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A decomposition theorem for SU(n) and its application to
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Abstract. Itis proved that the group G = SU(n) has a decomposition G = FCF
where F is a maximal abelian subgroup and C is an (n— 1)* parameter subset
of matrices. The result is applied to the problem of absorbing the maximum possible
number of phases in the mass-diagonalising matrix of the charged weak current into
the quark fields; i.e., of determining the exact number of CP-violating phases for
arbitrary number of generations. The inadequacies of the usual way of solving this
problem are discussed. The # = 3 case is worked out in detail as an example of the
constructive procedure furnished by the proof of the decomposition theorem.
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1. Introduction

To incorporate CP-noninvariance within the standard gauge model of weak inter-
actions, the currently favoured procedure is to write the charged weak current as

J, =Ty, 3 (1—yp cD, W

where U= (uy, uy, ..., u,) and D =(d,, d,, ..., d,) are, respectively, sets of
‘up’ quarks of charge + 2/3 and ‘down’ quarks of charge — 1/3. These quark
fields are defined as the eigenvectors of the quark mass operators. The unitaryn X n
matrix ¢ will incorporate CP-violation if its elements include complex numbers whose
phases cannot be eliminated by redefining the phase of individual quark fields.
The matrix c is to be determined as follows: the Yukawa coupling of the gauge group
doublets (), @}) with the Higgs field(s) leads to the mass matrices M(U) and M(D)
in the bases U° DP respectively. These matrices are diagonalised by unitary matrices
vy ¥ Tespectively, with

UUUO - U, UDDO = D.
The charged current is then
Jl‘:ﬁo ‘)’,,,%(1“‘}’5) Doz_ﬁ‘)’,,,%(l""‘)’s) vD, )

where v is, in general, an n®-parameter unitary matrix. We are then to factorise v
in such a way as to separate an overall phase to be absorbed into the W“ to which Ju
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couples and to similarly absorb as many additional phases as possible into the indi-
vidual quark fields. It is the last problem (raised, especially, by the phrase ‘as
many as possible ’) that is the concern of this paper. What is required is a decom-
position of a general unitary matrix in the form

o = fof "exp (ix), )

where f and f' are ‘maximal’ diagonal unitary matrices, y is real and c is the matrix
required in (1). Clearly, we may choose exp (ix) =det ». Since the maximal
abelian subgroup of SU(n) has (n — 1) parameters, (3) will imply that ¢ is a matrix
with at least n2— 1 — 2 (n—1) = (n—1)®> parameters. On the other hand if ¢
were real, it will be an orthogonal matrix and so can have at most § n (n—1) para-
meters (‘Euler angles’) so that the general ¢ will have at least 3 (n —1) (n—2)
‘phase angles’. These angles are responsible for CP-violation.

For n = 3, a parametrisation of ¢ in terms of these Euler angles and one phase
angle was first wriften down by Kobayashi and Maskawa (1973). Following them,
it has generally been taken, on insufficient grounds, that there are precisely 4 (n—1)
(n— 2) phase angles in the general case. It is obvious from the above that this
number is only a lower bound on the number of phaseangles — simple counting is not
sufficient to establish the exact number of CP-violating phases. To justify the count-
ing, what is required is a proof of the decomposition theorem (3) (a more explicit
critique of the usual incomplete argument as given, e.g., in two recent expository
articles (Harari 1976; Ellis 1978) will be found in the concluding section). We
supply such a proof here. Our proof is also constructive; it lets us write down syste-
matically the matrix ¢ as a function of Euler and phase angles. The case n =2 is
of course trivial. The n =3 case is sufficiently complicated to illustrate fully the
general procedure; extension to n > 3, if and when more generations of fermions
are discovered, only costs more labour.

Because of the nature of the problem, this paper is mathematical in content and
form. Its direct relevance to the description of an important physical phenomenon,
that of CP-violation in weak-electromagnetic gauge theories should, however, be
clear from the remarks above.

2. The general decomposition theorem

The basic mathematical tool we use is a decomposition of a connected semi-simple
Lie group with a finite centre into factors which are its one-parameter subgroups.
This decomposition itself follows from the cartan decomposition of semi simple Lie
algebras (see, e.g., Hermann 1966). The result we wish to arrive at is equation 3
or, more precisely (after first factoring out det » = exp (ix)), the foilowing:

Theorem: The group SU(n) = G has a decomposition G = FCF, where Fisa ((n—1D
dimensional) maximal abelian subgroup and C is a ((n—1)2-parameter) subset of
SU(n).

. Our proof of this theorem proceeds by first working out a suitable decomposition
into one-parameter subgroups followed by a reordering of factors. For complete-
ness, and as an aid to easy understanding, we give below in a subsection a brief
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summary of relevant standard general results without proofs (two books we have
found useful are Helgason 1962 and Hermann 1966). The subsequent subsections of
this section prove our theorem with all details given.

