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Abstract. An attempt is made to see how much of chiral symmetry is contained
in dual models for pseudoscalar mesons. The chiral constraints are found to be
contained in dual models as either dynamical restriction or kinematical factors. At
the phenomenological level there is no serious inconsistency.
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Introduction

The aim of this paper is to critically re-examine how far chiral symmetry is incorpo-
rated in the dual models for pseudoscalar mesons. Lovelace (1968) was the
first to observe the link between chiral symmetry and soft meson properties toge-
ther with the absence of resonances in the exotic channels on the one hand and
the Veneziano model without satellite terms on the other. While Lovelace demon-
strated in the dual model for »n scattering the results obtained by Weinberg (1966,
1967, 1968) by the use of current algebra and the isoscalar o terms, Kawarabayashi
et al (1968) showed similar results for K= and KK scattering by relating the dual
models with the current algebra treatment of Cronin (1967) and Griffith (1968).
The chiral content demonstrated in both these papers is a direct consequence of
the presence of Adler zero in the amplitude. It is natural to ask whether there
are other results typical of chiral symmetry contained in the dual models. To
answer this, it is necessary to see the correspondence between the parameters in

- the models of chiral symmetry and the symmetry breaking mechanism with a

typical dual model and the coupling constants and the trajectory parameters in
them. ,

We shall confine ourselves to the case involving only pseudoscalar mesons;
the problem is sufficiently realistic and at the same time both chiral model and
dual model are free from any serious anomalies. First, we recall all the effects
of the presence of Adler zeros in the various dual amplitudes. The dual ampli-
tudes may contain the Adler zeros either by suitable choice of the Regge trajectory
that enter the amplitude or by the behaviour of the coupling constants. This
differentiates two kinds of Adler zeros. While the former may be said to have
more dynamical content the latter is essentially a consequence of kinematical
factors.

For the comparison between the chiral symmetric models and the dual models,
we then write down two identities, which make use of the soft meson limits,
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PCAC and current algebra. Gellmann, Oakes, Renner (1968) model of symmetry
breaking and the parameters of such model are used to quantify the consequences
of chiral symmetry breaking. The identities are repeatedly used in conjunction
with a sufficiently general dual model. The analysis provides the chiral parameters
of the conventional dual model and is further checked for internal consistency.

We have taken a sufficiently general dual model, which in particular carries in
its coupling constant the dependence of the amplitude on the mass of the external
lines. It was Cronin and Kang (1969) who first noticed that a conventional dual
model for K= amplitude without such factors will lead to inconsistencies. Osborn
(1970) and Csikor (1970) employed the off mass shell extrapolation factors to remove
the internal inconsistencies noted by Cronin and Kang. However, in the process,
we now have a good deal more of freedom in the choice of the dual amplitude.
We make use of this to find the maximum correspondence between the chiral
models and dual models.

Adler zero and constraint on the Regge intercepts
Dynamical zero

The most direct manifestation of the features that result from chiral symmetry
is the existence of Adler zeros in the amplitudes. These arise in amplitudes
involving pions, whenever one of the pions has its four-momentum equal to zero.
Lovelace observed the presence of such zeros in the Lovelace-Veneziano == ampli-
tude principally as a consequence of the condition.

Gp (m?) =% (1)
The amplitude for =+ 7~ —at 7= is given by

2T (=) T (1 —a,@®)

Are (s 0) = BB @
where 8 could be a function of the mass ¢, of the pions. Since the Adler point
corresponds to & =1t = u = m,>, Adler zero is assured in eq. (2) if the p-trajec-
tory satisfies the condition given in eq. (1). It may be observed that the zero is
obtained without making use of the ‘ mass’ dependence of the coupling constant
B. We shall refer to this as a dynamical Adler zero.

