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This report describes formation of soft vesicular structures by a

tetrapeptide and its disruption triggered by potassium ions.

Soft molecular self-assemblies that respond to external stimulus,

leading to predictable alteration in physico-chemical properties, are

increasingly being sought in diverse applications such as drug

delivery systems, (bio)chemical sensors, cell adhesion mediators,

and microfluidics.1 External stimuli including temperature, pH,

light, electric field, chemicals and ionic strength are expected to

manifest observable change in responsive systems leading to

modifiable shape and surface properties, solubility characteristics,

ability to self-assemble or to exhibit sol-to-gel transitions.2

Synthetic polymers and biological macromolecules have been

extensively used for the development of signal responsive

materials.3 Carefully crafted polymers and biomolecules have the

ability to deliver materials with varying response mechanisms for

tailored biomedical requirements. Of the various possibilities,

peptides are attractive building blocks for soft structure design

owing to their inherent ability to self-assemble in nanoscopic

dimensions.4 Consequently, several examples of peptide-based

responsive materials sensitive to external stimuli including light,

pH, salt concentration and temperature have been described in

contemporary literature.2,5

Herein, we report self-assembly of a simple tetrapeptide into

vesicular structures and its ultrastructural characterization by

microscopic techniques. PWWP tetrapeptide (SV1), derived from

the antimicrobial peptide indolicidin sequence, spontaneously

formed vesicles in the solution phase which could be disrupted

by the simple addition of KCl. This peptide represents a unique

example of cation-responsive soft material which undergoes facile

rupture in the presence of a physiologically relevant cation.

SV1 was synthesized via solution phase peptide synthesis

techniques (see the Supporting Information).6{ A closer inspection

of its MM+ optimized structure suggested an inherent curvature in

the molecule and that the two tryptophan indole moieties were

positioned in an almost parallel displaced mode thus allowing p–p

stacking interactions to stabilize the starting conformation towards

eventual formation of spherical patterns (Fig. 1b). Due to

solubility constraints, the aggregation behavior of SV1 (0.25 mM)

was studied in 50% aqueous methanol, where a random coil-like

structure was confirmed from CD studies (data not shown). The

choice of solvent system was dictated by the solubility of SV1.

Light microscopic studies revealed instantaneous formation of

vesicular structures in SV1 solution (data not shown). The

appearance of vesicular structures was confirmed by scanning

electron microscopy (SEM) where uniformly circular patterns

(Fig. 2a) were evident in the fresh solution with very little change in

the morphology when aged for a week (data not shown). A

transmission electron micrograph (TEM) and atomic force

micrographs (AFM) also revealed the presence of punctated,

circular structures (Figs. 2b and c) with an average diameter of

y1 mm. An environmental SEM image (E-SEM) revealed a

swollen vesicular structure, under moist native-like conditions,
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Fig. 1 (a) Molecular structure of SV1; (b) MM+ optimized structure of

SV1.

Fig. 2 Ultrastructural microscopic analysis of SV1. (a) SEM image of

SV1 solution after 5 min of incubation; (b) TEM micrograph of SV1

vesicles in fresh solution; (c) AFM image of SV1 solution; (d) E-SEM

image of SV1 vesicles.
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with an average diameter of y1.4 mm (Fig. 2d), which suggests

that these spherical structures do not result as drying artifacts. The

size of vesicles under native conditions matched well with dynamic

light scattering size measurements which revealed a size distribu-

tion of y1.5 mm from the intensity data (Fig. 3a).

Further evaluation of these vesicles confirmed their stability

towards 45 min of ultrasonication.6 The TGA thermogram of SV1

vesicles showed y40% weight loss between room temperature and

y285 uC (Fig. 3b). This may be attributed to the loss of methanol

and water from the confines of SV1 soft vesicular structures.

Interestingly, control experiments using the aromatic core of

ditryptophan dipeptide alone did not exhibit formation of vesicular

structures,6,7 while truncated PWW and WWP tripeptides afforded

ill-defined structures,6 thus demonstrating a crucial role of PWWP

tetrapeptide in the self-assembly process. Moreover, it was possible

to dry these vesicles and rehydrate them without destroying the

morphology of vesicular structures.

Having demonstrated the formation of vesicular structures, we

became interested in determining the conditions for the disruption

of these soft vesicular structures. Interaction of cations with the

aromatic indole ring of a tryptophan residue is a well-studied

phenomenon in artificial and natural systems.8 Moreover, alkali

metal ions have also been shown to interact favorably with amino

acids such as proline and serine leading to cluster formation.9 We

reasoned that incubation of vesicles with alkali metal ions, such as

potassium ion, may influence self-assembled morphology via

cation–p interaction, thereby altering the gross morphology of

vesicles. The premise of such interaction prompted us to use

potassium ions as an external stimulus for altering SV1 peptide

structure.