Notation: A capital letter (e.g. G) will denote a group and the same letter in bold
face (G) the corresponding Lie algebra. Lower case letters stand for group (or,
when in bold face, Lie algebra) elements (¢ and g respectively).

2.1. Summary of relevant general theory

Cartan’s fundamental theorem on decompositions of semi-simple Lie algebras is the
starting point:

Theorem 1: A semisimple Lie algebra G has a direct sum decomposition into a sub-
algebra K and a vector subspace P satisfying (i) [K, K] K (i.e., X is a subalgebra);
(i) [K, P] C P (i.e., adk leaves P invariant)*; and (iii) [P, P] c K.

A K satisfying these conditions is a symmetric subalgebra. The corresponding
subgroup K of G is a symmetric subgroup and the coset space G/K a symmetric
space.

A maximal abelian subalgebra of P is called a Cartan subalgebra and denoted,
typically, by A.

The analogue of theorem 1 for Lie groups is
Theorem 2: Let G be a connected Lie group with finite centre whose Lie algebra is
G, K the connected subgroup whose Lie algebra is K, and P the exponentiation of P.
Then G has the decomposition G = KP.

K and P (and hence K and P) may be defined by the action of a linear automorphism
®onG: @k)=kforkeK, @(p)==—p for p€ P, 0 = identity. Under the
exponential map, these conditions become ¢ (k) =k, k € K and ¢ (p) == ¢ (exp p)
=exp [@(p)] =exp (—p)=p7, p €P, on the automorphism ¢ on G. 4 ¢ (or @)
satisfying these properties, called a symmetric automorphism, always exists under
the conditions stated. Finding a symmetric automorphism is a convenient practical
way of carrying out a Cartan decomposition, a way we shall follow. The require-
ment that G must have a finite centre gives one more reason for working with SU(n)
rather than U(n).

One further result we need is
Theorem 3: If A is a Cartan subalgebra and A’ is any abelian subalgebra of P, then
there exists a k € K such that 4d(4") c 4.

Given a decomposition G = KP, we may decompose K and P further. In the
case of K, since it is a subgroup, one simply carries the KP decomposition a step
further. As for P, it follows from Theorem 3 that every element of P, considered as a
one-dimensional (abelian) subalgebra of P, can be written as adj (a) for a in a fixed
cartan subalgebra A and some k € K.  Applying the exponential map, we then have
P = Adg (d) = KAK (i.e., p = k'ak'-! for some k' €K, a € 4), so that

G == KAK == K]_AJ_KI,

is the first step in the required decomposition. Now let K, be a symmetric subgroup
of K; (and 4, correspondingly). The next stage of the decomposition is

G = KpAd,K;4,K,4,K5,

*The definitions and some properties of the adjoint maps we need here are given in the Appendix.

P.—4
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and so on. Eventually we have a decomposition into one-parameter subgroups, the
particular decomposition depending on particular choices of symmetric subgroups
at each level. The familiar Euler angle decomposition of SO(3, R) is a simple appli-
cation of this procedure, as shown in Hermann (1966).

2.2. The case G = SU(n)

For G = SU(n), consider the map ¢ (g) = gogg," with g2 = identity. The choice*

1
Eon — ( ) s (4)
— Ly

is the most convenient [even though g, is not an element of SU (n) for even n,
$ is always an (outer-) automorphism]. It is easily checked that the set K =
{k |$(k) =k} is a subgroup, in fact the group S [U (1) X U(r—1)]; k € K has
the general form

exp (ia)
k= ’ (5)
exp [—ia/(n — 1)] vuy
where « is real and 2, ; € SU (n—1).
Wenow determine P = {p| ® (p) = — p} and verify at the same time that G =K

® P is a cartan decomposition. Firstly, write g, = exp g, with

0
(L)
iml, 4

and g = exp g. Then ¢ (g) = g, exp (g 852 = exp (g, £ g52) = exp [¢ (g)] (see the
appendix). For ¢ (g), we use the formula

0 (8) = 8,88, = exp gy g exp (— ),

=g+ [gm gl +§];| [gos [goa gll + ...

Now, from (5), any k € K which commutes with gO" has the form

ia ’
k, = ( ) s : @)
- [io‘/ (n—" 1)] Vo1 /- i

_ *Here and in the following, we indicate the dimensionality of matrices by subscripts whenever it
is necessary to be explicit. All blank entries in matrices stand for zero.
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with v,., € SU (n— 1) and a real. Clearly, P, the orthogonal complement of K,
consists of all skew-hermitian matrices of the form

- By,
!
- B:-1

where B,-; is a (n—1) dimensional row vector. It follows that [g,, g] ==i=p and
using the formula for @ (g) above, we get

S )2
(I>(g)=g+iwp+%’5,)—p+

=g—P -+ pexp (ir) = g— 2p.

