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Abstract. Since the turn of the millennium there has been tremendous progress in un-
derstanding QCD at finite chemical potential, µ. Apart from qualitative results obtained
using models, and exact results at very large µ obtained in weak coupling theory, there
has been tremendous progress in getting exact and quantitative results from lattice simu-
lations. I summarize the status of lattice QCD at finite chemical potential – locating the
critical end-point in the QCD phase diagram, predicting event-to-event fluctuation rates
of conserved quantities, and finding the rate of strangeness production.
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1. Preliminaries

In the last few years there has been a burst of work in elucidating the phase structure
of QCD, especially the remarkable variety of phases and phase transitions at small
temperature, T , and large baryon chemical potential, µ. Among the new results,
the most dependable are from weak-coupling analysis, valid at very large µ, and
lattice results, valid at small µ.
Excitations around the filled Fermi sea of quarks interact with the strength of

the running coupling determined by the large scale µ. Consequently, the results
are dependable whenever µ is sufficiently large. The main result is that there is an
attractive interaction between particle hole pairs leading to colour superconductiv-
ity [1]. Gap equations have been set up and solved and the line of phase transition
between hot quark matter and cold colour superconducting matter has been found
[2]. The most favoured pairing pattern for 2 + 1 quark flavours (shorthand for two
light and one heavier flavour) in QCD is the so-called colour-flavour locked (CFL)
phase [3].
Models have been used to continue the phase diagram towards smaller µ. The

mass differences between the strange and light quarks give interesting changes in the
phase diagram at smaller µ [4]. Along the µ = 0 line hard predictions are available
from lattice QCD. It is known that at finite quark masses there is a cross-over (not a
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Figure 1. Part of the conjectured phase diagram of QCD for 2+1 flavours,
when weak and electromagnetic interactions are switched off, and the quark
masses have their physical value. Every solid line denotes a first-order phase
transition. Every open end of such a line is a critical end-point. The dotted
lines denote cross-overs – along the µ = 0 axis, there is a rapid cross-over
between the hadronic and plasma phases at Tc. An important question is
whether the critical end-point (TE, µE) is close enough to the µ = 0 axis to be
visible at the RHIC. The other critical end-point at much smaller temperature,
for the nuclear liquid–gas transition has possibly been observed [11]. At large
µ, the transition line between the plasma and CFL phases has no end-point.
The CFL K0 phase is characterized in [4]. Along the µ3 axis, there is a critical
point for charged pion condensation at µ3 = mπ [12]. In the phase diagram for
Nf = 2, the CFL phases are replaced by a different colour superconducting
phase without changing the character of the phase diagram at low µ. For
Nf = 3 and higher, the phase diagram is quite different.

phase transition) from the hadronic phase to the hot quark matter phase. Putting
all this information together, one gets the conjectured phase diagram shown in
figure 1. In this talk I shall focus on recent attempts to determine the location
of the critical end-point directly through lattice computations. I shall restrict my
attention to the work done in QCD with 2 or 2 + 1 flavours, for which the critical
end-point exists.
It is well-known that a quantum theory with unequal numbers of fermions and

anti-fermions has a ‘sign problem’, i.e., the Euclidean partition function is not
positive definite. In essence the problem arises from the fact that fermions are
anti-symmetric under exchange. This problem has prevented widespread use of
the Monte Carlo method for the exploration of the phase diagram of many models
of physical interest in a variety of fields, ranging from the Hubbard model and
applications to high-Tc superconductivity to QCD at finite baryon density. The
exciting development in the last three years has been that not only one, but three
different methods have been developed which can be used to bypass the sign problem
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[5–10]. I will outline the results obtained by these means on the phase diagram and
related physics.
It is perhaps useful to mention here a few issues which will not be discussed

later. First, that in QCD, where flavour symmetry is exact, it is possible to put
an independent chemical potential for each quark flavour. QCD at finite iso-vector
chemical potential (µ3 = µu = −µd) suffers from no sign problem, and can be
computed directly. However, when weak interactions are switched on only the
baryon and electric charge remain conserved, and only these two chemical potentials
remain meaningful. Second, the new methods are not full solutions to the sign
problem, but allow us to bypass it in a certain part of the phase diagram. The
superconducting phases of QCD still remain out of reach of the present lattice
methods. Unfortunately, therefore, quantitative statements about the differences
between nuclear and quark matter in the core of compact stars still remain out of
reach of exact theory.