Interestingly, vesicular structures ruptured subsequent to their

incubation with KCl solution (0.25 mM) at ambient temperature.

SEM and TEM micrographs revealed drastically altered morpho-

logy of SV1 with a complete loss of vesicular structure (Fig. 4).

Cation interaction and microscopic analysis suggested the

possibility of using SV1 for guest entrapment and release in the

presence of potassium ions.

Encapsulation properties of SV1 were confirmed by using

rhodamine B dye as a guest molecule. Peptide was dissolved in

1 mM dye solution and incubated for optimal guest entrapment.

Visualization under a fluorescence microscope confirmed that

intensely red fluorescence was contained within vesicular structures

(Fig. 5a). Prolonged incubation resulted in extensive aggregation of

dye-trapped vesicles without any change in the gross morphology

of the vesicular structures. Dye-loaded vesicles were incubated with

KCl solution (0.25 mM) and once again, the salt solution caused

release of rhodamine B by disrupting guest entrapped vesicles

(Fig. 5b). Similar disruption of peptide vesicles was also observed

on the addition of NaCl solution.6 This approach presents an

interesting design paradigm for cation-responsive peptide archi-

tectures which release guest molecules in the presence of

physiologically relevant potassium ions.

We propose that p–p stacking of the tryptophan side-chain

plays a crucial role in the self-assembly process, which is ably

supported by the curvature in the molecule and backbone

interactions. Future work will deal with replacement of tryptophan

with other aromatic amino acid residues and N-methylation of the

indole ring. Interestingly, the role of aromatic p-stacking

interactions in providing energetic contributions as well as

directionality has been proposed for self-assembled protein/peptide

aggregates.10 As expected, the addition of potassium and the

possibility of cation–p interaction leads to altered morphology of

vesicles.

In conclusion, we have described the formation of self-

assembled structures by PWWP tetrapeptide, guest entrapment

studies and its disruption in the presence of potassium ions. We

perceive that such potassium-responsive vesicular structures may

find applications as delivery vehicles for entrapment and transport

of natural and unnatural molecules. These efforts are currently

underway.
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Fig. 3 (a) Average size distribution curve by intensity shows the average

size of the vesicles y1.5 mm; (b) SV1 vesicles show thermal stability up to

y285 uC in TGA analysis.

Fig. 4 Rupturing of SV1 vesicles with potassium ions. (a) SEM image;

(b) TEM image.

Fig. 5 Visualization of rhodamine B entrapped SV1 vesicular structures

as observed by fluorescence microscopy. (a) 2 days aged solution of dye-

loaded vesicles; (b) KCl-mediated disruption of dye-loaded SV1 vesicles.
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Notes and references

{ Synthesis of N-(tert-butyloxycarbonyl)-L-prolyl-L-tryptophanyl-L-trypto-
phanyl-L-proline methyl ester (X): The compound was synthesized through
routine solution-phase peptide synthesis by DCC–HOBT mediated
coupling reaction. Synthesis of L-prolyl-L-tryptophanyl-L-tryptophanyl-L-
proline (SV1): Compound X (0.1 g, 0.15 mmol) was stirred with 1 M HCl in
EtOAc (3 mL) for 3 hours. After 3 hours the solid was separated out by
filtration and washed with diethyl ether and dried. Then, the dry solid was
dissolved in 50% methanol–water and passed through an ion exchange
column chromatograph and the solvent was concentrated under reduced
pressure. Next, the solid was dissolved in methanol and reprecipitated by
diethyl ether; this process was repeated three times and the solid was dried
in a high vacuum pump to get SV1 (0.03 g, 0.06 mmol). M.P. 5 decomposes
at 195 uC, Rf [10% methanol in dichloromethane] 5 0.3, [a]25