The dynamical Adler zero implies constraints on the ingredients that enter into
a dual amplitude. Since the only ingredients of a dual model are straight line
Regge trajectories, the constraints are in terms of them. More conditions similar

to eq. (1) have been derived by Ademello ez al (1969). Consider the dual amplitude
for r + A—=B -+ C;

M'er;Bc :ﬂ

Tk +Ju—oxO) I+ Ty — oy (1)

Tl SR Ay 75 g 133 )
where the lowest resonance that contributes to the s-channel has spin & + J, and
similarly / + J is the spin of the lowest resonance in the z-channel X and Y are the
Regge trajectories that contribute in the s and ¢ channel respectively. The
asymptotic behaviour of the amplitude as s —co will be given s%®-2  where
A =Jy +n — k is the number of helicity flips. Thus the integers », k and / are
fixed for each helicity amplitude once we know what A, B and C are. The dynamical

Adler zero at s =m,? t =m,? and u =m. in the above amplitude leads to
constraints similar to eq. (1).
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If the slopes of all trajectories are the same, we can derive
ay (0) — a, (0) =0-5, 15, 2-5, etc 4)

where a, .refers to the Regge trajectory exchanged in the channel = + A and «
to the trajectory to which the particle A belongs. The principal consequence o;‘
a d){namical Adler zero is that whenever particles on a trajectory decays into a
particle of opposite normality and a pion, then the two trajectories (with the same
slope) have intercepts that differ by a half odd integer. This is borne out in several
examples. It is possible to find Regge fits, so that a, (0) — a,(0)
Ay — Oy, Oy — 0y and oyx — ay are all nearly 1. o

As a further consequence of constraints implied by eq. (8), we have several hybrid
mass formula, such as

oA T Qy,

m? = mp® = m® — my,® (5)

Kinematical zero

There are amplitudes for which the dynamical constraint implied as above cannot
be satisfied. One such amplitude is for the first reaction for which the dual ampli-
tude was written by Veneziano (1968). In the case w —>ntn=°, if we use the
dynamical Adler zero condition we should get

a0y (0) —a, (0) =% (6)
jwhich cannot be satisfied experimentally. In fact w and p trajectories are degenerate,
if we use some exoticity conditions. The Adler zero in this reaction is produced
by the vanishing of the factor § at the Adler point, when taken with other purely
kinematic factors. For example the amplitude for w —n+ 4 7~ + #° has the form

M = M7 €u (D) Py Poapsc B V (5, 8)
I (l — a, &) r (11— ap (l‘))

(1 —a,(s)— a, (1))
where ¢, (p) denotes the polarisation of w and p;, p, and p; are the momenta of
pions and V (s, t) is the Lorentz invariant part. The vanishing of this amplitude
at the Adler point is ensured by the kinematical factors present in eq. (7). We
shall refer to such a zero in the amplitude as kinematical Adler zero.

We thus see that the chiral constraint in the form of Adler zero can arise in two
essentially different mechanisms. In the remainder of the paper, we shall sketch
how other chiral constraints may lead to either dynamical constraints or appro-
priate kinematical factors. In either case it is necessary to test the internal
consistency of the resultant consequences.

The Adler condition related to the kaon four-momentum set to zero in any
amplitude can similarly be ensured by either a dynamical or kinematical constraint.
We get typically conditions such ast '

ags (M) =% @)

Vs, t)= ()

 The analysis of Ademello, Veneziano and Weinberg, if extended to processes K + A~+B 4+ C,
shall give the difference in the intercepts of K* and = trajectory also to be ¥ unit. This will
then imply, when taken along with the soft pion constraints, degeneracy of pion and kaon mass.
We should therefore expect that SU(3) breaking will seriously affect chiral constraints that

involve kaons.
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Reduction of four point function and chiral identities

In this section, we shall collect together all identities and chiral constraints that
need be satisfied by a four point function made up of pseudoscalar mesons as
external legs.