2. The new lattice techniques

The lattice results are based on three new techniques, all developed in the last two
years. One of these techniques, the use of imaginary chemical potential [9,10], is
specific to QCD-like theories where an imaginary chemical potential behaves as an
extra U(1) piece in the gauge group, and hence leads to a formulation without the
sign problem. An appropriate analytic continuation can then allow one to find the
location of the critical end-point.
The other two formulations are more general, and can be directly carried over

to other physical systems where the sign problem exists; these are the reweighting
method [5,6] and the Taylor series expansion method [7,8]. They are subject to
different kinds of uncertainties. I will illustrate them here with an application to a
directly solvable problem – the evaluation of Gaussian integrals:

x(s) =
1√
2π

∫ ∞

−∞

dx e−(x−s)2/2. (1)

The exact solution is x(s) = s. Although there is no sign problem here, one can
use the above methods to generate x(s) numerically.
The reweighting method consists of rewriting the problem as

x(s) =
1√
2π

∫ ∞

−∞

dx w(x, s)e−x2/2 =
〈xw(x, s)〉
〈w(x, s)〉 , (2)

where w(x, s) = exp(2sx− s2)/2, and angular brackets denote an average over the
Gaussian weight dx exp(−x2/2). In reweighting, this weight is sampled by a Monte
Carlo technique, and the dependence on s generated by w(x, s).
Such reweighting techniques have been suggested earlier as a means of getting

round the sign problem [13]. However, the sign problem then manifests itself as large
cancellations (and consequent large errors) in the determination of the denominator,
〈w〉. The approach of [5] hopes to avoid this problem by a clever choice of correlated
paths of reweighting in the T–µ plane. This cannot remove all the problems of
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Figure 2. Reweighting the Gaussian with different statistics (circle: 100,
square: 1000, pentagon: 105 and triangle: 107). The naive error bars shown
here are clearly too optimistic, as is clear on comparing with the exact result
(thick diagonal line). Note that the extra range of s gained grows at best
logarithmically with the statistics.

course, as one can see by replacing 〈w〉 in eq. (2) by its known value
√
2π. The

results of reweighting of simulations with different statistics is compared with the
exact result in figure 2. As one can see, the extent by which one can extrapolate in
s grows logarithmically with the statistics.
This exponential barrier is generic for reweighting, and is due to the fact that no

matter how large the statistics, there will be some range of configurations which
must have exponentially small weight (guaranteed by the fact that thermodynamic
fluctuations are generically Gaussian) and therefore will not be sampled very well.
As one reweights, configurations which are badly sampled will eventually dominate
the averaging and destroy the reweighting (see figure 3). Clearly, an absolute upper
bound on reweighting, slim, is obtained for a given statistics, Ns, when the max-
imum of the reweighted distribution is at a point where the original distribution
had only one event, i.e.,

NsP (slim) = 1 and sGaussian
lim =

√
2σ log

(

Ns√
2πσ

)

. (3)

The equation at the left is valid for all distributions, whereas the expression on
the right is correct for a Gaussian of variance σ. The actual extent to which one
can extrapolate by reweighting is usually much smaller [14]. An improved analysis
of errors in reweighting [15], as displayed in figure 4 also reveals the exponential
barrier. For the unit Gaussian with statistics of Ns = 10

3, we expect, sGaussian
lim =

8.47. As expected, this is far larger than the analysis shown in figure 4, from which
it seems difficult to extrapolate beyond s = 2.
One way to approach the Taylor expansion method is to simply expand the weight

factor w(x, s) in a Taylor series in s, as in [6]. However, this does not necessarily
lead to a better controlled expansion. The real improvement comes from taking
the Taylor expansion of an expectation value [7], in this case x. This allows the
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Figure 3. The histograms generated by reweighting of that obtained by
direct Monte Carlo simulations at s = 0 using statistics of 106. The distance
to which reweighting is accurate depends on the logarithm of the statistics
and the width of the distribution.
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Figure 4. Improved estimate of one sigma errors in reweighting using 1000
sample points (dashed line). Also shown is the error band for the extrapolation
using a Taylor expansion based on the same statistics (full line).