D 5 200.05 [c
0.22, methanol]. 1H NMR (400 MHz, CD3OD, TMS, d ppm): 1.66–1.88
(m, 6 H, proline b H and c H); 2.02–2.12 (m, 1 H, proline b H); 2.12–2.25
(m, 1 H, proline b H); 2.85–2.92 (m, 2 H, proline c H); 3.01–3.08 (m, 4 H,
tryptophan b H); 3.16–3.29 (m, 2 H, merged signal for proline c H and
CD3OD peak); 4.06–4.07 (m, 1 H, chiral); 4.13–4.16 (m, 1 H, chiral); 4.60–
4.64 (m, 1 H, chiral); 4.77 (1 H, merged signal for chiral proton and
CD3OD peak); 6.83–7.07 (m, 6 H); 7.17–7.24 (m, 2 H); 7.32–7.34 (m, 1 H);
7.42–7.43 (m, 1 H); 13C NMR (100 MHz; CD3OD, d ppm): 25.01, 26.08,
26.21, 29.1, 30.06, 31.04, 33.85, 47.61, 56.0, 60.42, 60.93, 112.39, 119.19,
119.9, 122.31, 124.8, 128.7, 137.86, 171.87, 175.25; FT IR (KBr, cm21):
1553 (amide II); 1635 (amide I); 3304 (–NH str); FAB MS (M + 1): 585;
Anal. Calcd. for C32H36N6O5, C, 65.74; H, 6.21; N, 14.37; found, C, 65.19;
H, 5.93; N, 13.91%. Analytical HPLC purity: . 97%. Procedure for
potassium ion interaction: Both SV1 (2 days aged, 0.25 mM) and KCl were
taken 1 : 1 (mol/mol) in 50% aqueous methanol and stirred for 24 hours.
After this time, solvent was lyophilized. Fluorescence microscopy: SV1 was
dissolved in rhodamine B solution (1 mM) in 50% aqueous methanol to
make the final concentration 0.25 mM and incubated for 2–20 days at
37 uC. After 2 and 20 days 20 mL of the solution were loaded on the glass
slide and dried at room temperature. These dye entrapped vesicular
structures were examined on a fluorescent microscope (Zeiss Axioskop
2 Plus) provisioned with an illuminator (Zeiss HBO 100) and a rhodamine
filter (absorption 540 nm/emission 625 nm). This filter optimized
visualization of rhodamine-treated (positive resolution) compared with
untreated (negative resolution) vesicles that are virtually invisible to this
light. Images were electronically captured utilizing the Zeiss AxioVision
(version 3.1) computer program. For KCl and KNO3 triggered disruption
studies 0.25 mM KCl and KNO3 were added to a 2 days aged solution and
incubated for a further 24 h followed by fluorescence microscopic imaging.
Scanning electron microscopy: Sample was coated atop metal slides. A gold
coating was applied to the top of the sample to make it conductive for
analysis. Fresh samples and samples aged for 7 days were analyzed by
SEM. SEM measurements were performed on a FEI QUANTA 200
microscope equipped with a tungsten filament gun. The micrograph for the
short mutant was recorded at WD 10.6 mm, magnification 400006. The
concentration of the samples used was 0.25 mM. For KCl, KNO3 and
NaCl triggered disruption studies 0.25 mM KCl was added into the 2 days
aged solution and incubated for a further 24 hours followed by scanning
electron microscopic imaging. Environmental scanning electron microscopy:
The peptide solution was placed on a metal stand made from aluminium
for good thermal conductivity and viewed using a FEI QUANTA 200
microscope equipped with a field emission gun operating at 20.0 kV in a
wet mode and the pressure was 1.0 torr. Atomic force microscopy: Fresh
and aged peptide samples were imaged with an atomic force microscope
(Molecular Imaging, USA) operating under Acoustic AC mode (AAC),
with the aid of a cantilever (NSC 12(c) from MikroMasch). The force
constant was 0.6 N m21, while the resonant frequency was 150 kHz. The
images were taken in air at room temperature, with the scan speed of 1.5–
2.2 lines s21. The data acquisition was done using PicoScan 51 software,

while the data analysis was done with the aid of visual SPM. SV1
(0.25 mM) was incubated for 0–7 days in 50% aqueous methanol and
micrographs were recorded for selected incubation periods. 10 mL of
sample solution were transferred onto a freshly cleaved mica surface and
uniformly spread with the aid of a spin-coater operating at 200–500 rpm
(PRS-4000). The sample-coated mica was dried for 30 min at room
temperature, followed by AFM imaging. Transmission electron microscopy:
A solution of SV1 (100 mL, 0.25 mM) in 50% aqueous methanol was aged
for 7 days. This solution (100 mL) was sonicated (TPC-25) for 15 seconds.
4 mL of this solution were transferred onto Formvar (Fluka, Switzerland)
coated and carbon coated copper grids (SPI supplies, West Chester, USA,
200 mesh) and dried. These grids were negatively stained with 2% uranyl
acetate, dried and subsequently examined under a JEOL 2000FX-II
electron microscope at an operating voltage of 100 kV. For KCl and
KNO3 triggered disruption studies 0.25 mM KCl and 0.25 mM KNO3

were added into the 2 days aged solution and incubated for a further
24 hours followed by transmission electron microscopic imaging. Light
scattering measurements: Freshly prepared 0.25 mM sample solution in
50% aqueous methanol was used for the light scattering measurements
using a MALVERN HPPS (1.00) instrument. Thermogravimetric analysis:
A solution of SV1 (5 mg mL21) in 50% aqueous methanol was aged for
7 days and lyophilized. This sample was analyzed in a Perkin-Elmer Pyris6
thermogravimetric analyzer. The rate of heating was 10 uC min21 under
nitrogen atmosphere.
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