Let My, ,, refer to the four point meson amplitude where j, k, / and » are the
SU (3) indices. @ We may reduce the amplitude to give, for the process
Ty + > m + 7T,

M __(q "‘Hﬂ) (qu__,u;?) [q qxfdx exp (igy - X) V4p oPs0
i bn firs? fu® e ' ’

(my@2) | T {A,uj (x) A\F(O)} | 7 (p))
— g \/4p10P20 (7, (p2) | [O67(0), AN} (0)] | 74 (P) )

— A Bprapes (m (95) | 108 (), 3ud,? (0)] | m () >] ©

where Qg (¢) are the ‘axial charges ’, being the space integral of time like component
of the axial current density. We have used PCAC (Partially Conserved Axial
Vector Current) to express meson field operators through

¢, (x) = f 5 0, Ay (%) (10)
From the chiral algebra, we have, at equal times

[O5 (0), 45! (0)] = ify, VA" (0) (11)

(O (0), 2,4, (0)] =ioy, (0) | (12)

where V\* is the vector current density and oy is the o term, which can be calculated
if the specific symmetry breaking mechanism is known. We may now write the
two identities valid in the soft meson limit. We have, for M (s, t, u; p,% q.%;
P 4%

M =m? t,u=m2; m?2 t; m?2 0)

Y e S =t 1
VAp,oDae {1 | oy (0) | k) T X 7 (13)

where s, ¢ and u are the customary variables. s = (p, + q)% ¢ =(p; — ps)?
and u = (p, — ¢5)%

ijk;ln t - 2 1 .
5 In (m?2, t, m,2; m.2, t, m,2 0) = f sirS nier ﬁj_’:; 7.: F.(®) (14)

where

\/4[710?20 (n| M\ (0) k) = if [F+(t) (P ‘I“Pz)k +F_(t)(p, — p] (15)

We shall make repeated use of these two 1dent1tles in evaluating the chiral con-
tent of the dual four point functions.

In order to identify the chiral content in the dual models, it is necessary to specify
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a model of symmetry breaking. While t i o
several different mechanisms o? symme:ryhgr::lziir;mtzn%i Zlc;izgcymamaltiyca‘;?rmm
shall take up the most popular one introduced by Gellmann, Oakesplzmd Rz’n ;‘:_
(1968). The SU(3) x SU (3) symmetry breaking part is given by

C eH' = uy + cug

(16)

where u, and ug are scalar densities transforming like (3, 3%)
. : , 4+ (3%, 3) represen-
tation of SU (3) X SU (3) symmetry. It is easily seen that, for such a II)-Iamﬂ.

tonian, the divergence of Axial and Vector currents can be calculated. We shall
have '

DAt =— V2 +c¢

e Vor
2 — /2
D,U-AKM = v '\/3 C/ Vx
\/3
b - — Y _ -
and D#VK CUly (17)

where v, and v, are pseudoscalar densiti - i i
- " p ies and u,- is a scalar density, all trans-

forming according to the same (3, 3*) + (3*, 3) representation. Using these in
eq. (12), we get

2 _
Ogtqp— = :\'L_.g:.{—:_c (,\/2 U, +u8)
V22
Tt '\/—6 Uyo
I V2 — ¢/2 "
1|_".'x< '\/_6 X
Tt -=\/-———————~2—+c U0
KT ‘\/6 K
V2t
O o= '\/6 U
and
2 — 2. =
O%x = l‘gﬁd—‘ [V2uo — % ug] (18)

The various identities implied by eqgs (13) and (14) can now be expressed in terms
of the parameters of the symmetry breaking.

Dual amplitude for mm scattering

We require the off mass shell amplitude for mr scattering for use in the identities.
The dual amplitude of Lovelace (1968) can be expected to have the off mass shell
extrapolations contained in the coupling constant g of eq. (2). We may explicitly
write the amplitude for =~ 4 7t »>7~ 4+ 7+ in the form: (u-channel is exotic)

I'(l—a Q)FA (1 — o ®))

(1 — ap(s) —0 ®) (19)

M = Brav (@ )
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We assume straight line trajectories and the dynamical Adler zero, with the result

1 - L
ap (m',z) =§~ and a = Z(mp2 — mtz) .