Monte Carlo to solve more of the problem by using all the symmetries at hand, and,
through importance sampling, also determine enough of the weight to improve the
extrapolation. In fact, the symmetries of the problem allow us to drop all the even
order terms in the expansion, leaving us with the remaining coefficients:

1!t1 =
[

x2
]

,

3!t3 =
[

x4
]

+ 3
[

x2
] ([

x2
]

− 1
)

,

5!t5 =
[

x6
]

+
[

x4
] (

15
[

x2
]

− 10
)

+ 15
[

x2
] ([

x2
]

− 1
)2
, (4)

where ti is the Taylor coefficient of the ith order in the expansion of x, and square
brackets denote cumulants, i.e., the connected parts of moments. For the Gaussian

Pramana – J. Phys., Vol. 63, No. 6, December 2004 1215



Sourendu Gupta

problem at hand, all cumulants except
[

x2
]

are zero. The results of the Taylor
expansion are shown in figure 4.
The Taylor expansion becomes statistically unreliable when the error in some

term dominates the expansion. The coefficient itself is always of order 〈xn〉/n!, and
its error dominates for a limiting order, n∗, such that

NeP

(

{ 〈xn∗〉
n∗!

}1/n∗
)

= 1. (5)

For a Gaussian distribution, the limiting order n∗ ∝ log2Ns. However, the limiting
value, slim, is independent of n∗, since s

lim = R, whereR is the radius of convergence
of the series. This R in turn can be determined from the Taylor expansion with an
error that is well-behaved for n < n∗. The method would fail if the series is badly
behaved and asymptotic results for R cannot be obtained with n < n∗. For the
example here, or for the high temperature phase of QCD, where the series has an
infinite radius of convergence [7], there is no threshold where the expansion breaks
down, as is clearly visible in figure 4.
A Taylor series expansion of the pressure in terms of µ along lines of constant T ,

1

V
Z(T, µ) = P (T, µ) = P (T, 0) +

∑

i

χ2i

2i!
µ2i (6)

contains only the even order terms due to CP invariance [16]. It breaks down at the
critical end-point, which is the radius of convergence of the series. The statistical
errors in the estimate of the critical end-point are well-behaved as a function of the
statistics. Hence the Taylor expansion method seems to be very well-suited for the
determination of the critical end-point.
This estimate can be made through the ratio test for convergence of a series:

µn =

√

(n+ 1)(n+ 2)
χn
χn+2

(7)

where an estimator of the radius of convergence, µ∗, is the limit of µn as n tends
to infinity. The series converges if and only if µ ≤ µ∗ [7,8].
I return briefly to a discussion of the technique of lattice simulation at imaginary

chemical potential and its analytic continuation to real chemical potential. Theo-
retically the most well-founded method for the analytic continuation is through the
Taylor expansion of the pressure, as in eq. (6). This was used in [9] and explored
further in [19]. In the latter, the case of SU(2) colour group was examined, since
the action remains positive-definite even for real chemical potential. It was found
that a small number of coefficients could be extracted with sufficient precision to
perform the analytic continuation.
It is clear that the system for imaginary µ (i.e., µ2 < 0) is not physical [20].

A complication in this method is that simulations at imaginary chemical potential
can see multiple vacua which are not physical, and hence be constrained by other
nearby singularities. It remains to be seen whether this method is accurate enough
to yield the position of the critical end-point.
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3. The critical end-point in QCD

These are early days for the determination of the critical end-point in QCD. Several
independent estimates are now available at the same lattice spacing a = 1/4Tc with
degenerate u and d quark masses such that mρ/Tc ≈ 5. Two of these computations
[8,21] are performed with two flavours of light dynamical quarks and the others
[5,22] add a heavier dynamical quark with bare quark mass ms/mu = 8. Since the
parameters in the staggered quark simulations [5,21] are related in such a way that
mπ/Tc = 1.6 and mπ/mρ = 0.3 [5,23], it is clear that the heavier (strange) quark of
[5] has little influence on the scale. One consequence of this is that the observation
in [23] that lattice artifacts are strong, since the nucleon mass is too heavy, with
mN/mρ = 1.8, extends to the simulation of [5]. With the P4 improved staggered
quark action used in [8] the above value of mρ/Tc is obtained for mπ/mρ = 0.70
[24], implying that the quark mass is large. It is clear that the continuum results
for the critical end-point are yet to come: the current excitement is that it has been
reduced to an economic problem of buying enough computer time.
The first results for the critical end-point for 2 + 1 flavours were obtained for

staggered quarks with two light flavours of m/Tc = 0.1 and 1 heavier flavour of
m/Tc = 0.8 on 4× 43, 4× 63 and 4× 83 lattices [5]. The quark masses are rather
high, as evidenced by the fact that mπ/Tc ≈ 1.6 instead of the expected value of
about unity, andmπ/mρ ≈ 0.3, almost twice as large as in the physical world. Even
though the pion mass is large, the spatial sizes are small when expressed in units
of the relevant physical quantity that controls the dominant finite volume effects,
i.e., the pion Compton wavelength. Subject to all these caveats, the estimate of the
critical point reported by these authors is TE = 160± 3.5 MeV and µE = 725± 35
MeV.
The scale in [5] is set by a determination of Tc = 172 ± 3 MeV. This gives