When g =k, p = 0 and we have @ (k) = k; and when g = p, we have ® (p) =p—2p
=— P, thus verifying that what we have exhibited is indeed a cartan decomposition.
Finally, exponentiating the right side of (8), P is itself the set of all matrices of the

form
cos fB B, ,sinp
Pn = ( ):
—Bsin B B:_1 1oy + by y (cos B — 1)/B2

where B is the non-negative real number (B,_; B;_;)% and b,_; is the matrix B;" 1 Buy.

Having found the decomposition G=KP =K, P;, we have to split K, and P,
further. K; can be further split by repeating our earlier procedure on the SU(n—1)
submatrix. Choose

1
gO,n.-.l = ‘ ’

so that k, € K, is of the form
exp (ia)
ky = exp [—ia/(n—1)+-if] ,
exp [—ia/(n—1)—iB/(n—2)] v,-,

where v, , € SU(n—2), for the decomposition K == K, P,. Correspondingly,
Pa € P, is obtained by exponentiating ‘

0

il

P2 0 Bn'-l

— B*

n-2

0
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Further choices of g, are now obvious. The decomposition of P; in the sequence is
achieved by writing p; € P; in the form k| @, k™! for a; € 4, the maximal abelian
subgroup of P, and k) € K.

The maximal abelian subgroup of P; (in fact, of any P,) is easily seen to be one-
dimensional. A, is of the form ‘

a, = , b real.

On exponentiation, we have, then -

ra(d)
al - ( ) ’
1o g

where r, is the SO(2, R) matrix

cos b sin b\
ro(b) = )
' —sin b cos b
The decomposition into one-parameter subgroups then goes in the fdilowing
sequence. '

g = kypy,

= kapokyark; ™,

= kokyazkyYkark ™t

= gzazké_lkialki_l : (7“2 = kgky),

= Ezazk;*lkialk;’a;k'z"lk;‘l

= bk ka6 = k).

= etc. |
It is-clear that for SU(n), the subscripts on the % at either extreme will be (n—1) (i.e.,
they will be products of #—1 factors) and that each knqisa diagonal one-parameter

matrix. We have thus the result we wanted ; the extreme factors are elements of the
maximal abelian subgroup of SU(n). The factors in the middle recombine to form the
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‘Cabibbo-Kobayashi-Maskawa’ matrix. Concrete examples treated in the next
section make matters even clearer.

3. Explicit construction for n = 2, 3
3.1 n=2

The trivial SU(2) example is already instructive: Write g € SU(2) as*
( c(6) exp (i) 5(0) exp (i8,)
g ==

) = v, (6; 5y, 8y).
—5(6) exp (—i8y)  c(8) exp (—idy)

For our choice g, =diag (1, —1), we have
ky = diag (exp (8,), exp (—idp); py = 2,(6; 0, &), (&' == } (8,— ).
4, in this case is SO(2) and p, has the decomposition
Py =FKira(6)k;7L, k; = diag (exp (i), exp (—is").
Hence, the general U(2) matrix decomposes as

exp (ix) 2 (8; 8y, 35) == diag [exp (ix +18), exp (ix—i8)]
X 1y (0) diag [exp (—i8"), exp (i8") [0 =14 (8, 8,)].

Thus, the three phase parameters y, 8 and &' occur only in the extreme factors and
can be ‘absorbed’ by redefining the individual quarks. Alternatively, the overall
phase can be got rid of by redefining the W* field to which the current constructed by
sandwiching the U (2) matrix couples and 8; and 8, by redefining the quarks. The
essential point is that even though we have five non-hermitian fields, only three phases
can be got rid of by redefining them, the reason being that the maximal abelian
subgroup of SU(2) is one-dimensional—a point which is obscured in the usual
discussions. A U(2) matrix has of course only three phase parameters and so there
is no CP-violation.

32 n=3
For »3 = g € SU(3), g, is diag (1, —1, —1), ky € K; is of the form

( exp (igy)

k,

) , vy € SU(2),
exp (— i$y/2) v,

*To avoid or at least to shorten, whenever feasible, the explicit writing down of big matrices, we
follow from now on some additional notational abbreviations: »,(0; §,, 8,) stands for the general
SU(2) matrix parametrised as above (v2(8; 0,.0) = r,(6), the rotation matrix), diag (x, y, ...) for the
diagonal matrix with diagonal entries x, y, +++, and ¢(6) and s(6) for cos 6 and sin 6, )
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and p, € P, is generated by

0 b b,

I

Py “bt

%
.._..b2

which is a 4-parameter matrix. A, is one-dimensional, in fact SO(2), and we choose
the parametrisation

( Fo (6 )
a = .
1

p, can then be written p; =kja k™, k; € SU Q) c K, i.e.,

1
b = ) |
vg (033 g, ag)