The identities, relevant for this amplitude, are (see notation given earlier)
M (m,2, 0, mg?; my?, 0, my?, 0)

L T (7 (90 | e | 70D 20)

and for the same argument

M

‘ L= @y
EY) s=rmgd = fararSurat il fa?
Using eqs (20), (21) and (19)*
V2EC (ot | /2 + 1w+>]“1 ——2mM
[ 3 < ’ ‘ os s==mi,
= 51-12 GeV-?2 (22)
Further, if we assume the off mass shell factor to be separable such that
4
v @1 @°5 pit pe®) = (@3; v (m®) =1 (23)
we have from eq. (21)
=7 (0) e (2°67 GeV) 24)

Dual amplitude for =K scattering

The basic dual ingradient of any 7K —7K scattering is expressible in the form
I'(1 — ays (S)) I’(l —a, (1))
(1l — o (s) —a, 1)
where a,+ () is a straight line Regge trajectory with the same universal slope as the
p-trajectory. The dynamical Adler zero requires a.» (m,?) = 4. The amplitude
displays resonances corresponding to K* trajectory in the s-channel and also

p-trajectory resonances in the z-channel. The Regge asymptotic behaviour is also

built in this form. However, the amplitudes that display evenness or oddness
under s, u crossing are

Ve (S, t) = Bur (g5

(25)

AE(85,1) = Vo (5, 8) &+ Ve (1, 1) _ (26)
The amplitude for m, + K —mg + K is then given by the various terms of
- - +
RR) T (3o); @ B=1,23 @7

where

Taﬁ = SaﬁA+ (s, 2) + i [Tas T’g] A- (S, t)
and r,g are (2 X 2) Pauli matrices operating on the spinor space.

* The covariant normalisation factor 4/2p, is absorbed into the state vector,

——
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We may write several different identities of the kind given in eq. (19) by taking
off the mass shell any two of the four mesons. Let us begin by considering the
elastic scattering K- + =+ — K~ 4 7t and take either the two pions or kaons off
shell. Using egs (25), (26) and (27), we find that the amplitude has the following

Veneziano form:
A (S, t) = Vix (Sa t) 28)

The amplitude displays the resonances in the s-channel ‘and the t-channel and
that the u-channel being exotic is automatically incorporated. Reducing the two
pions off mass shell in this amplitude, we get, similar to eq. (21), an identity:

d
X Vex (S, O) = -f— (29)

q'z=0

We notice that the left hand side differs from the left hand side of eq. (21) by the
factor B.n/Bys Thus, for consistency between eqs (21) and (29), we need

Ber __ 1

Now by taking the kaons off the mass shell instead, we get
1 —
A (mg?, 0, my?; mg?, 0; mg? ,0) = —ﬁ‘g ‘\/4}910P20 (7t Iaix l"+)
1 v/2—%c
- fzv ?,“]z(’rlx/2u0 Yug |7t) €2)

and for the same argument

by | 1

s s=mg? h 2.7:2 (32)

From these two equations, we may derive another equation independent of the
off mass shell extrapolation factors analogous to eq. (22):

2[\/2 c/2<+|\/2u0———uslﬂ+)] =~—%1nA(m,r2,0)
= 3:23 GeV—? (33)

Further, analogous to eq. (24), we have

2715 = — 7,2 (0) Ber (1:70 GeV-?) (34)
From eqs (24) and (34), after setting fyr = % Brw We obtain
‘ f K Y (0)
=125 (35
fx 7« (0)

Equations (22) and (33) relate the matrix elements of %, (0) and ug (0) and the chiral
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symmetry breaking parameter ¢ to those features of the dual amplitude in which
the dependence on the off mass shell extrapolation does nf)t occur. In Oﬂ_ler words,
apart from the straight line trajectory functions very little has gone into these
equations. Now if we supplement these by one more equation, which indicates
that the symmetry breaking Hamiltonian is responsible for the mass of the pions,

we have

(7 | o (0) + cug (0) | 7F) = my® (36)
Solving eqs (22), (33) and (36), we arrive at

c=—1-27. 37N

(7t | up |7ty =0-216 GeV? (38a)

(m+ | ug | 7*) = 0-154 GeV? , (38b)

It is significant that this value of ¢ is very close to the one obtained in a pheno-
menological analysis using the experimental information. This should be,
therefore, regarded as the chiral symmetry breaking parameter implied by dual
models.*

We shall now turn to the identities which arise as a consequence of taking one
pion and one kaon off the mass shell in some typical K= scattering. These will
yield information regarding the form factors of the strangeness changing current.