TE/mρ = 0.191± 0.006 and µE/mρ = 0.86± 0.05. Since the scale of Tc is likely to
be set by the rho meson, and that of µE by the nucleon, it is useful to know that
µE/mN = 0.49 ± 0.03. Then setting the scale by the physical nucleon mass, one
would get µE = 460 ± 25 MeV. Thus, the scale uncertainty in the result is much
greater than the statistical errors quoted.
It is also interesting to see that TE/Tc = 0.93± 0.03. Possible systematic effects

in the error remain to be investigated. One expects the largest effect to come
from finite volume rounding and shift in the critical point. For example, using the
known shift in the Wilson coupling for the quenched theory [25], it turns out that
∆Tc/Tc = 0.03 on comparable lattice sizes.
A recent update brought the quark mass down [22]; with mπ/mρ = 0.18, in

agreement with its physical value. The strange quark mass was tuned to give
mπ/mK ' 0.3, which is also realistic. However, the cut-off remained a = 1/4Tc and
mρ/Tc increased marginally. Nor were the spatial volumes (measured in physical
units) increased in these computations. The critical end-point was identified to lie
at TE = 162 ± 2 and µE = 360 ± 40. Using the estimates of Tc and mρ presented,
this corresponds to TE/mρ = 0.184± 0.003 and µE/mρ = 0.41± 0.05.
Taylor expansions have been used with both staggered quarks [7,21] and

Symanzik improved P4 quarks [8] with two flavours of light degenerate quarks.
In [21], the bare quark mass, m/Tc = 0.1, corresponds to mπ/Tc ' 1.6 [23], the
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Table 1. Summary of critical end-point determinations. The lattice spacing
is a = 1/4Tc. L is the spatial size of the lattice and Lmπ is the size in units of
the pion Compton wavelength. The ratio mπ/mK sets the scale of the strange
quark mass. As the mass scales indicate, the lattice spacings and u and d
quark masses of [5] and [21] are comparable. The number in brackets indicate
the statistical errors on the least significant digit.

Lmπ mρ/Tc mπ/mρ mN/mρ Flavours mπ/mK µE/TE Reference

1.57–3.14 5.12 (8) 0.307 (6) ? 2+1 ? 1.51 (8) [5]
1.49–2.99 5.372 (5) 0.185 (2) ? 2+1 0.282 (4) 0.74 (8) [22]

4.18–10.04 5.4 (2) 0.31 (1) 1.8 (2) 2 – 1.3–2.0 [21]
15.33 5.5 (1) 0.70 (1) ? 2 – ? [8]

spatial sizes are varied to lie between about 4 and 10 times the pion Compton
wavelengths, and all Taylor coefficients up to the eighth order are computed. In
[8], the bare quark mass m/Tc = 0.4 corresponds to mπ/Tc ' 4, the spatial size is
about 15 pion Compton wavelengths, and Taylor coefficients up to the fourth order
are computed.
In [7] it was found that the radius of convergence of the Taylor series for the

pressure was large (possibly infinite) in the plasma phase of quenched QCD in
the continuum limit. This result was reproduced at finite lattice spacing in the
two-flavour theory [21]. On lowering the temperature, it was found that in the
region between Tc and 0.95Tc there is a cross-over to a finite radius of convergence.
At T/Tc = 0.95, the radius of convergence is estimated to be 0.710 ± 0.002 (for
Lmπ ' 4.2) and 0.500 ± 0.004 (for Lmπ ' 6.7). In the infinite volume limit, it is
estimated that µE/TE ≈ 1.3–2, which is in rough agreement with the results due
to reweighting. However, the finite volume effects seen here could imply that the
results of the critical end-point estimate for 2 + 1 flavours in the infinite volume
limit could easily move towards significantly smaller µE.
A summary of these discussions is given in table 1 [26]. The state of the art

needs to be improved in three ways. First, finite volume effects need to be explored
in order to check whether the putative end-point is really critical. The first steps
in this direction have been taken in [21]. Second, smaller quark masses have to be
used in order to check what happens when the hadron masses are physical. Again,
the first step in this direction has been taken [22]. Finally, the continuum limit
needs to be taken in order to make contact with experiment.