( exp (ig;)

Therefore, 1)3 = klk:,lalki_l =

exp (i$4/2) vy (855 By, Bo) )

)0 )
X .
1 v (— 035 —ay, ap)

Now, each of the SU(2) matrices can be further factorised as in § 3.1 to give

vy = diag [exp (id,), exp (—ip,/2)] diag [exp (iB), exp (—iB)]

1
X ( ) dlag [15 €Xp ('- iﬁ'), eXp (lﬂl)]
ry (62)
( rs (61) )
X diag [1, exp (ia), exp (—ia)]
1

1
X ( ) diag [1, exp (—ia'), exp (ia')],
ro (—b3)

where o =4} (a;+ap, B=13(B+By. o' =3} (ay—ay), f' = §(B,—B)).
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The eight parameters 6, 0,, 65, o, B, o, B’ and $, characterise vy fully. We now

reorder some of the factors in order to exhibit another one parameter matrix on the
right extreme. This can be done in many ways: the one we choose is

vy = diag [exp (idy), exp (iB—igh/2—i8'), exp (—if— ip/2—if")

() (77)
X diag [1, 1, exp (i8)]
"2(02) 1

1
X ( ) diag [1, exp (fa—id’), exp (ia 4 ia')],
ry (— 05)

where =2(B'—a).
The product of the middle four matrices is the Kobayashi-Maskawa matrix which, in
full glory, is

[ c(6) 5 (6;) ¢ (6) —5 (8 5 (03) )
—s(8) ¢ (8) c(6) c(82) c(6y) - —c(8) c(8) 5 (6y)
¢z = T 5(02) s (B) exp ()  + 5(6,) ¢ (6,) exp (i5)
s(B) s(8) —c(8) 5(8) c(6s) ¢ (61) 5 (8,) 5 (85)
L Tc()s(8) exp(B) ¢ (6;) ¢ (65) exp (id) ]

From the point of view of the general decomposition of § 2, this is not quite what
we were after: neither the matrix ¢; nor the diagonal matrices to its left and rightis a
unimodular matrix, even though the product vg is (there are only eight parameters; &
is not independent). Once we choose to exhibit ¢3 in the Kobayashi-Maskawa form,
the phase matrices will, in general, not be unimodular. There are alternative ways
of decomposition which will have a different d-dependence and be unimodular. In
any case, what is required is a decomposition of U(n) and not SU(#). But since the
general theorems are applicable to SU(x) and not to U(n), we were forced to factorise
the determinant out. It can be restored at the end without any difficulty as we have
seen.

4. Conclusions

As we stated in the introduction, there are a number of discussions in the literature
on the question dealt with in this paper, at least as far as the counting of absorbable
phases (which in turn gives the number of CP-violating phases) is concerned. They
can be summarised in one sentence: in general, the 2z quark fields on either side of the
unitary matrix arising from the mass diagonalisation can all have their phases
redefined except for one overall phase, giving 2n—1 absorbable phases. This argument
is fallacious for a number of reasons. Firstly, as we saw in the introduction, it only
gives the maximum number of absorbable phases and the minimum number of
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CP-phases. More importantly, the phrase italicised above is misleading because if the
issue was settled directly by the number of (non-hermitian) fields available, there
would be 2n-+1 absorbable phases: one overall (goes into W*) and 2n for the quarks,
whichis obviously absurd. The point is that the overall phase is not ‘except’ but ‘in
addition’, and the correct counting is not (2n)—1 but 1+ 2 (n—1), 1 overall and
(n—1) for the rank (the dimension of the maximal abelian subgroup) of SU(n).

In any case, the constructive procedure we have described for n=3 can be carried
through for larger » in exactly the same way.
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Appendix

If gy € G, the inner automorphism Ad, (g): g g, gg," is an analytic isomorphism of
Gonto itself. We write Ad, for the differential of this map near the identity, which is
an automorphism on the tangent space (i.e. G, the Lie algebra of G) such that
exp (Ad,, (g) =g, exp gg, I The set of automorphisms Ad; form a group GL
(dim G) and the map g, Ad,, is a group homomorphism of G into GL (dim G).
The differential of this map near the identity, a homomorphism of G into GL
(dim G), is written as adg, and is given by adg, (g): g > [g,, g] (Helgason 1962).

Consider the automorphism given by ¢, (g) = g,88;" where gi =T and g€ G
(which is of the kind used in the text). For matrix groups (which is what concerns
us in this paper) we will show that this defines @, (g) =g,gg," withg € G.

Writing g (¢) = exp (¢g) we have
0, (2 (1)) = goexp (18) &5

2 _
=go[1 trgt et ...]gol-

(For the case of matrix groups the product g, g is defined). The differential map of
this close to # = 0 will define @, (g) on the Lie algebra. This is easily seen to be
given by

0, (8 =2 85"
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