V:§ 5;;('\/_g Fa ) —'f €abe Fb 8ar Ac“ =0 T (18)
1 2 ,— .,

T Ve =0 (19)

where x, refers to the curvilinear coordinates and g is the det g,,. We again look
for solutions of the forms (8) and (9). Equation (19) does not restrict B(r). Choos-
ing spherical coordinates eq. (18) reduces to the following two coupled equations. .

e~28r24" +.2rA’ + (A" + rd) (v + A)] |
—A (1+fr4) Q+frd)—e2® f A2 r (14fAr) =0. (20)
e~2A (124, + 2r Ay + r* 4y (n"-l— AN] — 24, (1+frd)* = 0. 2D

These equations reduce to (10) and (11) in flat spacetime as they should. The fact
that 4, is not zero leads to a 5-dependent teri in eq. (20). Moreover we have an
additional eq. (21) containing 5 and A. This makes it different from the situation
in the case of ’t Hooft’s monopole in curved spacetime considered by Bais and Russel
(1975). ' C

Note the above equations again decouple in 4, and A for A(r) = —1/fr and become
linear. The term containing exponential in 7 also disappears though 4, is not zero.
Moreover, the coefficient of (74 A ') term is such that eq. (20) is satisfied without in
‘any way restricting the functions n and A. But the substitution of 4, from (13)
leads to the following constraint condition :

7 +A =0 | o (22)
Thus, for the dual charged solution the field equations do not decouple from the
_ Einstein’s equations of the gravitational field in contrast to the monopole case (Bais

and Russel 1975). :
We now consider the Einstein’s equations,

"R, —%g.R=T,, S (23)
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where R,, is the Ricci tensor and R its trace. T,, is the energy momentum tensor
which in our case is given by

Tl" = i‘[gmﬂ Fan Favﬂ - igw g" gaﬂ Faav Faﬂf
+gaﬁ sz Bvﬂ —.ign gaﬂ BaoBﬂr] (24)

Inserting (8) and (9) with (12) and (13) we obtain

B,, =0

Fopy= ! Faly

Famj:f% 2(6-7““' Vv €maa’ rj) ra,+2€.ima rz—”ejmc rer,. . (25)
r )

Thus the highly symmetric solution of B, does not contribute to T,,. Expressing

(25) in spherical coordinates we find the following result for the components of
stress energy tensor:

1 -
T, = S [ PLANE T3 2 24]
T, = 1 [e'zA+J2fze_21]
8 f2rd

1
T =gl L+

TiJ=Sin2 ) T“.

All other components vanish. For monopoie solution, i.e. J = 0 the above relations
reduce to those obtained by Bais and Russel (1975).  Similarly one can also compute

the components of Ricci tensor using (17). Substituting these the Einstein’s €qua-
tions get transformed into the following form:

é_%(l__Z_J}_’)_l k&

AT TR T pa e (26)
1 29

e (v" + 7% — Ay L%ﬁ) = K Qnpesea). g

f2r2

B g AL 15
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These equations are to be solved with the constraint eq. (22) i.e;.
| 7+ A'=0
or
7(r) = —A@) + C,

C is the constant of integration, which can be fixed by demanding that asymptotically
the space becomes flat. This implies C = 0. so that

2() + A(r) =0. | (29)

Substituting this in (26) — (28)

I 2A"\ 1
e (;a - T) TR fz 72 129 (30)
1 2y 1
o2 (;é — 7’7) —= f2 LAENIL) . G1)
12e-2A (,7”+,7'2 7'+ ul ,.A ) fz . — (14772, ' (32)
‘Equation (30) can be rewritten as
= (re—zA) =1 —fﬁ a+ry | (33)
On integration this gives
o4 = | _ Mpk n k(1-+7%(%) G4

r f2r2

where M, is the constant of integration and is identified with the mass of the dyon.
This also satisfies eqs (31) and (32) in conjunction with the condition A(r) = — 7(r)
imposed by the field equations. Expressing J and f in terms of electric and mag-
netic charges the metric can be written as

dst = — (1 - Mpk  Men'+ sz)) dr®

r r? sin 26
n (1 _ Mk + k(gmzl‘i' QD2))_1 drt 4 rdQe. (35)
r r? sin 20

This is the standard Reissner-Nordstrom metric. According to Birkhoff s theorem
a spherically symmetric distribution of mass and electromagnetic sources would lead
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to a umque metric. This result is in conformity with this theorem. Note this
metric is valid only for r > kM, since kM, is the event horizon. Thus, we have
effectively given an extension to our dyon,’so that the energy content or mass of the
dyon is no longer infinite. Indeed, the mass of the dyon M), being the integration
constant in eq. (33), is arbitrary and an external parameter.

4. Comments

We have obtained here an exact dual charged solution in Weinberg’s theory. - While
the motivation for this was for finding solutions with fractional electric charge, the
charge of the dyon turns out to be an integer multiple of electronic charge, The
Weinberg’s angle is resiricted to a value sin?6 = %. We then obtain an explicit
solution of Finstein’s equations for the dual charged solution of the non-Abelian
gauge theory. The solution of the system becomes possible due to the fact that the
linearisation and decoupling of the equations occur just as easily in the curved space-
time. Moreover, the field equations imposed a very s1mple restriction (eq. 22) on
the solution of the Finstein’s equation. This, in fact, is responsible for our metric
to be identical with the Reissner-Nordstrom metric for a particle endowed with both
eléctric and magnetic charge. Notice that fromegs (26) - (28) the condition (22)
results in equal weightage for the two charges in the metric.

The magnetic charge of this solution is not of topologlcal origin. On the contrary,
such a solution, because of the singuldrity at the origin for a point (€lectric or magne-
tic or both) charges has infinite self mass at the classical level. By combining the
electromagnetic properties with the gravitational effects we have been able to give a
finite extension to the sources and thereby remove the infinities at the classical level.
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