Let us consider the reaction K+ +m —K° 4+ #°. The amplitude 7' (s, t) for
this reaction in terms of the Veneziano factors is given by

IG5, 1) = = 7 Wi (52 1) = Ve a1, 1)] (39)

Let us keep K* in the initial state and #° in the final state to be on the mass shell
and let either 7~ momentum or K° momentum go to zero. We then have

u— 2 -
T (mxza m?rza u; mxz: 0; m7r2a u) = _ﬁz \/4P10P20 <7To (p2) | Omr-i® I K+ (p1)>
fﬂ'f!{mK
(40)
and '
T 2 2 . 2 . 2 _ u—m 2 o
(M2, me2, u; mk, u; mg?, 0) *——frfxm; VD oDz0 { m° (p2) | oxom- | K (1)) )
41)

Using egs (17) and (18), we may write, suppressing g,2 variables
T (m2, mg2, u)

. u—m® 2vV/2 — ¢ )

T fafemd ( 3¢ ) V2 VApropae (m° (p2) [2,VE- (0) | K+ () )

—_ u— mxz 2 '\/2*— 1 “

T fafe m( 6e C) A @ nd —me®) +uf @] (42)

where f, (4) and f_ (u) are the form facto.rs of stran i
A ' geness charging vec
Similarly starting from eq. (41) we would get ging vector current.

* The value ¢ = — 4/2 corresponds to exact SU (2)
 The i ( X SU (2) symmetry and
dzviation from this value is generally regarded as the reason for the );mall p}i’on massthe small
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2 2 — 7r2 5 ]

T (et ) = = 2P VI, @lm — myt) s )

@)

The use of dual amplitude for T will give two identities that relate the parameters
of dual model and the chiral model. We have from eq. (42), using egs (25) and
(39),

—_ K2 2 A 1
B ;wf,{’:lxﬁ \/éc : 73 U@ 0n = me?) +uf (w)]

1
= \72' [Vmc (mxzs mn'z) - Vﬂ'K (u, i?l,rz)]

Il —ax ) I'th)
I'(5 — e ()
We have used the fact that V. (m,2, m,?) is zero because of the pole in the denomi-
nator. The zero at u =m,* is ensured by the constraint o, (me®) =14 This
is in fact the Adler zero of the amplitude. The equation relates the dependence
of the form factor to the off mass shell extrapolation factor y, (¢) in the dual

model. In particular if we let u — 0, we get

WLL 1 (0) = Buntre O 0 o 234 )
Similarly starting from eq. (43), we would get the other identity which relates the
form factor to the extrapolation factor. In the limit ¥ —0 in such an identity,
we recover

VZEL £ ©) = Barre O 1 O 2 f 0:277) | 46)

If both eqs (45) and (46) can be treated as equally reliable, then we get the value
of ¢ as — 1-17, which is not far from the number — 1:27, we have obtained as
a consequence of the identities due to two pions or two kaons off the mass shell
in the K= scattering amplitudes.

Can both eqs (45) and (46) be equally reliable ? While both the identities refer
to the point when both pion and kaon have zero mass, the first identity lets the
pion four-momenta go to zero first and make smooth extrapolation in kaon mass
and in the second identity the role of pion and kaon are interchanged. It is also
observed the latter extrapolation is much sharper and perhaps some descrepancy
could be introduced in the process of continuation.

The identity corresponding to eq. (44) may also be verified at the point when
u=m?2 With u=m? in eq. (44), we get

2\/26—0 [f+(me?) + -]~ Ber f o [ icym (0) ma (47)

where we have neglected the square of the mass of pion as compared to that of
kaon. The form factor at this point can be calculated again by appeal to the
soft pion approximation and the algebra of currents. We have (Callan and

Treiman 1966, Mathur et al 1966, Suzuki 1966)

folm® +f-(md) = % (48)

1
= \—/"5 wayn' (0) Ve (1) (44)
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We shall now examine the internal consistency of the various relations between
chiral parameters and dual model parameters and analyse which of them contain
a dynamical input and the ones that are of a kinematical nature.