4. Physics at small µ

The ability to compute at finite chemical potential opens up new physics chan-
nels where data from RHIC and other heavy-ion facilities can be compared with
theoretical predictions. Some of the new physics that has been explored are event-
to-event fluctuations (of conserved quantities such as baryon number, charge and
strangeness), the equation of state and total strangeness production rates.
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4.1 Quark number susceptibilities

The relation between quark number susceptibilities and event-to-event fluctuations
of conserved quantities was set out in [27]. Computations of the quark number
susceptibilities at temperatures well above Tc were first performed in a quenched
lattice computation [28] and extrapolated to the continuum [29]. Perturbative
estimates using the 2PI skeleton resummation [30] and dimensional reduction [31]
agree with these results. In figure 5 we show the temperature dependence of the
quark number susceptibility at lattice spacing a = 1/4T using 2 flavours of staggered
quarks [21]. A comparison with the quenched theory shows that quenching artifacts
are small in the high temperature limit. A speciality of these computations is that
the quark mass is adjusted to take care of the running due to changing lattice
spacing so that physical masses are fixed to mρ/Tc = 5.4.
Similar computations have been performed with 2 flavours of P4 improved stag-

gered quarks [8] as well as 2+1 and 3 flavours of Asqtad improved staggered quarks
[33]. In the latter, the running of the quark mass is taken care of by adjusting it
keeping mπ/mρ = 0.672 for Nf = 3 and mπ/mρ = 0.392 when mu,d/ms = 0.2.
This was done while the lattice spacing was varied between 1/4T and 1/8T with
T running from approximately 0.75Tc to 1.5Tc. Qualitatively, the results are very
similar to those shown in figure 5, although there are quantitative differences due
to the differences in mπ/mρ or the number of active flavours. The computations
of [33] show a large change in going from a = 1/4T to a = 1/6T , followed by
little movement in decreasing a to 1/8T . Additionally, the results indicate that the
continuum limit for T > Tc may be close to that in the quenched theory [29].
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Figure 5. The quark number susceptibility χ20/T
2 as a function of T at

lattice spacing a = 1/4T . The full temperature range is covered for two
flavours of staggered quarks with bare quark mass fixed to give mπ/Tc = 1.6
with spatial box size of 4 pion Compton wavelengths (circles) and 6.4 pion
Compton wavelengths (boxes). In the high temperature phase the results
are comparable with those from quenched theory at the same lattice spacing
(triangles) [28]. There are attempts to describe the data below Tc in terms of
an ideal resonance gas [32].
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Figure 6. The bare quark-mass dependence of the quark number suscep-
tibility χ20/T

2 as a function of T at lattice spacing a = 1/4T . The full
temperature range is covered for two flavours of staggered quarks with bare
quark mass fixed at m/Tc = 0.1 (independent of the lattice spacing) in order
to give mπ/Tc = 1.6 with spatial box size of 4 pion Compton wavelengths
(circles) and 6.4 pion Compton wavelengths (boxes). Note that the mass shift
is small: halving the quark mass changes χ20/T

2 in figure 5 by less than the
error bars at almost all T .

The quark mass dependence of the quark number susceptibility which is required
to connect all the different computations is related to an interesting physical quan-
tity by a Maxwell relation, i.e., an equality between two different physical interpre-
tations of a mixed derivative obtained by interchanging the orders of the derivatives.
When a Taylor expansion of the quark condensate is written down, the coefficient
of the linear term is seen to vanish for the flavour singlet condensate. The Maxwell
relation for the coefficient of the quadratic term is:

∂2〈ψψ〉
∂µ2

=
∂χ20

∂m
. (8)

The bare derivative is shown in figure 6 in the theory with two flavours of dynamical
staggered quarks as a function of temperature. Renormalisation and the continuum
limit were investigated in the quenched theory [34], and it was shown that the
relatively large value of the derivative seen for T > Tc in figure 6 is a lattice
artifact. In the continuum this derivative vanishes. No investigation of this kind
has been performed yet below Tc.