We have already noted the approximaie internal consistency between eqs (45)
and (46). From now on we shall drop from our consideration the implication of
eq. (46) since it appears to incorporate rather steep extrapolations. Now substituting
for the product of parameters y, (0) /'y ¥ (0) f<Ber the value obtained from the
identities given in eqs (24) and (34), we obtain

£+ (0) ~1:00 (49)
if we set ¢ = — 1:27. Further the ratio of eqs (47) and (45) yields
f—l— (mxz) "["f- (mkz) _ 1 ) ]7 (50)
F+(0)- Y« (0)

We have already noted that the ratio f,/f is related to y, (0)fy, (0). Thus the
implication of CT-MOP-S relation (eq. 48) is then merely that

yr (0) =094 (51)
It appears as though the dual model can accommodate a chiral constraint such
as CT-MOP-S relation through the choice of our essentially kinematical factor
v.(0). This still leaves other dual parameters such as vy, (0) unspecified.
We may now compare eq. (50) with the experimental number. The left hand
side is in fact the ratio of the tangents of Cabibbo angle (Gaillard and Chounet
1970) for the axial and vector currents, since

1 fe _tand,
f+0) fr tand,
This ratio is determined to be 1-28 (Brene et al 1968) and if utilised in eq. (50),

we derive a value for y, (0). The kaon off mass shell extrapolation factor is then
seen to be rather smooth, and slow since

7« (0) = 0-91 (53)
It is significant to observe that the use of various identities do not give rise to
any inconsistency; but on the other hand leads to fairly reasonable values to all
the parameters that might be identifiable. Further owing to the off mass shell
extrapolation factors most of the identities are essentially satisfied by the free-
dom we possess in the choice of these factors. *We should therefore take it that
chiral symmetry together with the symmetry breaking is being incorporated through
what may be termed as kinematical factors.

(52)

Conclusion

We have not considered all possible techniques of chiral symmetry in our analysis.
Instead of using CT-MOP-S relation as constraint, it is possible to use dispersion
relations (for example Mathur ez al 1966) and carry out extrapolation from the
soft pion or soft kaon point to the mass shell. Alternatively one may use asymp-
totic SU (3) constraints on the form factors. We have limited ourselves to the
CT-MOP-§ constraint mainly since it uses only the charge algebra and an extra-
polation from g% = 0 to ¢% = m,? and both the steps are well established at least
on phenomenological grounds. Among dual models for the four point functions
for pseudoscalar mesons, there are no major ambiguities, apart from the ghosts
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that occur at the second daughter level. Indeed there are unsolved problems
connected with tachyons and ghosts, particularly when the model is extended to
general n-point amplitude. While we are ignoring these difficulties, we are princi-
pally concerned with the phenomenological consequences of the four-point function
only, which has fairly unique form with minimum of the formal difficulties. What
appears evident from this analysis is that the principal architect of chiral symmetry
in dual models is the presence of Adler zeros in the amplitude. The Adler zero
is either of a consequence of a dynamical constraint on the trajectory parameters
or simply of kinematical origin. Both possibilities do notseem to cause any basic
inconsistency. There is enough room in dual model off mass shell extrapolation
factors to accommodate the various consequences of chiral symmetry and their
breaking mechanisms.

There are theorems incorporating chiral symmetry for processes involving
several pions.

Since they involve the same ingredients as Adler zero, it is expected that many
pion dual amplitude will have no difficulty in incorporating them. In fact the
dual amplitude for six pions due to Brower and Chu (1973) contains in it both the
factorisation into two four pion amplitudes as well as two w —#t#~#° ampli-
tudes. Thus it is capable of exhibiting both the dynamical and kinematical
Adler zeros.

We have checked the consistency between the operational or phenomenological
aspect of the chiral symmetry wiih the freedom permitted under a dual model.
This does not preclude the possibility that the various extrapolations assumed
within the framework of the chiral symmetry are not valid due to non-analytic
behaviour of the theories. The small discrepancy between two different ways
for calculating the symmetry breaking parameter ¢ may be due to such a reason.
However, in such a situation, it is the basic consistency of the chiral symmetry
itself that is being questioned. The question of evaluating the extent of chiral
symmetry in dual models is then rather ambiguous.
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