4.2 The equation of state

The equation of state can be used and tested in the analysis of collective flow arising
in heavy-ion collisions. In the high temperature phase of QCD where quenching
artifacts are small, the continuum limit has been taken in quenched QCD [7]. In
heavy-ion experiments at RHIC and the CERN-SPS, the chemical potential has

1220 Pramana – J. Phys., Vol. 63, No. 6, December 2004



Lattice QCD with chemical potential

0.0001

0.001

0.01

0.1

1

10

100

0.001 0.01 0.1 1 10

P
/T

∆
4

n/T3

1  dP
T  dn

Figure 7. The equation of state in the continuum limit at finite chemi-
cal potential for T = 2Tc with the leading term only (dashed line), and the
first two terms (full line) of the Taylor series. The band shows the 1-σ error
due to statistical errors in the susceptibilities. The EOS at 1.5Tc and 3Tc
are indistinguishable at this scale. The dotted line is the response function
∂(P/T 4)/∂(n/T 3) at fixed T .

been extracted from analysis of hadronic yields [35]. At SPS energies, where µ/Tc =
0.45, the change from the µ = 0 value of the pressure is about 4%. At the RHIC
µ/Tc = 0.15, and the change in pressure is negligible.
The equation of state is the relation between the pressure and the quark number

density at a fixed temperature. This is shown for the high temperature phase after
taking the quenched continuum limit in figure 7. Deviations from a simple power
law become visible only when the number density becomes of order T 3. The slope
of the equation of state also shows a power law behaviour for small n/T 3.
In QCD with dynamical quarks, the equation of state has been obtained at cut-off

of a = 1/4T in [8,21,36] as a by-product of the identification of the critical end-point.
The continuum limit has not yet been approached in any of these computations.

4.3 Strangeness production rates

Another piece of phenomenology that can be derived from Taylor expansion co-
efficients is the relative rate of strange and light quark production. In thermal
equilibrium, the rate of production of particles is obtained through linear response
theory. Measurements of Euclidean correlation functions have been continued into
particle production rates using Bayesian techniques to extract the spectral func-
tions needed for the analytic continuation [37]. It is possible to simplify the ratio
of total quark production rates, if one assumes a relaxation time approximation
for the spectral functions. Making further assumption that the relaxation time
is longer than the (inverse) masses of the quarks, one finds that the ratio of the
production rates is the ratio of the quark number susceptibilities [38].
If the fireball produced in heavy-ion collisions is initially gluon dominated, then,

λs, the so-called Wroblewski parameter, i.e., the ratio of newly produced strange to
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Figure 8. The relative rates of strange and light quark pair production as
a function of temperature in QCD with two flavours of light sea quarks at
lattice cut-off a = 1/4T (circles) and quenched QCD in the continuum limit
(squares). The light quark mass has been tuned to give mπ/Tc = 1.6 [21].
The rate of change with respect to the light quark mass can be obtained using
the information in figure 6.

light quark pairs, is exactly the same as the ratio of the corresponding production
rates. If, on the other hand, there is a degree of chemical equilibration, then the two
ratios begin to differ by an amount that corresponds to the backward reaction rate.
In figure 8 we show an estimate of the ratio of strange and light quark production
rates computed in QCD at finite lattice spacing as a function of T . Also shown is
the same ratio computed in quenched QCD in the continuum limit. In ratios such
as this, lattice artifacts tend to cancel out.
Perhaps the severest source of lattice uncertainty here is the effect of the light

quark masses on the ratio of the rates [34,39], as can be estimated from the mass
dependence shown in figure 6. Future lattice computations need to take this into
account by going towards realistic strange and light quark masses. Other uncer-
tainties in the argument which need to be checked are detailed in [38].

5. Conclusion

I have reported three different methods which were developed recently in order
to explore the phase diagram of QCD through lattice simulations. At least two
of these seem to be general purpose methods to evade the fermion-sign problem
partially. I examined these methods in §2 and applied them to the evaluation of
simple integrals.
With the development of these methods it becomes possible to extend computa-

tions of QCD thermodynamics out to non-vanishing baryon density and accurately
examine theoretical aspects of ongoing experimental work such as event-to-event
fluctuations in conserved quantities, and the equation of state. It also becomes
possible for the first time to examine strangeness production rates. I have touched
upon these topics in §4.

1222 Pramana – J. Phys., Vol. 63, No. 6, December 2004



Lattice QCD with chemical potential

One of the most promising developments is the possibility that one may begin
to tie down theoretical speculations about the phase diagram of QCD – especially
the position of the critical end-point. I have summarized the state of the art in this
field in §3.
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